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Ilce Manual

Distributed Programming with Ice

The Internet Communications Engine (Ice) is an object-oriented RPC framework that helps you build distributed applications with minimal
effort. Ice allows you to focus your efforts on your application logic, and it takes care of all interactions with low-level network programming
interfaces. With Ice, there is no need to worry about details such as opening network connections, serializing and deserializing data for
network transmission, or retrying failed connection attempts.

The main design goals of Ice are:

Provide an object-oriented RPC framework suitable for use in heterogeneous environments.

Provide a full set of features that support development of realistic distributed applications for a wide variety of domains.
Avoid unnecessary complexity, making the platform easy to learn and to use.

Provide an implementation that is efficient in network bandwidth, memory use, and CPU overhead.

Provide an implementation that has built-in security, making it suitable for use over insecure public networks.

In simpler terms, the Ice design goals could be stated as "Let's build a powerful middleware platform that makes the developer's life easier."

The acronym "Ice" is pronounced as a single syllable, like the word for frozen water.

Getting Help with Ice

If you have a question and you cannot find an answer in this manual, you can visit our developer forums to see if another developer has
encountered the same issue. If you still need help, feel free to post your question on the forum, which ZeroC's developers monitor regularly.
Note, however, that we can provide only limited free support in our forums. For guaranteed response and problem resolution times, we
highly recommend purchasing commercial support.

Feedback about the Manual

We would very much like to hear from you in case you find any bugs (however minor) in this manual. We also would like to hear your opinion
on the contents, and any suggestions as to how it might be improved. You can contact us via e-mail at icebook@zeroc.com.

Legal Notices

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book and ZeroC was aware of the trademark claim, the designations have been printed in initial caps or all caps.
The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and
assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising
out of the use of the information or programs contained herein.

License

This manual is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
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Ice Overview

The following topics provide a high-level overview of Ice:

® |ce Architecture introduces fundamental concepts and terminology, and outlines how Slice definitions, language mappings, and the
Ice run time and protocol work in concert to create clients and servers.

® |ce Services Overview briefly presents the object services provided by Ice.

® Architectural Benefits of Ice outlines the benefits that result from the Ice architecture.

Topics

® |ce Architecture
® |ce Services Overview
® Architectural Benefits of Ice
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Ice Architecture

Ice is an object-oriented middleware platform. Fundamentally, this means that Ice provides tools, APIs, and library support for building
object-oriented client-server applications. Ice applications are suitable for use in heterogeneous environments: client and server can be
written in different programming languages, can run on different operating systems and machine architectures, and can communicate using
a variety of networking technologies. The source code for these applications is portable regardless of the deployment environment.

Topics:

Terminology

Slice (Specification Language for Ice)
Overview of the Language Mappings
Client and Server Structure

Overview of the Ice Protocol

See Also

® |ce Services Overview
® Architectural Benefits of Ice
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Terminology

Every computing technology creates its own vocabulary as it evolves. Ice is no exception. However, the amount of new jargon used by Ice is
minimal. Rather than inventing new terms, we have used existing terminology as much as possible. If you have used another middleware
technology in the past, you will be familiar with much of what follows. (However, we suggest you at least skim the material because a few
terms used by Ice do differ from the corresponding terms used by other middleware.)

On this page:

Clients and Servers

Ice Objects

Proxies

Stringified Proxies

Direct Proxies

Indirect Proxies

Direct Versus Indirect Binding
Fixed Proxies

Routed Proxies

Replication

Replica Groups

Servants

At-Most-Once Semantics
Synchronous Method Invocation
Asynchronous Method Invocation
Asynchronous Method Dispatch
Oneway Method Invocation
Batched Oneway Method Invocation
Datagram Invocations

Batched Datagram Invocations
Run-Time Exceptions

User Exceptions

Properties

Clients and Servers

The terms client and server are not firm designations for particular parts of an application; rather, they denote roles that are taken by parts of
an application for the duration of a request:

® Clients are active entities. They issue requests for service to servers.
® Servers are passive entities. They provide services in response to client requests.

Frequently, servers are not "pure"” servers, in the sense that they never issue requests and only respond to requests. Instead, servers often
act as a server on behalf of some client but, in turn, act as a client to another server in order to satisfy their client's request.

Similarly, clients often are not "pure" clients, in the sense that they only request service from an object. Instead, clients are frequently
client-server hybrids. For example, a client might start a long-running operation on a server; as part of starting the operation, the client can
provide a callback object to the server that is used by the server to notify the client when the operation is complete. In that case, the client
acts as a client when it starts the operation, and as a server when it is notified that the operation is complete.

Such role reversal is common in many systems, so, frequently, client-server systems could be more accurately described as peer-to-peer sy
stems.

Ice Objects

An Ice object is a conceptual entity, or abstraction. An Ice object can be characterized by the following points:

® An Ice object is an entity in the local or a remote address space that can respond to client requests.

® A single Ice object can be instantiated in a single server or, redundantly, in multiple servers. If an object has multiple simultaneous
instantiations, it is still a single Ice object.

® Each Ice object has one or more interfaces. An interface is a collection of named operations that are supported by an object. Clients
issue requests by invoking operations.

® An operation has zero or more parameters as well as a return value. Parameters and return values have a specific type. Parameters
are named and have a direction: in-parameters are initialized by the client and passed to the server; out-parameters are initialized
by the server and passed to the client. (The return value is simply a special out-parameter.)

® An Ice object has a distinguished interface, known as its main interface. In addition, an Ice object can provide zero or more alternate
interfaces, known as facets. Clients can select among the facets of an object to choose the interface they want to work with.
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® Each Ice object has a unique object identity. An object's identity is an identifying value that distinguishes the object from all other
objects. The Ice object model assumes that object identities are globally unique, that is, no two objects within an Ice communication
domain can have the same object identity.

In practice, you need not use object identities that are globally unique, such as UUIDs, only identities that do not clash with any
other identity within your domain of interest. However, there are architectural advantages to using globally unique identifiers, which
we explore in our discussion of object life cycle.

Proxies

For a client to be able to contact an Ice object, the client must hold a proxy for the Ice object. A proxy is an artifact that is local to the client's
address space; it represents the (possibly remote) Ice object for the client. A proxy acts as the local ambassador for an Ice object: when the
client invokes an operation on the proxy, the Ice run time:

. Locates the Ice object

. Activates the Ice object's server if it is not running

. Activates the Ice object within the server

. Transmits any in-parameters to the Ice object

. Waits for the operation to complete

. Returns any out-parameters and the return value to the client (or throws an exception in case of an error)

OO0 WNE

A proxy encapsulates all the necessary information for this sequence of steps to take place. In particular, a proxy contains:

® Addressing information that allows the client-side run time to contact the correct server
® An object identity that identifies which particular object in the server is the target of a request
® An optional facet identifier that determines which particular facet of an object the proxy refers to

Stringified Proxies

The information in a proxy can be expressed as a string. For example, the string:

SimplePrinter:default -p 10000

is a human-readable representation of a proxy. The Ice run time provides API calls that allow you to convert a proxy to its stringified form and
vice versa. This is useful, for example, to store proxies in database tables or text files.

Provided that a client knows the identity of an Ice object and its addressing information, it can create a proxy "out of thin air" by supplying
that information. In other words, no part of the information inside a proxy is considered opaque; a client needs to know only an object's
identity, addressing information, and (to be able to invoke an operation) the object's type in order to contact the object.

Direct Proxies

A direct proxy is a proxy that embeds an object's identity, together with the address at which its server runs. The address is completely
specified by:

® a protocol identifier (such TCP/IP or UDP)
® a protocol-specific address (such as a host name and port number)

To contact the object denoted by a direct proxy, the Ice run time uses the addressing information in the proxy to contact the server; the
identity of the object is sent to the server with each request made by the client.

Indirect Proxies

An indirect proxy has two forms. It may provide only an object's identity, or it may specify an identity together with an object adapter
identifier. An object that is accessible using only its identity is called a well-known object, and the corresponding proxy is a well-known proxy.
For example, the string:

Si mpl ePrinter
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is a valid proxy for a well-known object with the identity Si npl ePri nt er.

An indirect proxy that includes an object adapter identifier has the stringified form

Si npl ePri nter @ri nt er Adapt er

Any object of the object adapter can be accessed using such a proxy, regardless of whether that object is also a well-known object.

Notice that an indirect proxy contains no addressing information. To determine the correct server, the client-side run time passes the proxy
information to a location service. In turn, the location service uses the object identity or the object adapter identifier as the key in a lookup
table that contains the address of the server and returns the current server address to the client. The client-side run time now knows how to
contact the server and dispatches the client request as usual.

The entire process is similar to the mapping from Internet domain names to IP address by the Domain Name Service (DNS): when we use a
domain name, such as ww. zer oc. com to look up a web page, the host name is first resolved to an IP address behind the scenes and,
once the correct IP address is known, the IP address is used to connect to the server. With Ice, the mapping is from an object identity or
object adapter identifier to a protocol-address pair, but otherwise very similar. The client-side run time knows how to contact the location
service via configuration (just as web browsers know which DNS server to use via configuration).

Direct Versus Indirect Binding

The process of resolving the information in a proxy to protocol-address pair is known as binding. Not surprisingly, direct binding is used for
direct proxies, and indirect binding is used for indirect proxies.

The main advantage of indirect binding is that it allows us to move servers around (that is, change their address) without invalidating existing
proxies that are held by clients. In other words, direct proxies avoid the extra lookup to locate the server but no longer work if a server is
moved to a different machine. On the other hand, indirect proxies continue to work even if we move (or migrate) a server.

Fixed Proxies

A fixed proxy is a proxy that is bound to a particular connection: instead of containing addressing information or an adapter name, the proxy
contains a connection handle. The connection handle stays valid only for as long as the connection stays open so, once the connection is
closed, the proxy no longer works (and will never work again). Fixed proxies cannot be marshaled, that is, they cannot be passed as
parameters on operation invocations. Fixed proxies are used to allow bidirectional communication, so a server can make callbacks to a client
without having to open a new connection.

Routed Proxies

A routed proxy is a proxy that forwards all invocations to a specific target object, instead of sending invocations directly to the actual target.
Routed proxies are useful for implementing services such as Glacier2, which enables clients to communicate with servers that are behind a
firewall.

Replication

In Ice, replication involves making object adapters (and their objects) available at multiple addresses. The goal of replication is usually to
provide redundancy by running the same server on several computers. If one of the computers should happen to fail, a server still remains
available on the others.

The use of replication implies that applications are designed for it. In particular, it means a client can access an object via one address and
obtain the same result as from any other address. Either these objects are stateless, or their implementations are designed to synchronize
with a database (or each other) in order to maintain a consistent view of each object's state.

Ice supports a limited form of replication when a proxy specifies multiple addresses for an object. The Ice run time selects one of the
addresses at random for its initial connection attempt and tries all of them in the case of a failure. For example, consider this proxy:

SimplePrinter:tcp -h serverl -p 10001:tcp -h server2 -p 10002
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The proxy states that the object with identity Si npl ePr i nt er is available using TCP at two addresses, one on the host ser ver 1 and
another on the host ser ver 2. The burden falls to users or system administrators to ensure that the servers are actually running on these
computers at the specified ports.

Replica Groups

In addition to the proxy-based replication described above, Ice supports a more useful form of replication known as replica groups that
requires the use of a location service.

A replica group has a unique identifier and consists of any number of object adapters. An object adapter may be a member of at most one
replica group; such an adapter is considered to be a replicated object adapter.

After a replica group has been established, its identifier can be used in an indirect proxy in place of an adapter identifier. For example, a
replica group identified as Pr i nt er Adapt er s can be used in a proxy as shown below:

Si mpl ePrinter @rinterAdapters

The replica group is treated by the location service as a "virtual object adapter.” The behavior of the location service when resolving an
indirect proxy containing a replica group id is an implementation detail. For example, the location service could decide to return the
addresses of all object adapters in the group, in which case the client's Ice run time would select one of the addresses at random using the
limited form of replication discussed earlier. Another possibility is for the location service to return only one address, which it decided upon
using some heuristic.

Regardless of the way in which a location service resolves a replica group, the key benefit is indirection: the location service as a middleman
can add more intelligence to the binding process.

Servants

As we mentioned, an Ice Object is a conceptual entity that has a type, identity, and addressing information. However, client requests
ultimately must end up with a concrete server-side processing entity that can provide the behavior for an operation invocation. To put this
differently, a client request must ultimately end up executing code inside the server, with that code written in a specific programming
language and executing on a specific processor.

The server-side artifact that provides behavior for operation invocations is known as a servant. A servant provides substance for (or incarnat
es) one or more Ice objects. In practice, a servant is simply an instance of a class that is written by the server developer and that is
registered with the server-side run time as the servant for one or more Ice objects. Methods on the class correspond to the operations on the
Ice object's interface and provide the behavior for the operations.

A single servant can incarnate a single Ice object at a time or several Ice objects simultaneously. If the former, the identity of the Ice object
incarnated by the servant is implicit in the servant. If the latter, the servant is provided the identity of the Ice object with each request, so it
can decide which object to incarnate for the duration of the request.

Conversely, a single Ice object can have multiple servants. For example, we might choose to create a proxy for an Ice object with two
different addresses for different machines. In that case, we will have two servers, with each server containing a servant for the same Ice
object. When a client invokes an operation on such an Ice object, the client-side run time sends the request to exactly one server. In other
words, multiple servants for a single Ice object allow you to build redundant systems: the client-side run time attempts to send the request to
one server and, if that attempt fails, sends the request to the second server. An error is reported back to the client-side application code only
if that second attempt also fails.

At-Most-Once Semantics

Ice requests have at-most-once semantics: the Ice run time does its best to deliver a request to the correct destination and, depending on
the exact circumstances, may retry a failed request. Ice guarantees that it will either deliver the request, or, if it cannot deliver the request,
inform the client with an appropriate exception; under no circumstances is a request delivered twice, that is, retries are attempted only if it is
known that a previous attempt definitely failed.

One exception to this rule are datagram invocations over UDP transports. For these, duplicated UDP packets can lead to a
violation of at-most-once semantics.

At-most-once semantics are important because they guarantee that operations that are not idempotent can be used safely. An idempotent
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operation is an operation that, if executed twice, has the same effect as if executed once. For example, x = 1; is an idempotent operation:
if we execute the operation twice, the end result is the same as if we had executed it once. On the other hand, x++; is not idempotent: if we
execute the operation twice, the end result is not the same as if we had executed it once.

Without at-most-once semantics, we can build distributed systems that are more robust in the presence of network failures. However,
realistic systems require non-idempotent operations, so at-most-once semantics are a necessity, even though they make the system less
robust in the presence of network failures. Ice permits you to mark individual operations as idempotent. For such operations, the Ice run time
uses a more aggressive error recovery mechanism than for non-idempotent operations.

Synchronous Method Invocation

By default, the request dispatch model used by Ice is a synchronous remote procedure call: an operation invocation behaves like a local
procedure call, that is, the client thread is suspended for the duration of the call and resumes when the call completes (and all its results are
available).

Asynchronous Method Invocation

Ice also supports asynchronous method invocation (AMI): a client can invoke operations asynchronously, which means the client's calling
thread does not block while waiting for the invocation to complete. The client passes the normal parameters and, depending on the language
mapping, might also pass a callback that the client-side run time invokes upon completion, or the invocation might return a future that the
client can eventually use to obtain the results.

The server cannot distinguish an asynchronous invocation from a synchronous one — either way, the server simply sees that a client has
invoked an operation on an object.

Asynchronous Method Dispatch

Asynchronous method dispatch (AMD) is the server-side equivalent of AMI. For synchronous dispatch (the default), the server-side run time
up-calls into the application code in the server in response to an operation invocation. While the operation is executing (or sleeping, for
example, because it is waiting for data), a thread of execution is tied up in the server; that thread is released only when the operation
completes.

With asynchronous method dispatch, the server-side application code is informed of the arrival of an operation invocation. However, instead
of being forced to process the request immediately, the server-side application can choose to delay processing of the request and, in doing
S0, releases the execution thread for the request. The server-side application code is now free to do whatever it likes. Eventually, once the
results of the operation are available, the server-side application code makes an API call to inform the server-side Ice run time that a request
that was dispatched previously is now complete; at that point, the results of the operation are returned to the client.

Asynchronous method dispatch is useful if, for example, a server offers operations that block clients for an extended period of time. For
example, the server may have an object with a get operation that returns data from an external, asynchronous data source and that blocks
clients until the data becomes available. With synchronous dispatch, each client waiting for data to arrive ties up an execution thread in the
server. Clearly, this approach does not scale beyond a few dozen clients. With asynchronous dispatch, hundreds or thousands of clients can
be blocked in the same operation invocation without tying up any threads in the server.

Synchronous and asynchronous method dispatch are transparent to the client, that is, the client cannot tell whether a server chose to
process a request synchronously or asynchronously.

Oneway Method Invocation

Clients can invoke an operation as a oneway operation. A oneway invocation has "best effort" semantics. For a oneway invocation, the
client-side run time hands the invocation to the local transport, and the invocation completes on the client side as soon as the local transport
has buffered the invocation. The actual invocation is then sent asynchronously by the operating system. The server does not reply to oneway
invocations, that is, traffic flows only from client to server, but not vice versa.

Oneway invocations are unreliable. For example, the target object may not exist, in which case the invocation is simply lost. Similarly, the
operation may be dispatched to a servant in the server, but the operation may fail (for example, because parameter values are invalid); if so,
the client receives no notification that something has gone wrong.

Oneway invocations are possible only on operations that do not have a return value, do not have out-parameters, and do not throw user
exceptions.

To the application code on the server-side, oneway invocations are transparent, that is, there is no way to distinguish a twoway invocation
from a oneway invocation.
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Oneway invocations are available only if the target object offers a stream-oriented transport, such as TCP/IP or SSL.

Note that, even though oneway operations are sent over a stream-oriented transport, they may be processed out of order in the server. This
can happen because each invocation may be dispatched in its own thread: even though the invocations are initiated in the order in which the
invocations arrive at the server, this does not mean that they will be processed in that order — the vagaries of thread scheduling can result in
a oneway invocation completing before other oneway invocations that were received earlier.

Batched Oneway Method Invocation

Each oneway invocation sends a separate message to the server. For a series of short messages, the overhead of doing so is considerable:
the client- and server-side run time each must switch between user mode and kernel mode for each message and, at the networking level,
each message incurs the overheads of flow-control and acknowledgement.

Batched oneway invocations allow you to send a series of oneway invocations as a single message: every time you invoke a batched
oneway operation, the invocation is buffered in the client-side run time. Once you have accumulated all the oneway invocations you want to
send, you make a separate API call to send all the invocations at once. The client-side run time then sends all of the buffered invocations in
a single message, and the server receives all of the invocations in a single message. This avoids the overhead of repeatedly trapping into
the kernel for both client and server, and is much easier on the network between them because one large message can be transmitted more
efficiently than many small ones.

The individual invocations in a batched oneway message are dispatched by a single thread in the order in which they were placed into the
batch. This guarantees that the individual operations in a batched oneway message are processed in order in the server.

Batched oneway invocations are particularly useful for messaging services, such as IceStorm, and for fine-grained interfaces that offer set o
perations for small attributes.

Datagram Invocations

Datagram invocations have "best effort" semantics similar to oneway invocations. However, datagram invocations require the object to offer
UDP as a transport (whereas oneway invocations require TCP/IP).

Like a oneway invocation, a datagram invocation can be made only if the operation does not have a return value, out-parameters, or user
exceptions. A datagram invocation uses UDP to invoke the operation. The operation returns as soon as the local UDP stack has accepted
the message; the actual operation invocation is sent asynchronously by the network stack behind the scenes.

Datagrams, like oneway invocations, are unreliable: the target object may not exist in the server, the server may not be running, or the
operation may be invoked in the server but fail due to invalid parameters sent by the client. As for oneway invocations, the client receives no
notification of such errors.

However, unlike oneway invocations, datagram invocations have a number of additional error scenarios:

® [ndividual invocations may simply be lost in the network.
This is due to the unreliable delivery of UDP packets. For example, if you invoke three operations in sequence, the middle invocation
may be lost. (The same thing cannot happen for oneway invocations — because they are delivered over a connection-oriented
transport, individual invocations cannot be lost.)

® [ndividual invocations may arrive out of order.
Again, this is due to the nature of UDP datagrams. Because each invocation is sent as a separate datagram, and individual
datagrams can take different paths through the network, it can happen that invocations arrive in an order that differs from the order
in which they were sent.

Datagram invocations are well suited for small messages on LANs, where the likelihood of loss is small. They are also suited to situations in
which low latency is more important than reliability, such as for fast, interactive internet applications. Finally, datagram invocations can be
used to multicast messages to multiple servers simultaneously.

Batched Datagram Invocations

As for batched oneway invocations, batched datagram invocations allow you to accumulate a number of invocations in a buffer and then
send the entire buffer as a single datagram by making an API call to flush the buffer. Batched datagrams reduce the overhead of repeated
system calls and allow the underlying network to operate more efficiently. However, batched datagram invocations are useful only for
batched messages whose total size does not substantially exceed the PDU limit of the network: if the size of a batched datagram gets too
large, UDP fragmentation makes it more likely that one or more fragments are lost, which results in the loss of the entire batched message.
However, you are guaranteed that either all invocations in a batch will be delivered, or none will be delivered. It is impossible for individual
invocations within a batch to be lost.

Batched datagrams use a single thread in the server to dispatch the individual invocations in a batch. This guarantees that the invocations
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are made in the order in which they were queued — invocations cannot appear to be reordered in the server.

Run-Time Exceptions

Any operation invocation can raise a run-time exception. Run-time exceptions are pre-defined by the Ice run time and cover common error
conditions, such as connection failure, connection timeout, or resource allocation failure. Run-time exceptions are presented to the
application as native exceptions and so integrate neatly with the native exception handling capabilities of languages that support exception
handling.

User Exceptions

A server indicates application-specific error conditions by raising user exceptions to clients. User exceptions can carry an arbitrary amount of
complex data and can be arranged into inheritance hierarchies, which makes it easy for clients to handle categories of errors generically, by
catching an exception that is further up the inheritance hierarchy. Like run-time exceptions, user exceptions map to native exceptions.

Properties

Much of the Ice run time is configurable via properties. Properties are name-value pairs, such as | ce. Def aul t. Pr ot ocol =t cp.
Properties are typically stored in text files and parsed by the Ice run time to configure various options, such as the thread pool size, the level
of tracing, and various other configuration parameters.

See Also

The Slice Language
Proxies for Ice Objects
Locators

Object Life Cycle
Bidirectional Connections
Glacier2

IceStorm
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Slice (Specification Language for Ice)

Each Ice object has an interface with a number of operations. Interfaces, operations, and the types of data that are exchanged between
client and server are defined using the Slice language. Slice allows you to define the client-server contract in a way that is independent of a
specific programming language, such as C++, Java, or C#. The Slice definitions are compiled by a compiler into an API for a specific
programming language, that is, the part of the API that is specific to the interfaces and types you have defined consists of generated code.

See Also

® The Slice Language
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Overview of the Language Mappings

The rules that govern how each Slice construct is translated into a specific programming language are known as language mappings. For
example, for the C++ mapping, a Slice sequence appears as a st d: : vect or, whereas, for the Java mapping, a Slice sequence appears as
a Java array. In order to determine what the API for a specific Slice construct looks like, you only need the Slice definition and knowledge of

the language mapping rules. The rules are simple and regular enough to make it unnecessary to read the generated code to work out how to
use the generated API.

Of course, you are free to peruse the generated code. However, as a rule, that is inefficient because the generated code is not necessarily
suitable for human consumption. We recommend that you familiarize yourself with the language mapping rules; that way, you can mostly
ignore the generated code and need to refer to it only when you are interested in some specific detail.

Currently, Ice provides language mappings for C++, C#, Java, JavaScript, Python, Objective-C, and, for the client side, PHP and Ruby.
See Also

® C++ Mapping

® C# Mapping

® Java Mapping

® JavaScript Mapping
® Objective-C Mapping
®* PHP Mapping

® Python Mapping

® Ruby Mapping
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Client and Server Structure

Ice clients and servers have the logical internal structure:

Client Application Server Application
[ 1
Y
Proxy Skeleton Object
Code lce API lce API Adapter
Client lce Core de/» Searver lce Core
Metwork

|:| lce API

|:| Generated Code

Ice Client and Server Structure
Both client and server consist of a mixture of application code, library code, and code generated from Slice definitions:

® The Ice core contains the client- and server-side run-time support for remote communication. Much of this code is concerned with
the details of networking, threading, byte ordering, and many other networking-related issues that we want to keep away from
application code. The Ice core is provided as a number of libraries that client and server use.

® The generic part of the Ice core (that is, the part that is independent of the specific types you have defined in Slice) is accessed
through the Ice API. You use the Ice API to take care of administrative chores, such as initializing and finalizing the Ice run time. The
Ice APl is identical for clients and servers (although servers use a larger part of the API than clients).

® The proxy code is generated from your Slice definitions and, therefore, specific to the types of objects and data you have defined in
Slice. The proxy code has two major functions:

® |t provides a down-call interface for the client. Calling a function in the generated proxy API ultimately ends up sending an
RPC message to the server that invokes a corresponding function on the target object.

® |t provides marshaling and unmarshaling code. Marshaling is the process of serializing a complex data structure, such as a
sequence or a dictionary, for transmission on the wire. The marshaling code converts data into a form that is standardized
for transmission and independent of the endian-ness and padding rules of the local machine. Unmarshaling is the reverse
of marshaling, that is, deserializing data that arrives over the network and reconstructing a local representation of the data
in types that are appropriate for the programming language in use.

® The skeleton code is also generated from your Slice definition and, therefore, specific to the types of objects and data you have
defined in Slice. The skeleton code is the server-side equivalent of the client-side proxy code: it provides an up-call interface that
permits the Ice run time to transfer the thread of control to the application code you write. The skeleton also contains marshaling and
unmarshaling code, so the server can receive parameters sent by the client, and return parameters and exceptions to the client.

® The object adapter is a part of the Ice API that is specific to the server side: only servers use object adapters. An object adapter has
several functions:

® The object adapter maps incoming requests from clients to specific methods on programming-language objects. In other
words, the object adapter tracks which servants with what object identity are in memory.

® The object adapter is associated with one or more transport endpoints. If more than one transport endpoint is associated
with an adapter, the servants incarnating objects within the adapter can be reached via multiple transports. For example,
you can associate both a TCP/IP and a UDP endpoint with an adapter, to provide alternate quality-of-service and
performance characteristics.

® The object adapter is responsible for the creation of proxies that can be passed to clients. The object adapter knows about
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the type, identity, and transport details of each of its objects and embeds the correct details when the server-side
application code requests the creation of a proxy.

Note that, as far as the process view is concerned, there are only two processes involved: the client and the server. All the run time support
for distributed communication is provided by the Ice libraries and the code that is generated from Slice definitions. (For indirect proxies, a loc
ation service is required to resolve proxies to transport endpoints.)

See Also

® Hello World Application
® Locators
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Overview of the Ice Protocol

Ice provides an RPC protocol that can use a variety of underlying transports. The most common examples are TCP and UDP, but Ice also
supports Websocket, Bluetooth, and Apple's iAP. In addition, Ice allows you to use SSL as a transport, so all communication between client
and server is encrypted.

The Ice protocol defines:

® anumber of message types, such as request and reply message types,

® a protocol state machine that determines in what sequence different message types are exchanged by client and server, together
with the associated connection establishment and tear-down semantics for TCP/IP,

® encoding rules that determine how each type of data is represented on the wire,

® a header for each message type that contains details such as the message type, the message size, and the protocol and encoding
version in use.

Ice also supports compression on the wire: by setting a configuration parameter, you can arrange for all network traffic to be compressed to
conserve bandwidth. This is useful if your application exchanges large amounts of data between client and server.

The Ice protocol is suitable for building highly-efficient event forwarding mechanisms because it permits forwarding of a message without
knowledge of the details of the information inside a message. This means that messaging switches need not do any unmarshaling and
remarshaling of messages — they can forward a message by simply treating it as an opaque buffer of bytes.

The Ice protocol also supports bidirectional operation: if a server wants to send a message to a callback object provided by the client, the
callback can be made over the connection that was originally created by the client. This feature is especially important when the client is
behind a firewall that permits outgoing connections, but not incoming connections.

See Also
® The Ice Protocol

® |ceSSL
® Bidirectional Connections
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Ice Services Overview

The Ice core provides a sophisticated client-server platform for distributed application development. However, realistic applications usually
require more than just a remoting capability: typically, you also need a way to start servers on demand, distribute proxies to clients, distribute
asynchronous events, configure your application, distribute patches for an application, and so on.

Ice ships with a number of services that provide these and other features. The services are implemented as Ice servers to which your
application acts as a client. None of the services use Ice-internal features that are hidden from application developers so, in theory, you
could develop equivalent services yourself. However, having these services available as part of the platform allows you to focus on
application development instead of having to build a lot of infrastructure first. Moreover, building such services is not a trivial effort, so it pays
to know what is available and use it instead of reinventing your own wheel.

On this page:

IceGrid
IceStorm
IcePatch2
Glacier2
IceBridge

lceGrid

IceGrid is an implementation of an Ice location service that resolves the symbolic information in an indirect proxy to a protocol-address pair
for indirect binding. A location service is only the beginning of IceGrid's capabilities.

IceGrid:

® allows you to register servers for automatic start-up: instead of requiring a server to be running at the time a client issues a request,
IceGrid starts servers on demand, when the first client request arrives.

provides tools that make it easy to configure complex applications containing several servers.

supports replication and load-balancing.

automates the distribution and patching of server executables and dependent files.

provides a simple query service that allows clients to obtain proxies for objects they are interested in.

IlceStorm

IceStorm is a publish-subscribe service that decouples clients and servers. Fundamentally, IceStorm acts as a distribution switch for events.
Publishers send events to the service, which, in turn, passes the events to subscribers. In this way, a single event published by a publisher
can be sent to multiple subscribers. Events are categorized by topic, and subscribers specify the topics they are interested in. Only events
that match a subscriber's topic are sent to that subscriber. The service permits selection of a number of quality-of-service criteria to allow
applications to choose the appropriate trade-off between reliability and performance.

IceStorm is particularly useful if you have a need to distribute information to large numbers of application components. (A typical example is
a stock ticker application with a large number of subscribers.) IceStorm decouples the publishers of information from subscribers and takes
care of the redistribution of the published events. In addition, IceStorm can be run as a federated service, that is, multiple instances of the
service can be run on different machines to spread the processing load over a number of CPUs.

IcePatch2

IcePatch2 is a software patching service. It allows you to easily distribute software updates to clients. Clients simply connect to the
IcePatch2 server and request updates for a particular application. The service automatically checks the version of the client's software and
downloads any updated application components in a compressed format to conserve bandwidth. Software patches can be secured using the
Glacier2 service, so only authorized clients can download software updates.

Glacier2

Glacier2 is the Ice firewall traversal service: it allows clients and servers to securely communicate through a firewall without compromising

security. Client-server traffic is SSL-encrypted using public key certificates and is bidirectional. Glacier2 offers support for mutual
authentication as well as secure session management.

IceBridge
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IceBridge acts as a bridge between one or more clients and a server and makes every effort to be as transparent as possible.

See Also

IceGrid
Glacier2
IceBox
IceStorm
IcePatch2
IceBridge
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Architectural Benefits of Ice

The Ice architecture provides a number of benefits to application developers:

Object-oriented semantics
Ice fully preserves the object-oriented paradigm "across the wire." All operation invocations use late binding, so the implementation
of an operation is chosen depending on the actual run-time (not static) type of an object.

Support for synchronous and asynchronous calls

Ice provides both synchronous and asynchronous operation invocation and dispatch, as well as publish-subscribe messaging via
IceStorm. This allows you to choose a communication model according to the needs of your application instead of having to
shoe-horn the application to fit a single model.

Support for multiple interfaces
With facets, objects can provide multiple, unrelated interfaces while retaining a single object identity across these interfaces. This
provides great flexibility, particularly as an application evolves but needs to remain compatible with older, already deployed clients.

Machine independence
Clients and servers are shielded form idiosyncrasies of the underlying machine architecture. Issues such as byte ordering and
padding are hidden from application code.

Language independence
Client and server can be developed independently and in different programming languages. The Slice definition used by both client
and server establishes the interface contract between them and is the only thing they need to agree on.

Implementation independence
Clients are unaware of how servers implement their objects. This means that the implementation of a server can be changed after
clients are deployed, for example, to use a different persistence mechanism or even a different programming language.

Operating system independence
The Ice APIs are fully portable, so the same source code compiles and runs under both Windows and Unix.

Threading support
The Ice run time is fully threaded and APIs are thread-safe. No effort (beyond synchronizing access to shared data) is required on
part of the application developer to develop threaded, high-performance clients and servers.

Transport independence
Ice supports TCP/IP, UDP, Bluetooth and iAP. Neither client nor server code are aware of the underlying transport. (The desired
transport can be chosen by a configuration parameter.)

Location and server transparency

The Ice run time takes care of locating objects and managing the underlying transport mechanism, such as opening and closing
connections. Interactions between client and server appear connection-less. Via lceGrid, you can arrange for servers to be started
on demand if they are not running at the time a client invokes an operation. Servers can be migrated to different physical addresses
without breaking proxies held by clients, and clients are completely unaware how object implementations are distributed over server
processes.

Security

Communications between client and server can be fully secured with strong encryption over SSL, so applications can use
unsecured public networks to communicate securely. Via Glacier2, you can implement secure forwarding of requests through a
firewall, with full support for callbacks.

See Also

Ice Architecture
Ice Services Overview
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Hello World Application

This section presents a very simple (but complete) client and server.
Writing an Ice application involves the following steps:

1. Write a Slice definition and compile it.
2. Write a server and compile it.
3. Write a client and compile it.

If someone else has written the server already and you are only writing a client, you do not need to write the Slice definition, only compile it
(and, obviously, you do not need to write the server in that case).

The application described here enables remote printing: a client sends the text to be printed to a server, which in turn sends that text to a
printer. For simplicity (and because we do not want to concern ourselves with the idiosyncrasies of print spoolers for various platforms), our
printer will simply print to a terminal instead of a real printer. This is no great loss: the purpose of the exercise is to show how a client can
communicate with a server; once the thread of control has reached the server application code, that code can of course do anything it likes
(including sending the text to a real printer). How to do this is independent of Ice and therefore not relevant here.

Much of the detail of the source code will remain unexplained for now. The intent is to show you how to get started and give you a
feel for what the development environment looks like; we will provide all the detail throughout the remainder of this manual.

Topics

Writing a Slice File

Writing an Ice Application with C++ (C++11)
Writing an Ice Application with C++ (C++98)
Writing an Ice Application with C-Sharp
Writing an Ice Application with Java

Writing an Ice Application with Java Compat
Writing an Ice Application with JavaScript
Writing an Ice Application with MATLAB
Writing an Ice Application with Objective-C
Writing an Ice Application with PHP

Writing an Ice Application with Python
Writing an Ice Application with Ruby
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Writing a Slice File

The first step in writing any Ice application is to write a Slice file containing the Slice definitions that are used by the application. For our
minimal printing application, we write the following Slice file:

Slice

nodul e Denp
{

interface Printer

{

void printString(string s);

}

}

We save this text in a file called Printer.ice.

QOur Slice definitions consist of the module Denp containing a single interface called Pri nt er . For now, the interface is very simple and
provides only a single operation, called pri nt Stri ng. The pri nt St ri ng operation accepts a string as its sole input parameter; the text of
that string is what appears on the (possibly remote) printer.

See Also

® The Slice Language
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Writing an Ice Application with C++ (C++11)

This page shows how to create an Ice application with C++ using the Ice C++11 mapping.
On this page:

® Compiling a Slice Definition for C++

® Writing and Compiling a Server in C++
® Writing and Compiling a Client in C++
® Running Client and Server in C++

Compiling a Slice Definition for C++

The first step in creating our C++ application is to compile our Slice definition to generate C++ proxies and skeletons. You can compile the
definition as follows:

slice2cpp Printer.ice

The sl i ce2cpp compiler produces two C++ source files from this definition, Pri nt er. h and Pri nt er. cpp.

® Printer.h
The Pri nt er. h header file contains C++ type definitions that correspond to the Slice definitions for our Pri nt er interface. This

header file must be included in both the client and the server source code.

® Printer.cpp
The Pri nt er. cpp file contains the source code for our Pri nt er interface. The generated source contains type-specific run-time
support for both clients and servers. For example, it contains code that marshals parameter data (the string passed to the pri nt St

ri ng operation) on the client side and unmarshals that data on the server side.
The Pri nt er. cpp file must be compiled and linked into both client and server.

Writing and Compiling a Server in C++

The source code for the server takes only a few lines and is shown in full here:
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C++

#i ncl ude <lce/lce. h>
#i nclude <Printer. h>

usi ng namespace std;
usi ng namespace Denv;

class Printerl : public Printer
{
publi c:
virtual void printString(string s, const lce::Current& override;
H
voi d
Printerl::printString(string s, const lce::Currenté&)
{ cout << s << endl
}
i nt
mai n(int argc, char* argv[])
{
try
{

I ce:: Comuni cat or Hol der ich(argc, argv);

auto adapter =
i ch->creat ebj ect Adapt er Wt hEndpoi nts("Si npl ePrinterAdapter", "default
-p 10000");

auto servant = make_shared<Printerl>();

adapt er - >add(servant, lce::stringToldentity("SinplePrinter"));

adapt er->activate();

i ch->wai t For Shut down() ;

}
catch(const std::exception& e)
{
cerr << e.what() << endl
return 1,
}
return O;

Every Ice source file starts with an include directive for | ce. h, which contains the definitions for the Ice run time. We also include Pri nt er.
h, which was generated by the Slice compiler and contains the C++ definitions for our printer interface, and we import the contents of the st
d and Denp namespaces for brevity in the code that follows:
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C++

#i ncl ude <lce/lce. h>
#i nclude <Printer. h>

usi ng namespace std;
usi ng namespace Denp;

Our server implements a single printer servant, of type Pri nt er | . Looking at the generated code in Pri nt er . h, we find the following
(tidied up a little to get rid of irrelevant detail):

C++

nanespace Deno

{
class Printer : public virtual Ice:: Object
{
public:
virtual void printString(std::string, const Ice::Current& = 0;
}
}

The Pri nt er skeleton class definition is generated by the Slice compiler. (Note that the pri nt St ri ng method is pure virtual so the
skeleton class cannot be instantiated.) Our servant class inherits from the skeleton class to provide an implementation of the pure virtual pri
nt St ri ng method. (By convention, we use an | -suffix to indicate that the class implements an interface.)

C++

class Printerl : public Printer
{
publi c:
virtual void printString(string s, const lce::Current& override;

b

The implementation of the pri nt St ri ng method is trivial: it simply writes its string argument to st dout :

C++
voi d
Printerl::printString(string s, const lce::Currenté&)
{

cout << s << endl;

Note that pri nt St ri ng has a second parameter of type | ce: : Current . As you can see from the definition of Pri nter:: printString,
the Slice compiler generates a default argument for this parameter, so we can leave it unused in our implementation. (We will examine the
purpose of the | ce: : Current parameter later.)

What follows is the server main program. Note the general structure of the code:
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C++
i nt
mai n(int argc, char* argv[])
{
try
{
I ce:: Comruni cat or Hol der ich(argc, argv);
/1 Server inplenmentation here
iatch(const std::exception& e)
{ cerr << e.what() << endl
return 1,
}
return O;
}

The body of mai n contains a try/catch block, and we start by creating an Ice Cormuni cat or Hol der on the stack. We pass ar gc and ar gv
to the Communi cat or Hol der because the server may have command-line arguments that are of interest to the run time; for this example,
the server does not require any command-line arguments.

Next, we have the actual server code:

C++

aut o adapter =
i ch->creat ebj ect Adapt er Wt hEndpoi nts("Si npl ePrinterAdapter", "default
-p 10000");
auto servant = make_shared<Printerl>();
adapt er - >add( servant,
i cHol der->stringToldentity("SinplePrinter"));
adapt er->activate();
i ch->wai t For Shut down() ;

The code goes through the following steps:

1. We create an object adapter by calling cr eat eCbj ect Adapt er W t hEndpoi nt s on the Conmuni cat or instance (through Conmru
ni cat or Hol der' s overloaded arrow oper at or ). The arguments we pass are " Si npl ePr i nt er Adapt er" (which is the name of
the adapter) and "def aul t -p 10000", which instructs the adapter to listen for incoming requests using the default protocol
(TCP/IP) at port number 10000.

2. At this point, the server-side run time is initialized and we create a servant for our Pri nt er interface by instantiating a Pri nterl o
bject.

3. We inform the object adapter of the presence of a new servant by calling add on the adapter; the arguments to add are the servant
we have just instantiated, plus an identifier. In this case, the string " Si npl ePri nt er " is the name of the Ice object. (If we had
multiple printers, each would have a different name or, more correctly, a different object identity.)

4. Next, we activate the adapter by calling its act i vat e method. (The adapter is initially created in a holding state; this is useful if we
have many servants that share the same adapter and do not want requests to be processed until after all the servants have been
instantiated.) The server starts to process incoming requests from clients as soon as the adapter is activated.

5. Finally, we call wai t For Shut down. This call suspends the calling thread until the server implementation terminates, either by

making a call to shut down the run time, or in response to a signal. (For now, we will simply interrupt the server on the command line
when we no longer need it.)

Assuming that we have the server code in a file called Ser ver . cpp, we can compile it as follows:
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c++ -1. -DICE_CPP11 _MAPPING -c Printer.cpp Server.cpp

This compiles both our application code and the code that was generated by the Slice compiler. Depending on your platform, you may have
to add additional include directives or other options to the compiler; please see the demo programs that ship with Ice for the details.

- DI CE_CPP11_MAPPI NGenables the new Ice C++11 mapping

Finally, we need to link the server into an executable:

c++ -0 server Printer.o Server.o -11ce++11

Again, depending on the platform, the actual list of libraries you need to link against may be longer. The demo programs that ship with Ice
contain all the detail.

Writing and Compiling a Client in C++

The client code looks very similar to the server. Here it is in full:
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C++

#i nclude <lcel/lce. h>
#i ncl ude <Printer. h>
#i ncl ude <stdexcept>

usi ng namespace std;
usi ng nanespace Den;

i nt
mai n(int argc, char* argv[])
{

try

{

I ce: : Comuni cat or Hol der ich(argc, argv);

aut o base = ich->stringToProxy("Si nplePrinter:default -p 10000");

auto printer = |ce::checkedCast<PrinterPrx>(base);
if(!'printer)
{
throw std::runtine_error("lInvalid proxy");
}
printer->printString("Hello Wrld!");
}
catch(const std::exception& e)
{
cerr << e.what() << endl
return 1,
}
return O,

Note that the overall code layout is the same as for the server: we include the headers for the Ice run time and the header generated by the
Slice compiler, and we use the same try/catch blocks to deal with errors.

The client code does the following:

1.

2.

As for the server, we initialize the Ice run time by creating an | ce: : Communi cat or Hol der object, which creates and holds an | ce
:: Comuni cat or .

The next step is to obtain a proxy for the remote printer. We create a proxy by calling st ri ngToPr oxy on the communicator, with
the string " Si npl ePrinter: default -p 10000". Note that the string contains the object identity and the port number that were
used by the server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for
now; we will see more architecturally sound ways of doing this when we discuss IceGrid.)

. The proxy returned by st ri ngToPr oxy is of type | ce: : Obj ect Pr x, which is at the root of the inheritance tree for interfaces and

classes. But to actually talk to our printer, we need a proxy for a Pri nt er interface, not an Obj ect interface. To do this, we need to
do a down-cast by calling checkedCast <Pri nt er Pr x>. A checked cast sends a message to the server, effectively asking "is this
a proxy for a Pri nt er interface?" If so, the call returns a proxy to a Pr i nt er ; otherwise, if the proxy denotes an interface of some
other type, the call returns a null proxy.

. We test that the down-cast succeeded and, if not, throw a r unt i ne_err or that terminates the client.
. We now have a live proxy in our address space and can call the pri nt St ri ng method, passing it the time-honored " Hel | o

Wor | d!'" string. The server prints that string on its terminal.

Compiling and linking the client looks much the same as for the server:
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c++ -1. -DICE_CPP11 _MAPPING -c Printer.cpp Client.cpp
c++ -o client Printer.o Cient.o -11ce++11

Running Client and Server in C++

To run client and server, we first start the server in a separate window:

./ server

At this point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window:

.lclient

The client runs and exits without producing any output; however, in the server window, we see the "Hel o Wor | d! " that is produced by
the printer. To get rid of the server, we interrupt it on the command line for now.

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get:

Net wor k. cpp: 471: | ce:: Connect Fai | edExcepti on:
connect failed: Connection refused

See Also

® The Current Object
® |ceGrid

Copyright 2018, ZeroC, Inc.



Ice 3.7.1 Documentation

Writing an Ice Application with C++ (C++98)

This page shows how to create an Ice application with C++ using the Ice C++98 mapping.
On this page:

® Compiling a Slice Definition for C++

® Writing and Compiling a Server in C++
® Writing and Compiling a Client in C++
® Running Client and Server in C++

Compiling a Slice Definition for C++

The first step in creating our C++ application is to compile our Slice definition to generate C++ proxies and skeletons. You can compile the
definition as follows:

slice2cpp Printer.ice

The sl i ce2cpp compiler produces two C++ source files from this definition, Pri nt er. h and Pri nt er. cpp.

® Printer.h
The Pri nt er. h header file contains C++ type definitions that correspond to the Slice definitions for our Pri nt er interface. This

header file must be included in both the client and the server source code.

® Printer.cpp
The Pri nt er. cpp file contains the source code for our Pri nt er interface. The generated source contains type-specific run-time
support for both clients and servers. For example, it contains code that marshals parameter data (the string passed to the pri nt St

ri ng operation) on the client side and unmarshals that data on the server side.
The Pri nt er. cpp file must be compiled and linked into both client and server.

Writing and Compiling a Server in C++

The source code for the server takes only a few lines and is shown in full here:
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C++

#i ncl ude <lce/lce. h>
#i nclude <Printer. h>

usi ng namespace std;
usi ng namespace Denv;

class Printerl : public Printer
{
publi c:
virtual void printString(const string& s, const lce::Current&);

H

voi d
Printerl::
printString(const string& s, const Ilce::Current@&)

{

cout << s << endl

i nt
mai n(int argc, char* argv[])
{
try
{
I ce:: Comruni cat or Hol der ich(argc, argv);
I ce:: Object AdapterPtr adapter =

i ch->creat eObj ect Adapt er Wt hEndpoi nt s(" Si npl ePri nter Adapter", "default
-p 10000");
lce::CbjectPtr object = new Printerl
adapt er - >add( obj ect, ic->stringToldentity("SinplePrinter"));
adapt er->activate();
i ch->wai t For Shut down() ;
}
catch(const std::exception& e)
{
cerr << e.what() << endl
return 1,

}

return O;

Every Ice source file starts with an include directive for | ce. h, which contains the definitions for the Ice run time. We also include Pri nt er.
h, which was generated by the Slice compiler and contains the C++ definitions for our printer interface, and we import the contents of the st
d and Denp namespaces for brevity in the code that follows:
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C++

#i ncl ude <lce/lce. h>
#i nclude <Printer. h>

usi ng namespace std;
usi ng namespace Denp;

Our server implements a single printer servant, of type Pri nt er | . Looking at the generated code in Pri nt er . h, we find the following
(tidied up a little to get rid of irrelevant detail):

C++

namespace Deno
{

class Printer : virtual public Ice:: Object

{

public:

virtual void printString(const std::string& const Ice::Currenté&

= lce::enmptyCurrent) = O;

b
}

The Pri nt er skeleton class definition is generated by the Slice compiler. (Note that the pri nt St ri ng method is pure virtual so the
skeleton class cannot be instantiated.) Our servant class inherits from the skeleton class to provide an implementation of the pure virtual pr i
nt St ri ng method. (By convention, we use an | -suffix to indicate that the class implements an interface.)

C++

class Printerl : public Printer
{
publi c:
virtual void printString(const string& s, const lce::Current&);

b

The implementation of the pri nt St ri ng method is trivial: it simply writes its string argument to st dout :

C++
voi d
Printerl::printString(const string& s, const lce::Currentg&)
{

cout << s << endl

Note that pri nt St ri ng has a second parameter of type | ce: : Current . As you can see from the definition of Pri nter:: printString,
the Slice compiler generates a default argument for this parameter, so we can leave it unused in our implementation. (We will examine the
purpose of the | ce: : Curr ent parameter later.)
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What follows is the server main program. Note the general structure of the code:

C++
i nt
mai n(int argc, char* argv[])
{
try
{
I ce: : Comuni cat or Hol der ich(argc, argv);
/1 Server inplenmentation here..
iatch(const std:: exception& e)
{ cerr << e.what() << endl
return 1,
}
return O;
}

The body of mai n contains a try/catch block, and we start by creating an Ice Communicator holder on the stack. We pass argc and argv t
o the Conmmruni cat or Hol der because the server may have command-line arguments that are of interest to the run time; for this example,
the server does not require any command-line arguments. Conmruni cat or Hol der is a a RAll-helper class, which creates and holds an | ¢
e: : Comruni cat or object. The primary purpose of this holder object is to call dest r oy on the communicator when the holder goes out of

scope.

Failure to call dest r oy on the communicator before the program

Next, we have the actual server code:

exits results in undefined behavior.

C++

I ce:: (bj ect AdapterPtr adapter

i ch->creat ebj ect Adapt er Wt hEndpoi nt s(
-p 10000");
I ce:: ObjectPtr object
adapt er - >add( obj ect,
adapt er->activate();
i ch->wai t For Shut down() ;

= new Pr
ich->stri

"Si nmpl ePrinterAdapter", "default

interl;
ngTol dentity("SinplePrinter"));

The code goes through the following steps:

1. We create an object adapter by calling cr eat eCbj ect Adapt er W t hEndpoi nt s on the Conmuni cat or instance (through Commu
ni cat or Hol der' s overloaded oper at or - >() ) . The arguments we pass are " Si npl ePri nt er Adapt er " (which is the name of

the adapter) and " def aul t
(TCP/IP) at port number 10000.

bject.

-p 10000", which instructs the adapter to listen for incoming requests using the default protocol
. At this point, the server-side run time is initialized and we create a servant for our Pri nt er interface by instantiatinga Pri nterl o

. We inform the object adapter of the presence of a new servant by calling add on the adapter; the arguments to add are the servant

we have just instantiated, plus an identifier. In this case, the string " Si npl ePri nt er" is the name of the Ice object. (If we had
multiple printers, each would have a different name or, more correctly, a different object identity.)
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4. Next, we activate the adapter by calling its act i vat e method. (The adapter is initially created in a holding state; this is useful if we
have many servants that share the same adapter and do not want requests to be processed until after all the servants have been
instantiated.) The server starts to process incoming requests from clients as soon as the adapter is activated.

5. Finally, we call wai t For Shut down. This call suspends the calling thread until the server implementation terminates, either by
making a call to shut down the run time, or in response to a signal. (For now, we will simply interrupt the server on the command line
when we no longer need it.)

Assuming that we have the server code in a file called Ser ver . cpp, we can compile it as follows:

c++ -1. -c Printer.cpp Server.cpp

This compiles both our application code and the code that was generated by the Slice compiler. Depending on your platform, you may have
to add additional include directives or other options to the compiler; please see the demo programs that ship with Ice for the details.

Finally, we need to link the server into an executable:

c++ -0 server Printer.o Server.o -llce

Again, depending on the platform, the actual list of libraries you need to link against may be longer. The demo programs that ship with Ice
contain all the detail.

Writing and Compiling a Client in C++

The client code looks very similar to the server. Here it is in full:
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C++

#i nclude <lcel/lce. h>
#i ncl ude <Printer. h>

usi ng namespace std;
usi ng nanespace Deno;

i nt
mai n(int argc, char* argv[])
{
try
{
I ce:: Comuni cat or Hol der ich(argc, argv);
Ice:: (bjectPrx base = ich->stringToProxy("Si npl ePrinter:default
-p 10000");
PrinterPrx printer = PrinterPrx::checkedCast (base);
if(!'printer)
{
throw "l nvalid proxy";
}
printer->printString("Hello World!l'");
}
catch(const std::exception& ex)
{
cerr << ex.what() << endl
return 1,
}
return O,
}

Note that the overall code layout is the same as for the server: we include the headers for the Ice run time and the header generated by the
Slice compiler, and we use the same t ry block and cat ch handlers to deal with errors.

The code in the t r y block does the following:

1. As for the server, we initialize the Ice run time by creating a | ce: : Comuni cat or Hol der .

2. The next step is to obtain a proxy for the remote printer. We create a proxy by calling st ri ngToPr oxy on the communicator, with
the string " Si npl ePrinter: default -p 10000". Note that the string contains the object identity and the port number that were
used by the server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for
now; we will see more architecturally sound ways of doing this when we discuss IceGrid.)

3. The proxy returned by st ri ngToPr oxy is of type | ce: : Obj ect Pr x, which is at the root of the inheritance tree for interfaces and
classes. But to actually talk to our printer, we need a proxy for a Pri nt er interface, not an Obj ect interface. To do this, we need to
do a down-cast by calling Pri nt er Prx: : checkedCast . A checked cast sends a message to the server, effectively asking "is this
a proxy for a Pri nt er interface?" If so, the call returns a proxy to a Pri nt er ; otherwise, if the proxy denotes an interface of some
other type, the call returns a null proxy.

4. We test that the down-cast succeeded and, if not, throw an error message that terminates the client.

5. We now have a live proxy in our address space and can call the pri nt St ri ng method, passing it the time-honored " Hel | o
Wor | d!'" string. The server prints that string on its terminal.

Compiling and linking the client looks much the same as for the server:
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c++ -1. -1$ICE_HOW include -c Printer.cpp Cient.cpp
c++ -0 client Printer.o Cient.o -llce

Running Client and Server in C++

To run client and server, we first start the server in a separate window:

./ server

At this point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window:

.lclient

The client runs and exits without producing any output; however, in the server window, we see the "Hel o Wor | d! " that is produced by
the printer. To get rid of the server, we interrupt it on the command line for now.

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get:

Net wor k. cpp: 471: | ce:: Connect Fai | edExcepti on:
connect failed: Connection refused

See Also

Client-Side Slice-to-C++98 Mapping
Server-Side Slice-to-C++98 Mapping
The Current Object

IceGrid
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Writing an Ice Application with C-Sharp

This page shows how to create an Ice application with C#.

On this page:

Create Projects for your Client and Server Applications

Create Projects for your Client and Server Applications
Compile your Slice File

Write and Compile your Server
Write and Compile your Client
Run your Client and Server

We create two projects, one for the Server application and one for the Client application. These are regular Console projects with very little

Ice-specific additions.

.NET Framework 4.5 with Visual Studio.NET Core 2.0 SDK

Open Visual Studio and create a new Console Application

New Project
I Recent

4 |nstalled

4 Visual C=
Windows Universal
Windows Classic Desktop
B Web
NET Core
MET 5tandard
Cloud
Extensibility
Test
B Visual Basic
B Visual C++
b Visual F=
S0L Server
I JavaScript
I Python
I Other Project Types

B Online

Open Visual Studio Installer

Mame: Server

Nat finding what you are locking for?

[.MET Framewerk 4.6.1 | Sort by: | Default
-
&] Blank App (Universal Windows) Visual C#
C#
WPF App (MET Framework) Visual C#
<my
c#
| | Windows Forms App (NET Framework) Visual C#
Oﬁ Console App (MET Core) Visual C=
Console App (.MET Framework) Visual C#
C#
Ej:;ﬁ! Class Library (NET Standard) Visual C=
C# - - .
El:sﬁ! Class Library (MET Framewaork) Visual C#
@ ASP.MET Core Web Application Visual C#
@ | ASPMET Web Application (MET Framewark) Visual C=
C#
Shared Project Visual C2
C#
Ej:;ﬁ! Class Library (Legacy Portable) Visual C#
C# - - - - .
;ll::ﬁ! Class Library (Universal Windows) Visual C#

Location:

|C:\Users\ppgut\Documents\Manual\

i |

Seluticn name: printer

Search (Ctrl+E)

Fs

Type: Visual C#

A project for creating a command-line

application

Browse...

Create directory fer selution
D Create new Git repository

Cancel

Create the client project using "File > Add > New Project..."
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Add Mew Project

b Recent [.NET Framework 461 ~| Sort by: | Default -
4 |nstalled -t
&] Blank App (Universal Windows) Visual C2
4 Visual C#
. . (54
Windows Universal P WPF App (MET Framework) Visual C=
Windows Classic Desktop A
C#
b Web | | Windows Forms App ((MET Framework) Visual C#
NET Core
MET Standard ﬁ Console App (MET Core) Visual C#
Cloud
Extensibility Console App (MET Framework) Visual C#
Test =
b Visual Basic Eﬁi! Class Library (MET Standard) Visual C=
B Visual C++ - o
b Visual F# Ej:;ﬁ! Class Library (.MET Framework) Visual C2
SOL Server -
b JavaScript @ ASP.NET Core Web Application Visual C#
I Python
B Gt @ | ASP.MET Web Application (MET Framewark) Visual C&
nline
C#
Shared Project Visual €
C#
Eﬁi! Class Library (Legacy Portable) Visual C2
C# . . - . "
Ejﬁ:ﬁ! Class Library (Universal Windows) Visual C=
Mat finding what you are lecking for? 0 c* ) i . . ) )
7 e o e ‘Qﬁ! Windows Runtime Component (Universal Windows) Visual C#
pen Visual Studio Installer !
Mame: Client
Lecation: | CA\Users\ppgut\Documentsi\Manualprinter -]

'Y

Search (Cirl+E)

Type: Visual C=

A project for creating a command-line
application

Browse...

Cancel

Add the zer oc. i cebui | der . nsbui | d and zer oc. i ce. net NuGet package to the projects with the NuGet Package Manager, found in

"Tools > NuGet Package Manager > Manage NuGet Packages for Solution...".
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EQJ printer - Microsoft Visual Studio Y & Quick Launch (Ctrl+Q) P oo B x
File Edit View Project Build Debug Team Tools Test Analyze Window Help Jose Gutierrez de la Concha ~
- | FRaa - | - ~| Debug ~ |AnyCPU - Server ~ B Start v‘ M

MuGet - Solution & X ~ | Solution Explorer
@E- -5 K=

Search Solution Explorer (Ctrl+;}

Browse Installed Updates Consolidate Manage Packages for Solution

suoneIyRON

zeroc.ice.net x - & Include prerelease Package source: |All -~ i m Solution 'printer' (2 projects)
Pl Client
. b Properties
o zeroc.ice.net b =B References
o zeroc.ice.net by ZeroC ¥ App.config

lce C&/MET SDK. Ice is a comprehensive RPC framework that helps you network Wersion(s) - 0 c# Program.cs
your software with minimal effort. 4 [ES
Project Version srver
b M Properties

Client b =-m References
Server 1 App.config
c# Program.cs

ogioo) 1101y sanias [

4

Installed: |not installed

Version: | Latest stable 3.7.1

o .
() Options

Description

lce C=/.MET 5DK. Ice is a comprehensive RPC
framework that helps you network your software
with minimal effert.

Version: 371

Owner(s):

Authoris): ZeroC

License: https://
raw.githubusercontent.com/
zeroc-icefice/3.7/ICE_LICENSE

Date published: Wednesday, December 20, 2017
(12/20/2017)

Project URL:  https://github.com/zeroc-icefice
Tags: ice

Each package is licensed to you by its owner, NuGet is not responsible for, nor does it grant any

licenses to, third-party packages. Dependencies

[] Do not shew this again Mo dependencies

Solution Explorer R Y SWIRTES

4 Add to Source Control =

Open a new Command Prompt a run the following command to create the server and client projects:

dot net new console -0 Server

This generates a new .NET Core console application project in the Ser ver directory.

Then add references to the zer oc. i cebui | der. nsbui | d and zer oc. i ce. net NuGet packages to this project:

dotnet add Server package zeroc.icebuil der.nsbuil d
dotnet add Server package zeroc.ice. net

Finally, repeat these steps for the client project:

dot net new console -0 Cient
dotnet add Cient package zeroc.icebuil der.nsbuild
dotnet add Client package zeroc.ice. net
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Compile your Slice File

The next step is to add the Slice file (Pri nt er. i ce) created earlier to each project, and then compile this Slice file.

.NET Framework 4.5 with Visual Studio.NET Core 2.0 SDK

Open the "Project > Add Existing Item" dialog and add Pri nt er . i ce to your Project:

ﬁ printer - Microsoft Visual Studic
File  Edit View Project Build Debug Team Tools Test  Analyze Window  Help
0-0|H8-2 |9 - | Debug -/ AnycPU | Server - B State| gL |
Printer.cs &
~| % Client.Program « | @ Main(string[] args)

X

ui 04 Add Existing Item - Client

xoqioo]  1310(dig 1aniag [EEE

<« v » ThisPC » Documents » Manual » printer v & Search printer

Organize New folder

; Downloads  # » Name Date modified Type

client s File folder

csharp Client File folder
printer packages File folder
File folder

ICE File

test Server
[ Printer.ice
EE printer.sin

4 Microsoft Visual Microsoft Visual 5.,

Projects
2# Dropbox
@& OneDrive

& This PC
- 3D Objects
[ Desktop

| Decuments v

File name: |Printer.ice | Al Files ¢

Add |+

Add
Add As Link

Show cutput from:  Build 2 ‘ ‘
Build started: Project: Server, Configuration: Debug Any CPU
Build started: Project: Client, Configuration: Debug Any CPU
Client -> C:\Users\ppgut\Documents\Manual\printer\Client\bin\DebugiClient.exe
Server -» C:\Users\ppgut\Documents\Manual\printer\Server\bin\DebugiServer.exe
Build: 2 succeeded, 8 failed, 8 up-to-date, 8 skipped

Error List [[S{05103

& | Quick Launch (Ctrl+Q) P - 0

Jose Gutierrez de la Concha ~

Selution Explorer > o x
@atl-leo-sea”
Search Solution Explorer (Ctrl+;) P~

Q] Solution 'printer' (2 projects)
4 Client
b Properties
P =® References
1 App.config
¥ packages.config
P Program.cs
4 Server
b J Properties
P =B References
4 generated
P c* Printer.cs
¢ App.cenfig
¥ packages.config
[% Printerice
©* Program.cs

Selution Explorer REETIRSIRIS

4 Add to Source Control =

If the Ice Builder for Visual Studio is installed, it immediately generates the file gener at ed\ Pri nter. cs from Pri nter. i ce unless you

disabled automatic building by the Ice Builder.

suonesyoN

If you have automatic building disabled, select Bui | d to build your project. The build generates gener at ed\ Printer.cs fromPri nter.
i ce (using Ice Builder) and then compiles both gener at ed\ Pri nt er . cs and the default no-op Pr ogr am cs.
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EQJ printer - Microsoft Visual Studio
File Edit View Project Build Debug Team Tools Test Analyze Window Help
o - | FRaa - | = | Debug - AnyCPU - Server

Printer.cs @ & X
[€] Server ~| *0 Demo.Printer

121013 13135

Copyright (c) 28@3-2017 ZeroC, Inc. All rights reserved.

This copy of Ice is licensed to you under the terms described in the
ICE_LICENSE file included in this distribution.

xoqjoo|

Ice version 3.7.1
<auto-generated>

Generated from file “Printer.ice’
Warning: do not edit this file.

</auto-generated>

using _System = glecbal::System;
#pragma warning disable 1591

Sinamespace IceCompactId

{
¥

Slnamespace Demo

{

[_System.Runtime.IntercopServices.Co (false)]

[_System.Diagnostics.Codefnalysis. essage ("M JMaming™, "CAL784")]
[_System.Diagnostics.Codefnalysis. ss JMaming™, "CA1787")]
[_System.Diagnostics.Codednalysis. ss MNaming”, "CA1789")]

[ Sustem Niaonnstics Mamine™  "ra1714"11

Show output from:  Build
Build started: Project: Server, Configuration: Debug Any CPU
Build started: Project: Client, Configuration: Debug Any CPU
Client -» C:\Users\ppgut\Documents\Manual\printeriClient\bin\Debug\Client.exe
Server -> C:\Users\ppgut\Documents\Manual\printer\Server\bin\Debug\Server.exe
Build: 2 succeeded, @ failed, B up-to-date, @ skipped = ==

TG Output

Ice Builder invokes the Slice to C# compiler (sl i ce2cs) to compile Slice files into C# files.

Add a Slice item that includes Pri nt er . i ce to your two projects. The code below shows the client project:

Y & Quick Launch (Ctrl+Q) Pl - B

Jose Gutierrez de la Concha ~

Solution Explorer
AE-|o-5¢a
Search Solution Explorer (Ctrl+;) P~

&1 Selution ‘printer' (2 projects)
4 Client
b Properties
P =B References
Pl generated
b €# Printer.cs
¥ App.config
{0 packages.config
[& Printerice
€ Program.cs
Server
F Properties
=8 References
generated
b < Printer.cs
¥ App.config
¥ packages.config
[& Printerice
c* Program.cs

EINLLRSICE Team Explorer

4 Add to Source Control =
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Client.csproj

<?xm version="1.0" encodi ng="utf-8"?>
<Proj ect Sdk="M crosoft. NET. Sdk" >
<PropertyG oup>
<Cut put Type>Exe</ Qut put Type>
<Tar get Fr amewor k>net cor eapp2. 0</ Tar get Fr amewor k>
</ PropertyG oup>
<l tenz oup>
<SliceConpile Include="../Printer.ice" />
<PackageRef erence | nclude="zeroc.ice.net" Version="3.7.1" />
<PackageRef erence | ncl ude="zeroc. i cebuil der. nmsbuil d"
Versi on="5.0.3" />
</1tenG oup>
</ Proj ect >

When building the project, the Sl i ceConpi | e task (imported automatically from the zer oc. i cebui | der. nsbui | d NuGet package)
compiles Pri nter.iceintogenerated/ Printer. cs using the Slice to C# compiler, slice2cs.

Use the following command to build the projects:

dotnet build Server
dotnet build dient

Write and Compile your Server

To implement our Pri nt er interface, we must create a servant class. By convention, a servant class uses the name of its interface with an
| -suffix, so our servant class is called Pri nt er | and we will place it into the default C# source file Program.cs:
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C#
usi ng System
namespace Server
{
public class Printerl : Deno.PrinterbDisp_
{
public override void printString(string s, lce.Current current)
{
Consol e. Wi telLine(s);
}
}
cl ass Program
{
static void Main(string[] args)
{
}
}
}

The Pri nter | class inherits from a base class called Pri nt er Di sp_, which is generated by the sl i ce2cs compiler. The base class is
abstract and contains a pri nt St ri ng method that accepts a string for the printer to print and a parameter of type | ce. Cur r ent . (For now
we will ignore the | ce. Cur r ent parameter.) Our implementation of the pri nt St ri ng method simply writes its argument to the terminal.

The remainder of the server code follows in Pr ogr am cs and is shown in full here:
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C#
usi ng System
namespace Server
{
public class Printerl : Deno.PrinterbDisp_
{
public override void printString(string s, Ice.Current current)
{
Consol e. Wi telLine(s);
}
}
public class Program
{
public static int Main(string[] args)
{
try
{
usi ng( | ce. Conmruni cat or conmuni cator =
lce.Uil.initialize(ref args))

{

var adapter =

commruni cat or. cr eat eObj ect Adapt er Wt hEndpoi nt s(" Si npl ePri nt er Adapter",
"default -h I ocal host -p 10000");

adapter.add(new Printerl (),
Ice.Util.stringToldentity("SinplePrinter"));

adapter.activate();

conmuni cat or . wai t For Shut down() ;

}

cat ch(Exception e)

{
Consol e. Error. WiteLine(e);
return 1,

}

return O;

The body of Mai n contains a t ry block in which we place all the server code, followed by a cat ch block. The catch block catches all
exceptions that may be thrown by the code; the intent is that, if the code encounters an unexpected run-time exception anywhere, the stack
is unwound all the way back to Mai n, which prints the exception and then returns failure to the operating system.

The | ce. Conmmruni cat or object implements | Di sposabl e, which allows us to use the usi ng statement for the initialization of the | ce. Co

nmmuni cat or object. This ensures the communicator dest r oy method is called when the usi ng block goes out of scope. Doing this is
essential in order to correctly finalize the Ice run time.
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The body of our t ry block contains the actual server code.
The code goes through the following steps:

1. We initialize the Ice run time by calling I ce. Util .initialize.(We pass ar gs to this call because the server may have
command-line arguments that are of interest to the run time; for this example, the server does not require any command-line
arguments.) The calltoi ni ti al i ze returns an | ce. Conmuni cat or reference, which is the main object in the Ice run time.

2. We create an object adapter by calling cr eat eObj ect Adapt er Wt hEndpoi nt s on the Conmruni cat or instance. The arguments
we pass are " Si npl ePri nt er Adapt er " (which is the name of the adapter) and "def aul t -p 10000", which instructs the
adapter to listen for incoming requests using the default protocol (TCP/IP) at port number 10000.

3. At this point, the server-side run time is initialized and we create a servant for our Pri nt er interface by instantiatinga Pri nterl o
bject.

4. We inform the object adapter of the presence of a new servant by calling add on the adapter; the arguments to add are the servant
we have just instantiated, plus an identifier. In this case, the string " Si npl ePri nt er " is the name of the Ice object. (If we had
multiple printers, each would have a different name or, more correctly, a different object identity.)

5. Next, we activate the adapter by calling its act i vat e method. (The adapter is initially created in a holding state; this is useful if we
have many servants that share the same adapter and do not want requests to be processed until after all the servants have been
instantiated.)

6. Finally, we call wai t For Shut down. This call suspends the calling thread until the server implementation terminates, either by
making a call to shut down the run time, or in response to a signal. (For now, we will simply interrupt the server on the command line
when we no longer need it.)

We can compile the server code as follows:
.NET Framework 4.5 with Visual Studio.NET Core 2.0 SDK

Build the server project using "Build > Builder Server"

ﬂ printer - Microsoft Visual Studio Y & Quick Launch (Ctrl+Q) Pl o O x
File Edit View Project | Build | Debug Team Tools Test Analyze Window Help Jose Gutierrez de la Concha ~
P@-0 @ -2 W BuildSolution Ctrl+Shift+B
Rebuild Sclution

Solution Explorer > 1x
@t-|e-coa
Search Solution Explorer (Ctrl+;) R~

Clean Solution m

Run Code Analysis on Selution Alt+F11

suoneayRON

Build Server

Rebuild Server
Clean Server
Publish Server

xogioo]  sarojdhg sanias B

Run Code Analysis on Server
Batch Build...

Configuration Manager...

Show output from:  Build

G Output
[] This item does not support previewing

Build the server project using the dotnet bui | d command:

56

&1 Selution ‘printer’ (2 projects)
4 Client
b Properties
P =m References
a generated
b ©* Printercs
¥ App.config
¢ packeges.cenfig
[& Printerice
P € Program.cs
4 [ Server
b J Properties
=W References
4 generated
P ©* Printercs
{0 App.config
¥ packages.config
[& Printer.ice
P Program.cs

Solution Explorer RNt WSS

A4 Add to Source Control «
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cd Server
dotnet build

Write and Compile your Client

The client code, in C i ent/ Program cs, looks very similar to the server.

Here it is in full:

Copyright 2018, ZeroC, Inc.



Ice 3.7.1 Documentation

C#
usi ng Deno;
usi ng System
nanespace Cient
{
public class Program
{
public static int Main(string[] args)
{
try
{
usi ng( | ce. Conmruni cat or conmuni cator =
lce.Util.initialize(ref args))
{
var obj =
communi cator. stringToProxy("SinplePrinter:default -h | ocal host -p
10000");
var printer = PrinterPrxHel per.checkedCast (obj);
if(printer == null)
{
t hrow new ApplicationException("Invalid proxy");
}
printer.printString("Hello World!");
}
}
cat ch(Exception e)
{
Consol e. Error. WiteLine(e);
return 1,
}
return O;
}
}
}

Note that the overall code layout is the same as for the server: we use the same t ry and cat ch blocks to deal with errors. The code in the
try block does the following:

1. As for the server, we initialize the Ice run time by calling I ce. Uti | . i ni ti al i ze within the usi ng statement

2. The next step is to obtain a proxy for the remote printer. We create a proxy by calling st ri ngToPr oxy on the communicator, with
the string " Si npl ePrinter:default -p 10000". Note that the string contains the object identity and the port number that were
used by the server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for
now; we will see more architecturally sound ways of doing this when we discuss IceGrid.

3. The proxy returned by st ri ngToPr oxy is of type | ce. Obj ect Pr x, which is at the root of the inheritance tree for interfaces and
classes. But to actually talk to our printer, we need a proxy for a Pri nt er interface, not an Qbj ect interface. To do this, we need to
do a down-cast by calling Pri nt er Pr xHel per. checkedCast . A checked cast sends a message to the server, effectively asking
"is this a proxy for a Pri nt er interface?" If so, the call returns a proxy of type Den: : Pri nt er ; otherwise, if the proxy denotes an
interface of some other type, the call returns null.

4. We test that the down-cast succeeded and, if not, throw an error message that terminates the client.

58 Copyright 2018, ZeroC, Inc.



Ice 3.7.1 Documentation

5. We now have a live proxy in our address space and can call the pri nt St ri ng method, passing it the time-honored " Hel | o

Wor | d!'" string. The server prints that string on its terminal.

The client's project is just like the server's project shown earlier.
.NET Framework 4.5 with Visual Studio.NET Core 2.0 SDK

Build the client project using "Build > Builder Client"

Eﬂ printer - Microsoft Visual Studic

File Edit View Project | Build | Debug Team Tools Test Analyze Window Help
P@-0 |3 -2 W Build Solution Ctrl+ Shift+B

Rebuild Selution

Clean Solution

Run Code Analysis on Selution Alt+F11

Build Client

Rebuild Client

Xoqioo]  1310}dx3 1NIag

Clean Client

Publish Client

Run Code Analysis on Client
Batch Build...

Configuration Manager...

Output
Show output from:  Build

TN Output

Build the client project using dotnet bui | d command:

X

&7 | Quick Launch (Ctrl+@) Pl - B

Jose Gutierrez de |z Concha ~

Solution Explorer
QE-|e--6a
Search Solution Explorer (Ctrl+;) P~

@] Selution ‘printer’ (2 projects)
4 Client
b J Properties
=W References
4 generated
b ©* Printercs
{0 App.config
¥ packages.config
[& Printerice
P Program.cs
4 Server
b Properties
b =B References
4 generated
b < Printer.cs
¥ App.config
¥ packages.config
[& Printerice
B Program.cs

Selution Explorer ETy Y=t LIog

A Add to Source Control ~

cd dient
dotnet build

Run your Client and Server

To run client and server, we first start the server in a separate window:
.NET Framework 4.5.NET Core 2.0

server

59
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cd Server
dot net run

At this point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window:
.NET Framework 4.5.NET Core 2.0

client

cd dient
dot net run

The client runs and exits without producing any output; however, in the server window, we see the "Hel | o Worl d! " that is produced by
the printer. To get rid of the server, we just interrupt it on the command line for now.

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get
something like the following:

| ce. Connecti onRef usedExcepti on
error =0

at | ce. vj ect PrxHel perBase.ice_isA(String id, Optional Context
context) in
C:\ User s\ vagrant\ wor kspace\i ce-di st\netcore\dist-utils\build\ice-netcor
e\ bui |l ds\i ce- VC141\ csharp\src\lce\Proxy.cs:line 887

at Deno. Print er PrxHel per.checkedCast (CbjectPrx b) in
D:\ 3. 7\i ce-denps\ cshar p\ Manual \ net 45\ printer\d i ent\generated\Printer.c
s:line 196

at Cdient.Program Main(String[] args) in
D:\ 3. 7\i ce-denps\ cshar p\ Manual \ net 45\ printer\d i ent\Programcs:line 18
Caused by: System Net. Sockets. Socket Excepti on: No connection could be
made because the target machine actively refused it

See Also

® Client-Side Slice-to-C-Sharp Mapping
® Server-Side Slice-to-C-Sharp Mapping
® The Current Object

® |ceGrid
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Writing an Ice Application with Java

This page shows how to create an Ice application with Java.
On this page:

Create Projects for your Client and Server Applications
Compiling a Slice Definition for Java

Writing and Compiling a Server in Java

Writing and Compiling a Client in Java

Running Client and Server in Java

Create Projects for your Client and Server Applications

We will use Gradle to create our application projects. You must install Gradle before continuing with this tutorial.

Open a new Command Prompt and run the following commands to generate a new project:

nkdir printer
cd printer
gradle init

For this demo we're going to use a project with two sub-projects to build the Client and Server applications. The requirements for our
sub-projects are the same so we'll do all the setup in the subpr oj ect s block of the root project, which applies to all sub-projects. Edit the
generated bui | d. gr adl e file to look like the one below:

build.gradle

/1
/1 Install the gradle Ice Builder plug-in fromthe plug-in portal
/1
pl ugi ns {

id'comzeroc.gradle.ice-builder.slice' version '1.4.5 apply fal se
}
subproj ects {

I

/1 Apply Java and Ice Builder plug-ins to all sub-projects

11

apply plugin: 'java'
apply plugin: 'comzeroc.gradle.ice-builder.slice

11
/1 Both Cient and Server projects share the Printer.ice Slice
definitions

/11
slice {
java {
files = [file("../Printer.ice")]
}
}
11
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/1 Use Ice JAR files from naven central repository
11
repositories {

mavenCentral ()

}

/11
/1 Both Cient and Server depend only on Ice JAR
11
dependenci es {
compile 'com zeroc:ice:3.7. 1

}

/11
I/l Create a JARfile with the appropriate Min-C ass and C ass-Path
attributes

I
jar {
mani f est {
attributes(
"Mai n-Cl ass" : project.nane.capitalize(),

"Cl ass-Path": configurations.runtinme.resolve().collect {
it.toURI() }.join(" ")
)
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We must also edit the generated set t i ngs. gr adl e to define our sub-projects:

settings.gradle

root Project.name = 'printer’
i nclude 'client'
i ncl ude 'server'

Finally we need to create the directories for client and server projects:

nkdir client
nkdir server

Compiling a Slice Definition for Java

The next step is to add the Slice file (Pri nt er. i ce), and then compile this Slice file. When building the project, the sl i ceConpi | e task
(added automatically by the Ice Builder plug-in) compiles Pri nt er . i ce and places the generated code into bui | d/ gener at ed- sr c using
the Slice to Java compiler, sl i ce2j ava.

Writing and Compiling a Server in Java

To implement our Pri nt er interface, we must create a servant class. By convention, a servant class uses the name of its interface with an
| -suffix, so our servant class is called Pri nt er | and placed into a source file server/src/ main/javal/ Printerl.java:

server/src/main/java/Printerl.java

public class Printerl inplenents Deno. Printer

{
public void printString(String s, comzeroc.|ce.Current current)
{
Systemout. println(s);
}
}

The Printerl class implements the interface Pri nt er, which is generated by the sl i ce2j ava compiler. The interface definesaprint S
t ri ng method that accepts a string for the printer to print and a parameter of type Cur r ent . (For now we will ignore the Cur r ent paramete
r.) Our implementation of the pri nt St ri ng method simply writes its argument to the terminal.

The remainder of the server code is in a source file called ser ver/ src/ mai n/ j aval Server. j ava, shown in full here:
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server/src/main/java/Server.java
public class Server

{
public static void main(String[] args)
{
try(com zeroc. | ce. Cormuni cat or communi cat or
= comzeroc.lce.Wil.initialize(args))
{
com zeroc. | ce. Obj ect Adapt er adapter =
commruni cat or . cr eat e(bj ect Adapt er Wt hEndpoi nt s(" Si npl ePri nt er Adapter”, "
default -p 10000");
com zeroc. |l ce. Object object = new Printerl();
adapt er. add( obj ect
comzeroc.lce. Uil.stringToldentity("SinplePrinter"));
adapter. activate();
conmuni cat or . wai t For Shut down() ;

The body of mai n containsatry-w t h-resour ces block in which we place all the server code. The Conmruni cat or object implements j
ava. | ang. Aut oCl oseabl e, which allows us to use the t ry- wi t h- r esour ces statement for the initialization of the Conmruni cat or obje
ct. This ensures the communicator dest r oy method is called when the t r y block goes out of scope. Doing this is essential in order to
correctly finalize the Ice run time.

A communicator starts a number of non-background threads. Destroying the communicator terminates all these threads.

The body of our t ry block contains the actual server code. The code goes through the following steps:

1. We initialize the Ice run time by calling com zeroc. I ce. Util.initialize.(We pass ar gs to this call because the server may
have command-line arguments that are of interest to the run time; for this example, the server does not require any command-line
arguments.) The calltoi ni ti al i ze returns a Commruni cat or reference, which is the main object in the Ice run time.

2. We create an object adapter by calling cr eat eObj ect Adapt er Wt hEndpoi nt s on the Conmuni cat or instance. The arguments
we pass are " Si npl ePri nt er Adapt er " (which is the name of the adapter) and "def ault -p 10000", which instructs the
adapter to listen for incoming requests using the default protocol (TCP/IP) at port number 10000.

3. At this point, the server-side run time is initialized and we create a servant for our Pri nt er interface by instantiating a Pri nterl o
bject.

4. We inform the object adapter of the presence of a new servant by calling add on the adapter; the arguments to add are the servant
we have just instantiated, plus an identifier. In this case, the string " Si npl ePri nt er " is the name of the Ice object. (If we had
multiple printers, each would have a different name or, more correctly, a different object identity.)

5. Next, we activate the adapter by calling its act i vat e method. (The adapter is initially created in a holding state; this is useful if we
have many servants that share the same adapter and do not want requests to be processed until after all the servants have been
instantiated.)

6. Finally, we call wai t For Shut down. This call suspends the calling thread until the server implementation terminates, either by
making a call to shut down the run time, or in response to a signal. (For now, we will simply interrupt the server on the command line
when we no longer need it.)

We can compile the server code as follows:

gradl ew :server:build
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Writing and Compiling a Client in Java

The client code, incl i ent/src/ mai n/javal/ Cient.java, looks very similar to the server. Here it is in full:

client/src/main/java/Client.java

public class dient

{
public static void main(String[] args)
{
try(com zeroc. | ce. Cormuni cat or communi cat or
= comzeroc.lce.Wil.initialize(args))

{

com zeroc. | ce. Obj ect Prx base = comuni cator. stringToProxy("
Sinmpl ePrinter:default -p 10000");

Deno. PrinterPrx printer = Deno. PrinterPrx.checkedCast (base);

if(printer == null)

{

throw new Error("lInvalid proxy");

}
printer.printString("Hello World!'");

Note that the overall code layout is the same as for the server: we use the same t ry and cat ch blocks to deal with errors. The code in the
t ry block does the following:

1.

2.

As for the server, we initialize the Ice run time by calling com zeroc. I ce. Util .initialize withinthe Javatry-w t h-resour
ces statement.

The next step is to obtain a proxy for the remote printer. We create a proxy by calling st ri ngToPr oxy on the communicator, with
the string " Si npl ePrinter:default -p 10000". Note that the string contains the object identity and the port number that were
used by the server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for
now; we will see more architecturally sound ways of doing this when we discuss IceGrid.)

. The proxy returned by st ri ngToPr oxy is of type com zer oc. | ce. Obj ect Pr x, which is at the root of the inheritance tree for

interfaces and classes. But to actually talk to our printer, we need a proxy for a Pri nt er interface, not an Obj ect interface. To do
this, we need to do a down-cast by calling Pri nt er Pr x. checkedCast . A checked cast sends a message to the server, effectively
asking "is this a proxy for a Pri nt er interface?" If so, the call returns a proxy of type Deno: : Pri nt er ; otherwise, if the proxy
denotes an interface of some other type, the call returns null.

. We test that the down-cast succeeded and, if not, throw an error message that terminates the client.
. We now have a live proxy in our address space and can call the pri nt St ri ng method, passing it the time-honored " Hel | o

Wor | d!'" string. The server prints that string on its terminal.

Compiling the client looks much the same as for the server:

gradlew :client:build

Running Client and Server in Java

To run client and server, we first start the server in a separate window:

65
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java -jar server/build/libs/server.jar

At this point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window:

java -jar client/builds/libs/client.jar

The client runs and exits without producing any output; however, in the server window, we see the "Hel o Wor | d!" that is produced by
the printer. To get rid of the server, we interrupt it on the command line for now.

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get
something like the following:

com zeroc. | ce. Connecti onRef usedExcepti on
error =0
at ...
at dient.run(dient.java: 65)
Caused by: java.net.Connect Exception: Connection refused

See Also

Client-Side Slice-to-Java Mapping
Server-Side Slice-to-Java Mapping
The Current Object

IceGrid

Copyright 2018, ZeroC, Inc.



Ice 3.7.1 Documentation

Writing an Ice Application with Java Compat

This page shows how to create an Ice application with Java Compat.
On this page:

Create Projects for your Client and Server Applications
Compiling a Slice Definition for Java

Writing and Compiling a Server in Java

Writing and Compiling a Client in Java

Running Client and Server in Java

Create Projects for your Client and Server Applications

We will use Gradle to create our application projects. You must install Gradle before continuing with this tutorial.

Open a new Command Prompt and run the following commands to generate a new project:

nkdir printer
cd printer
gradle init

For this demo we're going to use a project with two sub-projects to build the Client and Server applications. The requirements for our
sub-projects are the same so we'll do all the setup in the subpr oj ect s block of the root project, which applies to all sub-projects. Edit the
generated bui | d. gr adl e file to look like the one below:

build.gradle

/1
/1 Install the gradle Ice Builder plug-in fromthe plug-in portal
/1
pl ugi ns {

id'comzeroc.gradle.ice-builder.slice' version '1.4.5 apply fal se
}
subproj ects {

I

/1 Apply Java and Ice Builder plug-ins to all sub-projects

11

apply plugin: 'java'
apply plugin: 'comzeroc.gradle.ice-builder.slice

11
/1 Both Cient and Server projects share the Printer.ice Slice
definitions

/11
slice {
java {
files = [file("../Printer.ice")]
conmpat = true
}
}
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11
/1 Use lce JARfiles fromnaven central repository
/11
repositories {
mavenCentral ()

}

11
/1 Both Cient and Server depend only on Ice JAR
11
dependenci es {
conpile 'com zeroc:ice-conpat:3.7.1

}

11
/Il Create a JARfile with the appropriate Miin-C ass and C ass-Path
attributes

11
jar {
mani f est {
attributes(
“Mai n-Cl ass" : project.nane.capitalize(),

"Class-Path": configurations.runtine.resolve().collect {
it.toURI() }.join(" ")
)
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We must also edit the generated set t i ngs. gr adl e to define our sub-projects:

settings.gradle

root Project.name = 'printer’
i nclude 'client'
i ncl ude 'server'

Finally we need to create the directories for client and server projects:

nkdir client
nkdir server

Compiling a Slice Definition for Java

The next step is to add the Slice file (Pri nt er. i ce), and then compile this Slice file. When building the project, the sl i ceConpi | e task
(added automatically by the Ice Builder plug-in) compiles Pri nt er . i ce and places the generated code into bui | d/ gener at ed- sr c using
the Slice to Java compiler, sl i ce2j ava.

Writing and Compiling a Server in Java

To implement our Pri nt er interface, we must create a servant class. By convention, a servant class uses the name of its interface with an
| -suffix, so our servant class is called Pri nt er | and placed into a source file server/src/main/java/Printerl.java:

server/src/main/java/Printerl.java

public class Printerl extends Deno._PrinterDisp

{
public void printString(String s, lce.Current current)
{
Systemout. println(s);
}
}

The Printerl class extends the class _Pri nt er Di sp, which is generated by the sl i ce2j ava compiler. The class definesaprint Stri
ng method that accepts a string for the printer to print and a parameter of type Cur r ent . (For now we will ignore the Cur r ent parameter.)
Our implementation of the pri nt St ri ng method simply writes its argument to the terminal.

The remainder of the server code is in a source file called ser ver/ src/ mai n/ j aval Server. j ava, shown in full here:
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server/src/main/java/Server.java
public class Server

{

public static void main(String[] args)

{

try(l ce. Communi cat or comuni cator = lce. Uil.initialize(args))

{
| ce. Obj ect Adapt er adapter =

conmuni cat or . cr eat eQbj ect Adapt er Wt hEndpoi nt s(" Si npl ePri nt er Adapter”, "
default -p 10000");

I ce. Cbj ect object = new Printerl();

adapt er. add( obj ect
Ice.Uil.stringToldentity("SinplePrinter"));

adapter. acti vate();

conmuni cat or . wai t For Shut down() ;

The body of mai n containsatry-w t h-resour ces block in which we place all the server code.The Conmruni cat or object implements |
ava. | ang. Aut oCl oseabl e, which allows us to use the t r y- wi t h-r esour ces statement for the initialization of the Comuni cat or obje
ct. This ensures the communicator dest r oy method is called when the t r y block goes out of scope. Doing this is essential in order to
correctly finalize the Ice run time.

A communicator starts a number of non-background threads. Destroying the communicator terminates all these threads.

The body of our t ry block contains the actual server code.
The code goes through the following steps:

1. We initialize the Ice run time by calling I ce. Util .initialize.(We pass ar gs to this call because the server may have
command-line arguments that are of interest to the run time; for this example, the server does not require any command-line
arguments.) The calltoi ni ti al i ze returns a Conmuni cat or reference, which is the main object in the Ice run time.

2. We create an object adapter by calling cr eat eObj ect Adapt er Wt hEndpoi nt s on the Conmuni cat or instance. The arguments
we pass are " Si npl ePri nt er Adapt er " (which is the name of the adapter) and "def ault -p 10000", which instructs the
adapter to listen for incoming requests using the default protocol (TCP/IP) at port number 10000.

3. At this point, the server-side run time is initialized and we create a servant for our Pri nt er interface by instantiatinga Printer| o
bject.

4. We inform the object adapter of the presence of a new servant by calling add on the adapter; the arguments to add are the servant
we have just instantiated, plus an identifier. In this case, the string " Si npl ePri nt er " is the name of the Ice object. (If we had
multiple printers, each would have a different name or, more correctly, a different object identity.)

5. Next, we activate the adapter by calling its act i vat e method. (The adapter is initially created in a holding state; this is useful if we
have many servants that share the same adapter and do not want requests to be processed until after all the servants have been
instantiated.)

6. Finally, we call wai t For Shut down. This call suspends the calling thread until the server implementation terminates, either by
making a call to shut down the run time, or in response to a signal. (For now, we will simply interrupt the server on the command line
when we no longer need it.)

We can compile the server code as follows:

gradl ew :server:build
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Writing and Compiling a Client in Java

The client code, incl i ent/src/ mai n/javal/ dient.java, looks very similar to the server. Here it is in full:

client/src/main/java/Client.java

public class dient
{
public static void main(String[] args)
{
try(lce. Communi cat or comuni cator = lce. Uil.initialize(args))
{
| ce. Qbj ect Prx base = conmunicator.stringToProxy("SinplePrin
ter:default -p 10000");
Deno. PrinterPrx printer
= Denvo. Pri nt er PrxHel per. checkedCast ( base);
if(printer == null)
{

throw new Error("lInvalid proxy");

}
printer.printString("Hello World!'");

Note that the overall code layout is the same as for the server: we use the same t ry and cat ch blocks to deal with errors. The code in the
try block does the following:

1.

2.

As for the server, we initialize the Ice run time by calling | ce. Uti | . i niti al i ze withinthe Javatry-wi t h-r esour ces stateme
nt.
The next step is to obtain a proxy for the remote printer. We create a proxy by calling st ri ngToPr oxy on the communicator, with

the string " Si npl ePrinter:default -p 10000". Note that the string contains the object identity and the port number that were
used by the server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for
now; we will see more architecturally sound ways of doing this when we discuss IceGrid.)

. The proxy returned by st ri ngToPr oxy is of type | ce. Obj ect Pr x, which is at the root of the inheritance tree for interfaces and

classes. But to actually talk to our printer, we need a proxy for a Pri nt er interface, not an Obj ect interface. To do this, we need to
do a down-cast by calling Pri nt er Pr xHel per. checkedCast . A checked cast sends a message to the server, effectively asking
"is this a proxy for a Pri nt er interface?" If so, the call returns a proxy of type Den: : Pri nt er ; otherwise, if the proxy denotes an
interface of some other type, the call returns null.

. We test that the down-cast succeeded and, if not, throw an error message that terminates the client.
. We now have a live proxy in our address space and can call the pri nt St ri ng method, passing it the time-honored " Hel | o

Wor | d!'" string. The server prints that string on its terminal.

Compiling the client looks much the same as for the server:

gradlew :client:build

Running Client and Server in Java

To run client and server, we first start the server in a separate window:

Copyright 2018, ZeroC, Inc.



Ice 3.7.1 Documentation

java -jar server/build/libs/server.jar

At this point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window:

java -jar client/build/libs/client.jar

The client runs and exits without producing any output; however, in the server window, we see the "Hel o Wor | d!" that is produced by
the printer. To get rid of the server, we interrupt it on the command line for now.

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get
something like the following:

I ce. Connecti onRef usedExcepti on
error =0
at ...
at dient.run(dient.java: 65)
Caused by: java.net.Connect Exception: Connection refused

See Also

Client-Side Slice-to-Java Mapping
Server-Side Slice-to-Java Mapping
The Current Object

IceGrid
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Writing an Ice Application with JavaScript

This page shows how to create an Ice client application with JavaScript.
On this page:

® Compiling a Slice Definition for JavaScript
® Using Ice with NodeJS

® Writing a NodeJS Client

® Running the NodeJS Client
® Using Ice in a Browser

Compiling a Slice Definition for JavaScript

The first step in creating our JavaScript application is to compile our Slice definition to generate JavaScript proxies. You can compile the

definition as follows:

slice2js Printer.ice

The sl i ce2j s compiler produces a single source file, Pri nt er. j s, from this definition. The exact contents of the source file do not
concern us for now — it contains the generated code that corresponds to the Pri nt er interface we defined in Pri nter.ice.

Using Ice with NodeJS

The language mapping is the same whether you're writing applications for NodeJS or a browser, but the code style is different enough that

we describe the two platforms separately.

Writing a NodeJS Client

The client code, in Cl i ent . j s, is shown below in full:
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JavaScript
const lce =require("ice").lce
const Deno = require("./Printer"). Deno;
(async function()
{
let ic;
try
{
ic =lce.initialize();
const base = ic.stringToProxy("SinplePrinter:default -p 10000");
const printer = await Deno. PrinterPrx.checkedCast (base);
if(printer)
{
await printer.printString("Hello World!");
}
el se
{
console.log("Invalid proxy");
}
}
cat ch(ex)
{
consol e.l og(ex.toString());
process. exit Code = 1;
}
finally
{
if(ic)
{
await ic.destroy();
}
}
10));

The program begins with r equi r e statements that assign modules from the Ice run time and the generated code to convenient local
variables. (These statements are necessary for use with NodeJS. Browser applications would omit these statements and load the modules a
different way.)

The program then defines an asynchronous function, which allows us to use the awai t keyword in our code when making proxy invocations.
Here are the notable aspects of this code:

1.

2.

The body of the function begins by calling | ce. i niti al i ze to initialize the Ice run time. The calltoi niti al i ze returnsan | ce.
Communi cat or reference, which is the main object in the Ice run time.

The next step is to obtain a proxy for the remote printer. We create a proxy by calling st ri ngToPr oxy on the communicator, with
the string " Si npl ePrinter: default -p 10000". Note that the string contains the object identity and the port number that were
used by the server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for
now; we will see more architecturally sound ways of doing this when we discuss IceGrid.)

. The proxy returned by st ri ngToPr oxy is of type | ce. Cbj ect Pr x, which is at the root of the inheritance tree for interfaces and

classes. But to actually talk to our printer, we need a proxy for a Denp: : Pri nt er interface, not an Obj ect interface. To do this, we
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need to do a down-cast by calling Deno. Pri nt er Pr x. checkedCast . A checked cast sends a message to the server, effectively
asking "is this a proxy for a Deno: : Pri nt er interface?" If so, the call returns a proxy of type Deno: : Pri nt er Pr x; otherwise, if
the proxy denotes an interface of some other type, the call returns nul | .

. The checkedCast function involves a remote invocation to the server, which means this function has asynchronous semantics and

therefore it returns a new promise object. We apply the awai t keyword to the promise to wait for the call to complete.

. If checkedCast returns a non-null value, we now have a live proxy in our address space and can call the pri nt St ri ng method,

passing it the time-honored "Hel | o Wor | d!' " string. The server prints that string on its terminal. Again, pri nt Stri ng is a remote
invocation, and it returns a promise that we await.

. The final | y block is executed after the t r y block has completed, whether or not it completes successfully. If we successfully

created a communicator in the t ry block, we destroy it here. Doing this is essential in order to correctly finalize the Ice run time: the
program must call dest r oy on any communicator it has created; otherwise, undefined behavior results. The dest r oy function has
asynchronous semantics, so we await it to ensure no subsequent code is executed until dest r oy completes.

Running the NodeJS Client

The server must be started before the client. Since Ice for JavaScript does not currently include a complete server-side implementation, we

need to use a server from another language mapping. In this case, we will use the C++ server:

server

At this point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window:

node Client.js

The client runs and exits without producing any output; however, in the server window, we see the "Hel o Wor | d! " that is produced by

the printer. To get rid of the server, we interrupt it on the command line.

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get

something like the following:

| ce: : Connecti onRef usedExcepti on
i ce_cause: "Error: connect ECONNREFUSED'
error: " ECONNREFUSED"

Note that, to successfully run the client, NodeJS must be able to locate the Ice for JavaScript modules. See the Ice for JavaScript installation

instructions for more information.

Using Ice in a Browser

The client code, in Cl i ent . j s, is shown below in full:

JavaScript

(function(){
const conmuni cator = lce.initialize();

async function printString()
{

try

{

set St at e( St at e. Busy) ;
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const hostname = docunent.|ocation. hostnanme || "127.0.0.1";
const proxy = conmuni cator.stringToProxy(  SinplePrinter:ws -h

${ host name} -p 10000°);

const printer = await Denvo. PrinterPrx.checkedCast ( proxy);

if(printer)
{
await printer.printString("Hello World!");
}
el se
{
$("#output").val ("Invalid proxy");
}
}
cat ch(ex)
{
$("#output").val (ex.toString());
}
finally
{
setState(State. ldle);
}
}
const State =
{
Idle: O,
Busy: 1
b
| et state;

function set State(newState)

{

swi t ch(newsSt at e)

{

case State.ldle:

{
/1 Hi de the progress indicator.
$("#progress"). hide();
$("body").removed ass("wai ting");
/1 Enable the button
$("#print").removed ass("di sabled").click(printString);
br eak;
}
case State. Busy:
{

/1 Clear any previous error nessages.
$("#output").val ("");
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/1 Disable buttons.
$("#print").addd ass("di sabl ed").of f("click");
/1 Display the progress indicator and set the wait cursor.
$(" #progress").show();
$("body").addd ass("wai ting");
br eak;
}
}

state = newsSt at e;
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setState(State.ldle);
1))

Here are the notable aspects of this code:

1.

The program begins by calling | ce. i ni ti al i ze to initialize the Ice run time. The calltoi ni ti al i ze returns an | ce. Conmuni ca
t or reference, which is the main object in the Ice run time.

. Next the program defines the asynchronous function pri nt St ri ng, which serves as the callback function for a Ul button press.

The async qualifier allows us to use the awai t keyword when making proxy invocations.

. The code uses a simple state machine to manage the Ul elements. Before making a remote invocation, the function enters the

"busy" state to update the Ul elements.

. The next step is to obtain a proxy for the remote printer. We create a proxy by calling st ri ngToPr oxy on the communicator, with

the string " Si npl ePrinter:ws -h hostnane -p 10000", where host nane is the document location. Note that the string
contains the object identity and the port number that were used by the server. (Obviously, hard-coding object identities and port
numbers into our applications is a bad idea, but it will do for now; we will see more architecturally sound ways of doing this when we
discuss IceGrid.)

. The proxy returned by st ri ngToPr oxy is of type | ce. Cbj ect Pr x, which is at the root of the inheritance tree for interfaces and

classes. But to actually talk to our printer, we need a proxy for a Deno: : Pri nt er interface, not an Obj ect interface. To do this, we
need to do a down-cast by calling Deno. Pri nt er Pr x. checkedCast . A checked cast sends a message to the server, effectively
asking "is this a proxy for a Deno: : Pri nt er interface?" If so, the call returns a proxy of type Deno: : Pri nt er Pr x; otherwise, if
the proxy denotes an interface of some other type, the call returns nul | .

. The checkedCast function involves a remote invocation to the server, which means this function has asynchronous semantics and

therefore it returns a new promise object. We apply the awai t keyword to the promise to wait for the call to complete.

. If checkedCast returns a non-null value, we now have a live proxy in our address space and can call the pri nt St ri ng method,

passing it the time-honored "Hel | o Wor | d! " string. The server prints that string on its terminal. Again, pri nt Stri ng is a remote
invocation, and it returns a promise that we await.

. The final | y block is executed after the t r y block has completed, whether or not it completes successfully, in order to reset the

program's state to “idle".

Here are some snippets from the corresponding HTML code:
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HTML
<script type="text/javascript" src="lce.js">
<script type="text/javascript" src="Printer.js">
<script type="text/javascript" src="Cient.js">

<l-- U elenments -->
<section rol e="main" id="body">
<div class="row'>
<div class="large-12 nedi um 12 col ums">
<f or np
<div class="row'>
<div class="small-12 col ums">
<a href="#" class="button small"
id="print">Print String</a>
</ div>
</div>
<div class="row'>
<div class="small-12 col ums">
<textarea id="output" readonly></textarea>
</div>
</div>
<div id="progress" class="row hi de">
<div class="small-12 colums |eft">
<div class="inline left icon"></div>
<di v class="text">Sendi ng Request...</div>
</ div>
</ div>
</forne
</ div>
</ di v>
</ section>

The three scri pt elements load the Ice run time, the generated code, and the application code, respectively.

A similar example can be found inj s/ |1 ce/ mi ni mal inthe i ce- denos repository.

See Also

® Client-Side Slice-to-JavaScript Mapping
® |ceGrid
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Writing an Ice Application with MATLAB

This page shows how to create an Ice client application with MATLAB.
On this page:

® Compiling a Slice Definition for MATLAB
® Writing a Client in MATLAB
® Running the Client in MATLAB

Compiling a Slice Definition for MATLAB

The first step in creating our MATLAB application is to compile our Slice definition to generate MATLAB proxies. You can compile the
definition as follows:

slice2matl ab Printer.ice

The sl i ce2mat | ab compiler produces a single source file, Pri nt er . m from this definition. The exact contents of the source file do not
concern us for now — it contains the generated code that corresponds to the Pri nt er interface we defined in Pri nter.ice.

Writing a Client in MATLAB

The client code, in cl i ent . m is shown below in full:

MATLAB

function client()
if ~libisloaded('ice")
| oadli brary('ice', @ceproto)
end
comruni cator = lce.initialize();
cl eanup = onC eanup( @) comuni cator. destroy());
base = comuni cator.stringToProxy('SinplePrinter:default -h
| ocal host -p 10000');
printer = Denvo. PrinterPrx.checkedCast (base);
if isenmpty(printer)
t hrom( MException('Cient: RuntinmeError', 'lnvalid proxy'));
end

printer.printString('Hello World!");
end

The function goes through the following steps:

1. We check whether the Ice library is loaded and call | oadl i br ary if necessary. The ' i ce' argument is the name of the Ice for
MATLAB library, while @ cepr ot o denotes a prototype file. This file, i cepr ot 0. m is included in the Ice for MATLAB distribution.
Using a prototype file is simpler and more efficient than a header file because it avoids the need for MATLAB to run a C compiler to
preprocess a header file.

2. We initialize the Ice run time by calling | ce.initialize.Thecalltoinitializereturnsan | ce. Comruni cat or reference,
which is the main object in the Ice run time.

3. We register a "clean up" function that will be called when the cl eanup variable is reclaimed and ensures that the communicator is
destroyed before the program terminates. Doing this is essential in order to correctly finalize the Ice run time: the program must call
dest r oy on any communicator it has created; otherwise, undefined behavior results.

4. The next step is to obtain a proxy for the remote printer. We create a proxy by calling st ri ngToPr oxy on the communicator, with
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the string* Si npl ePrinter:default -p 10000' . Note that the string contains the object identity and the port number that were
used by the server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for
now; we will see more architecturally sound ways of doing this when we discuss IceGrid.)

5. The proxy returned by st ri ngToPr oxy is of type | ce. Obj ect Pr x, which is at the root of the inheritance tree for interfaces and
classes. But to actually talk to our printer, we need a proxy for a Deno: : Pri nt er interface, not an Obj ect interface. To do this, we
need to do a down-cast by calling Deno. Pri nt er Pr x. checkedCast . A checked cast sends a message to the server, effectively
asking "is this a proxy for a Denp: : Pri nt er interface?" If so, the call returns a proxy of type Deno. Pri nt er Pr x; otherwise, if the
proxy denotes an interface of some other type, the call returns an empty array.

6. We test that the down-cast succeeded and, if not, throw an exception that terminates the client.

7. We now have a live proxy in our address space and can call the pri nt St ri ng method, passing it the time-honored ' Hel | o
Wor | d!'* string. The server prints that string on its terminal.

Running the Client in MATLAB

The server must be started before the client. Since Ice for MATLAB does not support server-side behavior, we need to use a server from
another language mapping. In this case, we will use the C++ server:

server

At this point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a MATLAB console:

client()

The client runs and exits without producing any output; however, in the server window, we see the "Hel | o Wor | d! " message that is
produced by the printer. To get rid of the server, we interrupt it on the command line.

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get
something like the following:

Error using Deno. PrinterPrx.checkedCast (line 59)
::lce:: Connecti onRef usedExcepti on

Error in dient (line 8)
printer = Denvo. PrinterPrx.checkedCast (base);

Note that, to successfully run the client, MATLAB must be able to locate Ice for MATLAB. See the Ice for MATLAB installation instructions for
more information.

See Also

¢ Client-Side Slice-to-MATLAB Mapping
® |ceGrid
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Writing an Ice Application with Objective-C

This page shows how to create an Ice application with Objective-C.
On this page:

® Compiling a Slice Definition for Objective-C

® Writing and Compiling a Server in Objective-C
® Writing and Compiling a Client in Objective-C
® Running Client and Server in Objective-C

Compiling a Slice Definition for Objective-C

The first step in creating our Objective-C application is to compile our Slice definition to generate Objective-C proxies and skeletons. You can
compile the definition as follows:

slice2o0bjc Printer.ice

The sl i ce2obj ¢ compiler produces two Objective-C source files from this definition, Pri nter. hand Pri nter. m

® Printer.h
The Pri nt er. h header file contains Objective-C type definitions that correspond to the Slice definitions for our Pri nt er interface.

This header file must be included in both the client and the server source code.

® Printer.m
The Pri nt er . mfile contains the source code for our Pri nt er interface. The generated source contains type-specific run-time
support for both clients and servers. For example, it contains code that marshals parameter data (the string passed to the pri nt St
ri ng operation) on the client side and unmarshals that data on the server side.
The Pri nt er . mfile must be compiled and linked into both client and server.

Writing and Compiling a Server in Objective-C

The source code for the server takes only a few lines and is shown in full here:
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Objective-C
#i nport <objc/lce. h>
#inport <Printer. h>
#i nport <stdio. h>
@nterface Printerl : DenpPrinter <DenoPrinter>

@nd

@ nplementation Printerl

-(void) printString: (NSMutabl eString *)s current: (I CECurrent *)current

{
printf("%\n", [s UTF8String]);
fflush(stdout);

}

@nd

i nt

mai n(int argc, char* argv[])

{

int status = EXIT_FAI LURE;
@ut or el easepool

{

i d<| CECommuni cat or> conmmuni cator = nil;
@Qry
{

communi cator = [ICEUti | createConmunicator: &rgc argv: argv];

i d<| CECbj ect Adapt er > adapter = [comuni cat or
creat eCbj ect Adapt er Wt hEndpoi nts: @ Si npl ePri nt er Adapt er”

endpoi nts: @default -p 10000"];

[adapter add:[Printerl printer] identity:[|CEUWII

stringToldentity: @Si nplePrinter"]];
[adapter activate];

[ comuni cat or wai t For Shut down] ;

status = EXI T_SUCCESS;

}
@at ch( NSExcepti on* ex)
{
NSLog( @ %@, ex);
}

[ communi cat or destroy];

}

return status;
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Every Ice source file starts with an include directive for obj c/ | ce. h, which contains the definitions for the Ice run time. We also include Pr i
nt er . h, which was generated by the Slice compiler and contains the Objective-C definitions for our printer interface:

Objective-C

#i nport <objc/lce. h>
#inport <Printer. h>
#i nport <stdio. h>

Our server implements a single printer servant, of type Pri nt er | . Looking at the generated code in Pri nt er . h, we find the following
(tidied up a little to get rid of irrelevant detail):

Objective-C
@r ot ocol DenoPrinter <ICEChject>
-(void) printString: (NSMutabl eString *)s
current: (I CECurrent *)current;

@nd

@nterface DenoPrinter : | CEQbject
/1

@nd

The DenoPr i nt er protocol and class definitions are generated by the Slice compiler. The protocol defines the pri nt St ri ng method,
which we must implement in our servant. The DenoPr i nt er class contains methods that are internal to the mapping, so we are not
concerned with these. However, our servant must derive from this skeleton class:

Objective-C

@nterface Printerl : DenpPrinter <DenoPrinter>
@nd

@npl ementation Printerl
-(void) printString: (NSMutabl eString *)s current: (I CECurrent *)current

{
printf("%\n", [s UTF8String]);
fflush(stdout);

}

@nd

As you can see, the implementation of the pri nt St ri ng method is trivial: it simply writes its string argument to st dout .

Note that pri nt St ri ng has a second parameter of type | CECur r ent . The Ice run time passes additional information about an incoming
request to the servant in this parameter. For now, we will ignore it.

What follows is the server main program. Note the general structure of the code:
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Objective-C
i nt
mai n(int argc, char* argv[])
{
int status = EXI T_FAI LURE
@ut or el easepoo
{
i d<I CEComruni cat or > conmuni cat or =
@ry
{
communi cator = [ICEUtI
/1 Server inplenmentation here..
status = EXI T_SUCCESS;
}
@at ch( NSExcepti on* ex)
{
NSLog( @ %@, ex);
}
[ communi cat or destroy];
}
return status;
}

nil;

creat eConmuni cat or: &rgc argv: argv];

The body of mai n instantiates an autorelease pool, which it releases before returning to ensure that the program does not leak memory. nai

n contains the declaration of two variables, st at us and comuni cat or . The st at us variable contains the exit status of the program and
the conmuni cat or variable, of type i d<I CEConmuni cat or >, contains the main handle to the Ice run time.

Following these declarations is a t r y block in which we place all the server code, followed by a cat ch handler that logs any unhandled

exceptions.

Before returning, mai n executes a bit of cleanup code that calls the dest r oy method on the communicator. The cleanup call is outside the
t ry block for a reason: we must ensure that the Ice run time is finalized whether the code terminates normally or terminates due to an

exception.

Failure to call dest r oy on the communicator before the program exits results in undefined behavior.

The body of the t ry block contains the actual server code:
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communi cator = [ICEUti| createConmuni cator: &rgc argv: argv];
i d<| CECbj ect Adapt er > adapter = [comuni cat or
creat eObj ect Adapt er Wt hEndpoi nts: @ Si npl ePri nt er Adapt er”

endpoi nts: @default -p 10000"];

[adapter add:[Printerl printer] identity:[1CEUWII
stringToldentity: @Si nplePrinter"]];

[adapter activate];

[ communi cat or wai t For Shut down] ;

The code goes through the following steps:

1. We initialize the Ice run time by calling cr eat eCommuni cat or . (We pass ar gc and ar gv to this call because the server may have
command-line arguments that are of interest to the run time; for this example, the server does not require any command-line
arguments.) The call to cr eat eConmruni cat or returns a value of type i d<I CEConmruni cat or >, which is the main object in the
Ice run time.

2. We create an object adapter by calling cr eat eObj ect Adapt er Wt hEndpoi nt s on the Conmruni cat or instance. The arguments
we pass are " Si npl ePri nt er Adapt er " (which is the name of the adapter) and " def aul t -p 10000", which instructs the
adapter to listen for incoming requests using the default protocol (TCP/IP) at port number 10000.

3. At this point, the server-side run time is initialized and we create a servant for our Pri nt er interface by instantiatinga Printer| o
bject.

4. We inform the object adapter of the presence of a new servant by calling add on the adapter; the arguments to add are the servant
we have just instantiated, plus an identifier. In this case, the string " Si npl ePri nt er " is the name of the Ice object. (If we had
multiple printers, each would have a different name or, more correctly, a different object identity.)

5. Next, we activate the adapter by calling its act i vat e method. (The adapter is initially created in a holding state; this is useful if we
have many servants that share the same adapter and do not want requests to be processed until after all the servants have been
instantiated.) The server starts to process incoming requests from clients as soon as the adapter is activated.

6. Finally, we call wai t For Shut down. This call suspends the calling thread until the server implementation terminates, either by
making a call to shut down the run time, or in response to a signal. (For now, we will simply interrupt the server on the command line
when we no longer need it.)

Assuming that we have the server code in a file called Ser ver . m we can compile it as follows:

c++ -c -1. -1$ICE_HOW/ include Printer.m Server.m

This compiles both our application code and the code that was generated by the Slice compiler. We assume that the | CE_HOME environment
variable is set to the top-level directory containing the Ice run time. (For example, if you have installed Ice in / opt /i ce, set | CE_HOVE to
that path.) Depending on your platform, you may have to add additional include directives or other options to the compiler; please see the
demo programs that ship with Ice for the details.

Finally, we need to link the server into an executable:

c++ Printer.o Server.o -0 server -L$ICE HOWE/ Iib -11ceObjC -framework
Foundati on

Again, depending on the platform, the actual list of libraries you need to link against may be longer. The demo programs that ship with Ice
contain all the details.

Writing and Compiling a Client in Objective-C

The client code looks very similar to the server. Here it is in full:
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#i nport <objc/lce. h>
#i nport <Printer.h>
#i nport <stdi o. h>

i nt
mai n(int argc, char* argv[])
{
int status = EXIT_FAI LURE;
@ut or el easepool
{
i d<| CECommuni cat or > conmmuni cator = nil;
@ry
{
communi cator = [ICEUtil createConmunicator: &rgc argv: argv];
i d<I CECbj ect Prx> base = [ conmuni cat or
stringToProxy: @Si npl ePrinter:default -p 10000"];
i d<DempPrinterPrx> printer = [DenoPrinterPrx
checkedCast : base] ;
if(!printer)
{
[ NSException raise: @lnvalid proxy" format: @"];
}
[printer printString: @Hello Wrld!"];
status = EXI T_SUCCESS;

}
@at ch( NSExcepti on* ex)
{
NSLog( @ %@, ex);
}

[ communi cat or destroy];

}

return status;

Note that the overall code layout is the same as for the server: we include the headers for the Ice run time and the header generated by the
Slice compiler, and we use the same t ry block and cat ch handlers to deal with errors.

The code in the t ry block does the following:

1. As for the server, we initialize the Ice run time by calling cr eat eConmuni cat or .

2. The next step is to obtain a proxy for the remote printer. We create a proxy by calling st ri ngToPr oxy on the communicator, with
the string " Si npl ePrinter:default -p 10000". Note that the string contains the object identity and the port number that were
used by the server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for
now; we will see more architecturally sound ways of doing this when we discuss IceGrid.)

3. The proxy returned by st ri ngToPr oxy is of type i d<I CEQbj ect Pr x>, which is at the root of the inheritance tree for interfaces
and classes. But to actually talk to our printer, we need a proxy for a Pri nt er interface, not an Obj ect interface. To do this, we
need to do a down-cast by calling the checkedCast class method on the DenpPr i nt er Pr x class. A checked cast sends a
message to the server, effectively asking "is this a proxy for a Pri nt er interface?" If so, the call returns a proxy toa Pri nter;
otherwise, if the proxy denotes an interface of some other type, the call returns a null proxy.
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4. We test that the down-cast succeeded and, if not, throw an error message that terminates the client.
5. We now have a live proxy in our address space and can call the pri nt St ri ng method, passing it the time-honored " Hel | o
Wor | d!'" string. The server prints that string on its terminal.

Compiling and linking the client looks much the same as for the server:

c++ -c -1. -1$I1CE_ HOW include Printer. mdient.m
c++ Printer.o Cient.o -o client -L$ICE HOVE/lib -11ceOnj C -framework
Foundati on

Running Client and Server in Objective-C

To run client and server, we first start the server in a separate window:

./ server

At this point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window:

.lclient

The client runs and exits without producing any output; however, in the server window, we see the "Hel | o Wor | d! " that is produced by
the printer. To get rid of the server, we interrupt it on the command line for now.

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get:

Net wor k. cpp: 1218: | ce:: Connecti onRef usedExcepti on:
connection refused: Connection refused

Note that, to successfully run client and server, you may have to set DYLD_LI BRARY_PATH to include the Ice library directory. Please see
the installation instructions and the demo applications that ship with Ice Touch for details.

See Also

Client-Side Slice-to-Objective-C Mapping
Server-Side Slice-to-Objective-C Mapping
The Current Object

IceGrid
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Writing an Ice Application with PHP

This page shows how to create an Ice client application with PHP.
On this page:

® Compiling a Slice Definition for PHP
® Writing a Client in PHP
® Running the Client in PHP

Compiling a Slice Definition for PHP

The first step in creating our PHP application is to compile our Slice definition to generate PHP code. You can compile the definition as

follows:

slice2php Printer.ice

The sl i ce2php compiler produces a single source file, Pri nt er . php, from this definition. The exact contents of the source file do not
concern us for now — it contains the generated code that corresponds to the Pri nt er interface we defined in Pri nter.ice.

Writing a Client in PHP

The client code, in d i ent . php, is shown below in full:

89
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PHP
<?php
require 'lce. php';
require 'Printer. php';

$ic = null;
try
{
$ic = lcelinitialize();

$base = $ic->stringToProxy("SinplePrinter:default -p 10000");
$printer = Deno\PrinterPrxHel per::checkedCast ($base);
if(!$printer)

{
t hrow new Runti meException("lnvalid proxy");
}
$printer->printString("Hello Wrld!");
}
cat ch(Exception $ex)
{
echo $ex;
}
i f($ic)
{
$i c->destroy(); // Cean up
}
?>

The program begins with r equi r e statements to load the Ice run-time definitions (I ce. php) and the code we generated from our Slice
definition in the previous section (Pri nt er. php).

The body of the main program contains a t r y block in which we place all the client code, followed by a cat ch block. The cat ch block
catches all exceptions that may be thrown by the code; the intent is that, if the code encounters an unexpected run-time exception anywhere,
the stack is unwound all the way back to the main program, which prints the exception and then returns failure to the operating system.

The body of our t ry block goes through the following steps:

1. We initialize the Ice run time by calling | ce\initi al i ze. Thecalltoi ni ti al i ze returns an | ce\ Conmuni cat or reference,
which is the main object in the Ice run time.

2. The next step is to obtain a proxy for the remote printer. We create a proxy by calling st ri ngToPr oxy on the communicator, with
the string " Si npl ePrinter:default -p 10000". Note that the string contains the object identity and the port number that were
used by the server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for
now; we will see more architecturally sound ways of doing this when we discuss IceGrid.)

3. The proxy returned by st ri ngToPr oxy is of type | ce\ Obj ect Pr x, which is at the root of the inheritance tree for interfaces and
classes. But to actually talk to our printer, we need a proxy for a Deno: : Pri nt er interface, not an Obj ect interface. To do this, we
need to do a down-cast by calling Dero\ Pri nt er Pr xHel per: : checkedCast . A checked cast sends a message to the server,
effectively asking "is this a proxy for a Deno: : Pri nt er interface?" If so, the call returns a proxy narrowed to the Pri nt er interface
; otherwise, if the proxy denotes an interface of some other type, the call returns nul | .

4. We test that the down-cast succeeded and, if not, throw an exception that terminates the client.

5. We now have a live proxy in our address space and can call the pri nt St ri ng method, passing it the time-honored " Hel | o
Wor | d!'" string. The server prints that string on its terminal.

Before the code exits, it destroys the communicator (if one was created successfully). Doing this is essential in order to correctly finalize the
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Ice run time. If a script neglects to destroy the communicator, Ice destroys it automatically.

Running the Client in PHP

The server must be started before the client. Since Ice for PHP does not support server-side behavior, we need to use a server from another
language mapping. In this case, we will use the C++ server:

server

At this point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window using
PHP's command-line interpreter:

php -f dient.php

The client runs and exits without producing any output; however, in the server window, we see the "Hel | o Wor | d! " that is produced by
the printer. To get rid of the server, we interrupt it on the command line.

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get

something like the following:

exception

{

error

::lce:: ConnectionRefusedExcepti on

111

Note that, to successfully run the client, the PHP interpreter must be able to locate the Ice extension for PHP. See the Ice for PHP
installation instructions for more information.

See Also

® Client-Side Slice-to-PHP Mapping

® |ceGrid
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Writing an Ice Application with Python

This page shows how to create an Ice application with Python.
On this page:

® Compiling a Slice Definition for Python
® Writing a Server in Python

® Writing a Client in Python

® Running Client and Server in Python

Compiling a Slice Definition for Python

The first step in creating our Python application is to compile our Slice definition to generate Python proxies and skeletons. You can compile
the definition as follows:

slice2py Printer.ice

The sl i ce2py compiler produces a single source file, Pri nt er _i ce. py, from this definition. The compiler also creates a Python package
for the Denp module, resulting in a subdirectory named Denp. The exact contents of the source file do not concern us for now — it contains
the generated code that corresponds to the Pri nt er interface we defined in Pri nter.i ce.

Writing a Server in Python

To implement our Pri nt er interface, we must create a servant class. By convention, a servant class uses the name of its interface with an
| -suffix, so our servant class is called Pri nterl :

Python

class Printerl (Deno.Printer):
def printString(self, s, current=None):
print s

The Printerl class inherits from a base class called Deno. Pri nt er, which is generated by the sl i ce2py compiler. The base class is
abstract and contains a pri nt St ri ng method that accepts a string for the printer to print and a parameter of type | ce. Cur r ent . (For now
we will ignore the | ce. Cur r ent parameter.) Our implementation of the pri nt St ri ng method simply writes its argument to the terminal.

The remainder of the server code, in ser ver . py, follows our servant class and is shown in full here:
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Python

i mport sys, lce
i mport Deno

class Printerl(Denp.Printer):
def printString(self, s, current=None):
print s

with Ice.initialize(sys.argv) as comuni cator:
adapter = conmmuni cat or. cr eat eCbj ect Adapt er Wt hEndpoi nt s(" Si npl ePrin
ter Adapter", "default -p 10000")
object = Printerl()
adapt er. add(obj ect, conmuni cator.stringToldentity("SinplePrinter"))
adapter. activate()
communi cat or . wai t For Shut down()

The body of the main program contains a wi t h block in which we place all the server code. If the code throws an exception, it will be
handled by the Python interpreter which typically prints out the exception and then returns failure to the operating system.

The | ce. Communi cat or object implements the Python context manager protocol, which allows us to use the wi t h statement for the
initialization of the | ce. Comruni cat or object. This ensures the communicator dest r oy method is called when the wi t h block goes out of
scope. Doing this is essential in order to correctly finalize the Ice run time

Failure to call dest r oy on the communicator before the program exits results in undefined behavior.

The server code goes through the following steps:

1.

We initialize the Ice run time by calling I ce. i niti al i ze. (We pass sys. ar gv to this call because the server may have
command-line arguments that are of interest to the run time; for this example, the server does not require any command-line
arguments.) The calltoi ni ti al i ze returns an | ce. Communi cat or reference, which is the main object in the Ice run time.

. We create an object adapter by calling cr eat eCbj ect Adapt er Wt hEndpoi nt s on the Conmruni cat or instance. The arguments

we pass are " Si npl ePri nt er Adapt er " (which is the name of the adapter) and " def aul t -p 10000", which instructs the
adapter to listen for incoming requests using the default protocol (TCP/IP) at port number 10000.

. At this point, the server-side run time is initialized and we create a servant for our Pri nt er interface by instantiatinga Pri nter| o

bject.

. We inform the object adapter of the presence of a new servant by calling add on the adapter; the arguments to add are the servant

we have just instantiated, plus an identifier. In this case, the string " Si npl ePri nt er " is the name of the Ice object. (If we had
multiple printers, each would have a different name or, more correctly, a different object identity.)

. Next, we activate the adapter by calling its act i vat e method. (The adapter is initially created in a holding state; this is useful if we

have many servants that share the same adapter and do not want requests to be processed until after all the servants have been
instantiated.)

. Finally, we call wai t For Shut down. This call suspends the calling thread until the server implementation terminates, either by

making a call to shut down the run time, or in response to a signal. (For now, we will simply interrupt the server on the command line
when we no longer need it.)

Writing a Client in Python

The client code, in cl i ent . py, looks very similar to the server. Here it is in full:
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Python

i mport sys, lce
i mport Deno

with Ice.initialize(sys.argv) as comuni cator:
base = conmuni cator.stringToProxy("Sinpl ePrinter:default -p 10000")
printer = Deno. PrinterPrx.checkedCast (base)
if not printer:
raise RuntinmeError("lInvalid proxy")

printer.printString("Hello Wrld!")

Note that the overall code layout is the same as for the server: we use the same wi t h block. The code does the following:

. As for the server, we initialize the Ice run time by calling I ce. i ni ti al i ze.
. The next step is to obtain a proxy for the remote printer. We create a proxy by calling st ri ngToPr oxy on the communicator, with

the string " Si npl ePrinter:default -p 10000". Note that the string contains the object identity and the port number that were
used by the server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for
now; we will see more architecturally sound ways of doing this when we discuss IceGrid.)

. The proxy returned by st ri ngToPr oxy is of type | ce. Obj ect Pr x, which is at the root of the inheritance tree for interfaces and

classes. But to actually talk to our printer, we need a proxy for a Deno: : Pri nt er interface, not an Obj ect interface. To do this, we
need to do a down-cast by calling Deno. Pri nt er Pr x. checkedCast . A checked cast sends a message to the server, effectively
asking "is this a proxy for a Deno: : Pri nt er interface?" If so, the call returns a proxy of type Deno. Pri nt er Pr x; otherwise, if the
proxy denotes an interface of some other type, the call returns None.

. We test that the down-cast succeeded and, if not, throw an error message that terminates the client.
. We now have a live proxy in our address space and can call the pri nt St ri ng method, passing it the time-honored " Hel | o

Wor | d!'" string. The server prints that string on its terminal.

Running Client and Server in Python

To run client and server, we first start the server in a separate window:

pyt hon server. py

At this point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window:

pyt hon client. py

The client runs and exits without producing any output; however, in the server window, we see the "Hel o Wor | d! " that is produced by

the printer. To get rid of the server, we interrupt it on the command line for now.

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get

something like the following:
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Traceback (nobst recent call last):
File "client.py", line 10, in ?
printer = Denvo. PrinterPrx.checkedCast (base)
File "Printer_ice.py", line 43, in checkedCast
return Deno. PrinterPrx.ice_checkedCast (proxy, '::Deno::
cet)
Connecti onRef usedExcepti on: | ce. Connecti onRef usedExcepti on:
Connection refused

Printer', fa

Note that, to successfully run the client and server, the Python interpreter must be able to locate the Ice extension for Python. See the Ice for

Python installation instructions for more information.

See Also

Client-Side Slice-to-Python Mapping
Server-Side Slice-to-Python Mapping
The Current Object

IceGrid
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Writing an Ice Application with Ruby

This page shows how to create an Ice client application with Ruby.

On this page:

Compiling a Slice Definition for Ruby

® Writing a Client in Ruby

Running the Client in Ruby

Compiling a Slice Definition for Ruby

The first step in creating our Ruby application is to compile our Slice definition to generate Ruby proxies. You can compile the definition as

follows:

slice2rb Printer.ice

The sl i ce2r b compiler produces a single source file, Pri nt er. r b, from this definition. The exact contents of the source file do not
concern us for now — it contains the generated code that corresponds to the Pri nt er interface we defined in Pri nter.ice.

Writing a Client in Ruby

The client code, in cl i ent. r b, is shown below in full:

Ruby

require "Printer.rb

Ice::initialize(ARGY) do | conmuni cat or
base = comuni cator.stringToProxy("Si npl ePrinter:default -h
| ocal host -p 10000")
printer = Deno::PrinterPrx::checkedCast (base)
if not printer
raise "lnvalid proxy"
end

printer.printString("Hello Wrld!")
end

The program begins with a r equi r e statement, which loads the Ruby code we generated from our Slice definition in the previous section. It
is not necessary for the client to explicitly load the | ce module because Pri nt er . r b does that for you.

The body of the main program goes through the following steps:

1.

2.

96

We initialize the Ice run time by calling | ce: ;i niti al i ze. (We pass ARGV to this call because the client may have command-line
arguments that are of interest to the run time; for this example, the client does not require any command-line arguments.)

We do our work inside a block. The block accepts an | ce: : Cormuni cat or reference, which is the main object in the Ice run time.
Ice::initialize wil automatically destroy the communicator when the block completes.

. The next step is to obtain a proxy for the remote printer. We create a proxy by calling st ri ngToPr oxy on the communicator, with

the string " Si npl ePrinter:default -p 10000". Note that the string contains the object identity and the port number that were
used by the server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for
now; we will see more architecturally sound ways of doing this when we discuss IceGrid.)

. The proxy returned by st ri ngToPr oxy is of type | ce: : Obj ect Pr x, which is at the root of the inheritance tree for interfaces and

classes. But to actually talk to our printer, we need a proxy for a Deno: : Pri nt er interface, not an Qbj ect interface. To do this, we
need to do a down-cast by calling Denro: : Pri nt er Pr x: : checkedCast . A checked cast sends a message to the server,
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effectively asking "is this a proxy for a Deno: : Pri nt er interface?" If so, the call returns a proxy of type Deno: : Pri nt er Pr x;
otherwise, if the proxy denotes an interface of some other type, the call returns ni | .

5. We test that the down-cast succeeded and, if not, throw an error message that terminates the client.

6. We now have a live proxy in our address space and can call the pri nt St ri ng method, passing it the time-honored " Hel | o
Wor | d!'" string. The server prints that string on its terminal.

Running the Client in Ruby

The server must be started before the client. Since Ice for Ruby does not support server-side behavior, we need to use a server from
another language mapping. In this case, we will use the C++ server:

server

At this point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window:

ruby client.rb

The client runs and exits without producing any output; however, in the server window, we see the "Hel | o Wor| d! " that is produced by
the printer. To get rid of the server, we interrupt it on the command line.

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get
something like the following:

exception ::lce::Connecti onRef usedExcepti on

{

error = 111

Note that, to successfully run the client, the Ruby interpreter must be able to locate the Ice extension for Ruby. See the Ice for Ruby
installation instructions for more information.

See Also

® Client-Side Slice-to-Ruby Mapping
® IceGrid
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The Slice Language

Slice (Specification Language for Ice) is the fundamental abstraction mechanism for separating object interfaces from their implementations.
Slice establishes a contract between client and server that describes the interfaces, operations and parameter types used by an application.
This description is independent of the implementation language, so it does not matter whether the client is written in the same language as
the server.

Even though Slice is an acronym, it is pronounced as a single syllable, like a slice of bread.

Slice definitions are compiled for a particular implementation language by a compiler. The language-specific Slice compiler translates the
language-independent Slice definitions into language-specific type definitions and APIs. These types and APIs are used by the developer to
provide application functionality and to interact with Ice. The translation algorithms for various implementation languages are known as langu
age mappings, and Ice provides a number of language mappings (for C++, C#, Java, JavaScript, Python and more).

Because Slice describes interfaces and types (but not implementations), it is a purely declarative language; there is no way to write
executable statements in Slice.

Slice definitions focus on object interfaces, the operations supported by those interfaces, and exceptions that may be raised by

operations. This requires quite a bit of supporting machinery; in particular, much of Slice is concerned with the definition of data types. This is
because data can be exchanged between client and server only if their types are defined in Slice. You cannot exchange arbitrary C++ data
between a client and a server because it would destroy the language independence of Ice. However, you can always create a Slice type
definition that corresponds to the C++ data you want to send, and then you can transmit the Slice type.

We present the full syntax and semantics of Slice here. Because much of Slice is based on C++ and Java, we focus on those areas where
Slice differs from C++ or Java or constrains the equivalent C++ or Java feature in some way. Slice features that are identical to C++ and
Java are mentioned mostly by example.

Topics

Slice Compilation

Slice Source Files

Lexical Rules

Modules

Basic Types

User-Defined Types
Constants and Literals
Interfaces, Operations, and Exceptions
Classes

Forward Declarations
Optional Data Members

Type IDs

Operations on Object

Local Types

Names and Scoping
Metadata

Serializable Objects
Deprecating Slice Definitions
Using the Slice Compilers
Slice Checksums

Generating Slice Documentation
Slice Keywords

Slice Metadata Directives
Slice for a Simple File System
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Slice Compilation

On this page:

Compilation
Single Development Environment for Client and Server
Different Development Environments for Client and Server

L]
L]
L]
® Slice Compilation and your Build Environment

Compilation

A Slice compiler produces source files that must be combined with application code to produce client and server executables.

Single Development Environment for Client and Server

The figure below shows the situation when both client and server are developed in C++. The Slice compiler generates two files from a Slice
definition in a source file Pri nt er . i ce: a header file (Pri nt er. h) and a source file (Pri nt er. cpp)

Slice Printer.ice .| Slice-to-C++ Server
Developer m - Compiler Developer

K

Printer.cpp

Server.cpp

Printer.h

\

|
Client | Client.cpp Co+ IICE
Developer -] Ru_n-tlrne
Library
h i ¥ h
RPC

Client Executable W Server Executable

Development process if client and server share the same development environment.

® The Pri nt er. h header file contains definitions that correspond to the types used in the Slice definition. It is included in the source
code of both client and server to ensure that client and server agree about the types and interfaces used by the application.

® The Print er. cpp source file provides an API to the client for sending messages to remote objects. The client source code (Cl i en
t . cpp, written by the client developer) contains the client-side application logic. The generated source code and the client code are
compiled and linked into the client executable.

The Pri nt er. cpp source file also contains source code that provides an up-call interface from the Ice run time into the server code written
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by the developer and provides the connection between the networking layer of Ice and the application code. The server implementation file (
Ser ver . cpp, written by the server developer) contains the server-side application logic (the object implementations, properly termed servan
ts). The generated source code and the implementation source code are compiled and linked into the server executable.

Both client and server also link with an Ice library that provides the necessary run-time support.

You are not limited to a single implementation of a client or server. For example, you can build multiple servers, each of which implements
the same interfaces but uses different implementations (for example, with different performance characteristics). Multiple such server
implementations can coexist in the same system. This arrangement provides one fundamental scalability mechanism in Ice: if you find that a
server process starts to bog down as the number of objects increases, you can run an additional server for the same interfaces on a different
machine. Such federated servers provide a single logical service that is distributed over a number of processes on different machines. Each
server in the federation implements the same interfaces but hosts different object instances. (Of course, federated servers must somehow
ensure consistency of any databases they share across the federation.)

Ice also provides support for replicated servers. Replication permits multiple servers to each implement the same set of object instances.
This improves performance and scalability (because client load can be shared over a number of servers) as well as redundancy (because
each object is implemented in more than one server).

Different Development Environments for Client and Server

Client and server cannot share any source or binary components if they are developed in different languages. For example, a client written in
Java cannot include a C++ header file.

This figure shows the situation when a client written in Java and the corresponding server is written in C++. In this case, the client and server
developers are completely independent, and each uses his or her own development environment and language mapping. The only link
between client and server developers is the Slice definition each one uses.

Slice

Developer

¥

Java Printer.ice C++

Slice-to-C++ Server
Compiler Developer

Client Slice-ta-Java
Developer Compiler

Frinter.h

Frinter.cpp

Server.cpp

_J _J

~

Java lce Run-time C++ lce Run-time

Library - Client Executable W‘ Server Executable |e4—— Library
|

Development process for different development environments.

For Java, the slice compiler creates a number of files whose names depend on the names of various Slice constructs. (These files are
collectively referred to as *. j ava in the above figure.)
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Slice Compilation and your Build Environment

One way to integrate Slice compilation in your build system is to compile your Slice files manually, and then keep (check-in) the generated
files like other source files. Later on, each time you change a Slice file, you have to remember to recompile this Slice file and update the
generated files. While simple, this approach can lead to inconsistencies and bugs if you forget to recompile a modified Slice file.

We recommend you use instead an Ice Builder for your build environment to manage the compilation of your Slice files. An Ice Builder is a
simple plug-in or task for your build environment that compiles or recompiles Slice files when it detects the corresponding generated files are
missing or out of date. A Builder performs this Slice compilation by invoking the Slice compiler for the target programming language—it does
compile the files itself and usually supports several versions of Ice.

See Also

® Using the Slice Compilers
® |ce Builders
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Slice Source Files

Slice defines a number of rules for the naming and contents of Slice source files.
On this page:

® File Naming
® File Format
® Preprocessing
® Detecting Ice Versions
® Detecting Slice Compilers
¢ Definition Order

File Naming

Files containing Slice definitions must end in a . i ce file extension, for example, Cl ock. i ce is a valid file name. Other file extensions are
rejected by the compilers.

For case-insensitive file systems, the file extension may be written as uppercase or lowercase, so C ock. | CE is legal. For case-sensitive
file systems (such as Unix), Cl ock. | CEis illegal. (The extension must be in lowercase.)

File Format

Slice is a free-form language so you can use spaces, horizontal and vertical tab stops, form feeds, and newline characters to lay out your
code in any way you wish. (White space characters are token separators). Slice does not attach semantics to the layout of a definition. You
may wish to follow the style we have used for the Slice examples throughout this book.

Slice files can be ASCII text files or use the UTF-8 character encoding with an optional byte order marker (BOM) at the beginning of each
file. However, Slice identifiers are limited to ASCII letters and digits; non-ASCII letters can appear only in comments and string literals.

Preprocessing

Slice supports the same preprocessor directives as C++, so you can use directives such as #i ncl ude and macro definitions. However,
Slice permits #i ncl ude directives only at the beginning of a file, before any Slice definitions.

If you use #i ncl ude directives, it is a good idea to protect them with guards to prevent double inclusion of a file:

Slice

/Il File dock.ice
#i fndef _CLOCK | CE
#define CLOCK I CE

[/ #include directives here...
/] Definitions here...

#endi f _CLOCK_| CE

The following #pr agna directive offers a simpler way to achieve the same result:
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Slice

/Il File dock.ice
#pragnma once

/'l #include directives here. ..
// Definitions here...

#i ncl ude directives permit a Slice definition to use types defined in a different source file. The Slice compilers parse all of the code in a
source file, including the code in subordinate #i ncl ude files. However, the compilers generate code only for the top-level file(s) nominated
on the command line. You must separately compile subordinate #i ncl ude files to obtain generated code for all the files that make up your
Slice definition.

Note that you should avoid #i ncl ude with double quotes:

Slice

#i nclude "C ock.ice" // Not recommended!

While double quotes will work, the directory in which the preprocessor tries to locate the file can vary depending on the operating system, so
the included file may not always be found where you expect it. Instead, use angle brackets (<>); you can control which directories are
searched for the file with the - | option of the Slice compiler.

Also note that, if you include a path separator in a #i ncl ude directive, you must use a forward slash:

Slice
#i nclude <SliceDefs/Cock.ice> // K

You cannot use a backslash in #i ncl ude directives:

Slice
#include <SliceDefs\Oock.ice> // Il egal

Detecting Ice Versions

The Slice compilers define the preprocessor macro __| CE_VERSI ON__ with a numeric representation of the Ice version. The value of this
macro is the same as the C++ macro | CE_|I NT_VERSI ON. You can use this macro to make your Slice definitions backward-compatible with
older Ice releases, while still taking advantage of newer Ice features when possible. For example, the Slice definition shown below makes
use of custom enumerator values:
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Slice

#if defined(__ICE VERSION ) && _ I CE VERSION _ >= 030500
enum Fruit { Apple, Pear = 3, Orange }

#el se

enum Fruit { Apple, Pear, Orange }

#endi f

Although this example is intended to show how to use the | CE_VERSI ON macro, it also highlights a potential pitfall that you must be aware
of when trying to maintain backward compatibility: the two definitions of Fr ui t are not wire-compatible.

Detecting Slice Compilers

Each Slice compiler defines its own macro so that you can customize your Slice code for certain language mappings. The following macros
are defined by their respective compilers:

_ SLICE2JAVA _

_ SLICE2JS

__SLICE2CPP__

_ SLICE2CS

_ SLICE2PY__

__SLICE2PHP__

_ SLICE2RB

__ SLI CE2FREEZE__

_ SLI CE2FREEZE]

_ SLI CE2MATLAB

___TRANSFORMDB__
DUMPDB

For example, .NET developers may elect to avoid the use of default values for structure members because the presence of default values
changes the C# mapping of the structure from st ruct to cl ass:

Slice

struct Record
{
...
#if _ SLICE2CS
bool active;
#el se
bool active = true;
#endi f

}

Definition Order

Slice constructs, such as modules, interfaces, or type definitions, can appear in any order you prefer. However, identifiers must be declared
before they can be used.

See Also

® Using the Slice Compilers

104 Copyright 2018, ZeroC, Inc.



Ice 3.7.1 Documentation

Lexical Rules

Slice's lexical rules are very similar to those of C++ and Java, except for some differences for identifiers.
On this page:

* Comments
® Keywords
® |dentifiers
® Case Sensitivity
® |dentifiers That Are Keywords
® Escaped ldentifiers
® Reserved |dentifiers

Comments

Slice definitions permit both the C and the C++ style of writing comments:

Slice

/*
* C-style comment.
*/

/'l Ct++-style comment extending to the end of this |ine.

Keywords

Slice uses a number of keywords, which must be spelled in lowercase. For example, cl ass and di cti onary are keywords and must be
spelled as shown. There are three exceptions to this lowercase rule: Local Obj ect, Obj ect and Val ue are keywords and must be
capitalized as shown.

Identifiers

Identifiers begin with an alphabetic character followed by any number of alphabetic characters or digits. Underscores are also permitted in
identifiers with the following limitations:

® an identifier cannot begin or end with an underscore
® an identifier cannot contain multiple consecutive underscores

Given these rules, the identifier get _account _nane is legal but not _account, account _, orget __account.

Slice identifiers are restricted to the ASCII range of alphabetic characters and cannot contain non-English letters, such as A. (Supporting
non-ASCII identifiers would make it very difficult to map Slice to target languages that lack support for this feature.)

Case Sensitivity

Identifiers are case-insensitive but must be capitalized consistently. For example, Ti meCf Day and Tl MEOFDAY are considered the same
identifier within a naming scope. However, Slice enforces consistent capitalization. After you have introduced an identifier, you must
capitalize it consistently throughout; otherwise, the compiler will reject it as illegal. This rule exists to permit mappings of Slice to languages
that ignore case in identifiers as well as to languages that treat differently capitalized identifiers as distinct.

Identifiers That Are Keywords

You can define Slice identifiers that are keywords in one or more implementation languages. For example, swi t ch is a perfectly good Slice
identifier but is a C++ and Java keyword. Each language mapping defines rules for dealing with such identifiers. The solution typically
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involves using a prefix to map away from the keyword. For example, the Slice identifier swi t ch is mapped to _cpp_swi tch in C++and _s
wi t ch in Java.

The rules for dealing with keywords can result in hard-to-read source code. Identifiers such as nati ve, t hr ow, or export will clash with
C++ or Java keywords (or both). To make life easier for yourself and others, try to avoid Slice identifiers that are implementation language
keywords. Keep in mind that mappings for new languages may be added to Ice in the future. While it is not reasonable to expect you to
compile a list of all keywords in all popular programming languages, you should make an attempt to avoid at least common keywords. Slice
identifiers such as sel f, i nport, and whi | e are definitely not a good idea.

Escaped Identifiers

It is possible to use a Slice keyword as an identifier by prefixing the keyword with a backslash, for example:

Slice

struct dictionary /1 Error!
{

11
}
struct \dictionary Il K
{

11
}
struct \foo /! Legal, sanme as "struct foo"
{

11
}

The backslash escapes the usual meaning of a keyword; in the preceding example, \ di cti onary is treated as the identifier di cti onary.
The escape mechanism exists to permit keywords to be added to the Slice language over time with minimal disruption to existing
specifications: if a pre-existing specification happens to use a newly-introduced keyword, that specification can be fixed by simply
prepending a backslash to the new keyword. Note that, as a matter of style, you should avoid using Slice keywords as identifiers (even
though the backslash escapes allow you to do this).

Itis legal (though redundant) to precede an identifier that is not a keyword with a backslash — the backslash is ignored in that case.

Reserved ldentifiers

Slice reserves the identifier | ce and all identifiers beginning with | ce (in any capitalization) for the Ice implementation. For example, if you
try to define a type named | cecr eam the Slice compiler will issue an error message.

You can suppress this behavior by using the i ce- pr ef i x Slice metadata directive, which enables definition of identifiers
beginning with | ce. However, do not use this directive unless you are compiling the Slice definitions for the Ice run time itself.

Slice identifiers ending in any of the suffixes Async, Di sp, Hel per, Hol der, Pr x, and Pt r are also reserved. These endings are used by
the various language mappings and are reserved to prevent name clashes in the generated code.

See Also

¢ Slice Keywords
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Modules

On this page:

Modules Reduce Clutter
Modules are Mandatory
Reopening Modules
Module Mapping

The Ice Module

Modules Reduce Clutter

A common problem in large systems is pollution of the global namespace: over time, as isolated systems are integrated, name clashes
become quite likely. Slice provides the nodul e construct to alleviate this problem:

Slice

nodul e ZeroC

{

nodul e dient

{
/'l Definitions here...

}

nmodul e Server

{
// Definitions here...

A module can contain any legal Slice construct, including other module definitions. Using modules to group related definitions together
avoids polluting the global namespace and makes accidental name clashes quite unlikely. (You can use a well-known name, such as a
company or product name, as the name of the outermost module.)

Modules are Mandatory

Slice requires all definitions to be nested inside a module, that is, you cannot define anything other than a module at global scope. For
example, the following is illegal:

Slice

interface | /1 Error: only nmodul es can appear at gl obal scope

{
/1

Definitions at global scope are prohibited because they cause problems with some implementation languages (such as Python, which does

not have a true global scope).

Throughout the Ice manual, you will occasionally see Slice definitions that are not nested inside a module. This is to keep the
examples short and free of clutter. Whenever you see such a definition, assume that it is nested in module M

Reopening Modules
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Modules can be reopened:

Slice

nodul e ZeroC

{

/'l Definitions here...

/1 Possibly in a different source file:

nodul e ZeroC // OK, reopened nodul e

{

/] Mbre definitions here...

Reopened modules are useful for larger projects: they allow you to split the contents of a module over several different source files. The
advantage of doing this is that, when a developer makes a change to one part of the module, only files dependent on the changed part need
be recompiled (instead of having to recompile all files that use the module).

Module Mapping

Modules map to a corresponding scoping construct in each programming language. (For example, for C++ and C#, Slice modules map to
namespaces whereas, for Java, they map to packages.) This allows you to use an appropriate C++ usi ng or Java i npor t declaration to
avoid excessively long identifiers in your source code.

The Ice Module

APIs for the Ice run time, apart from a small number of language-specific calls that cannot be expressed in Ice, are defined in the | ce modul
e. In other words, most of the Ice APl is actually expressed as Slice definitions. The advantage of doing this is that a single Slice definition is
sufficient to define the API for the Ice run time for all supported languages. The respective language mapping rules then determine the exact
shape of each Ice API for each implementation language.

We will incrementally explore the contents of the | ce module throughout this manual.

See Also

® Slice Source Files
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Basic Types

On this page:

® Built-In Basic Types
Integer Types
Floating-Point Types
Strings
Booleans
Bytes

Built-In Basic Types

Slice provides a number of built-in basic types, as shown in this table:

Type Range of Mapped Type Size of Mapped Type
bool falseortrue 1bit

byte -128-127 or 0-255 & 8 bits

short 21545215 3 16 bits

int 23L4g231 3 32 bits

| ong 26345263 1 64 bits

fl oat IEEE single-precision 32 bits

doubl e IEEE double-precision 64 bits

string All Unicode characters, excluding Variable-length

the character with all bits zero.

@ The range depends on whether byt e maps to a signed or an unsigned type.

All the basic types (except byt e) are subject to changes in representation as they are transmitted between clients and servers. For example,
al ong value is byte-swapped when sent from a little-endian to a big-endian machine. Similarly, strings undergo translation in representation
if they are sent, for example, from an EBCDIC to an ASCII implementation, and the characters of a string may also change in size. (Not all
architectures use 8-bit characters). However, these changes are transparent to the programmer and do exactly what is required.

Integer Types

Slice provides integer types short, i nt, and | ong, with 16-bit, 32-bit, and 64-bit ranges, respectively. Note that, on some architectures,
any of these types may be mapped to a native type that is wider. Also note that no unsigned types are provided. (This choice was made
because unsigned types are difficult to map into languages without native unsigned types, such as Java. In addition, the unsigned integers
add little value to a language. (See [1] for a good treatment of the topic.)

Floating-Point Types

These types follow the IEEE specification for single- and double-precision floating-point representation [2]. If an implementation cannot
support IEEE format floating-point values, the Ice run time converts values into the native floating-point representation (possibly at a loss of
precision or even magnitude, depending on the capabilities of the native floating-point format).

Strings

Slice strings use the Unicode character set. The only character that cannot appear inside a string is the zero character.

This decision was made as a concession to C++, with which it becomes impossibly difficult to manipulate strings with embedded
zero characters using standard library routines, such as strl en orstrcat.

The Slice data model does not have the concept of a null string (in the sense of a C++ null pointer). This decision was made because null
strings are difficult to map to languages without direct support for this concept (such as Python). Do not design interfaces that depend on a
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null string to indicate "not there" semantics. If you need the notion of an optional string, use a class, a sequence of strings, or use an empty
string to represent the idea of a null string. (Of course, the latter assumes that the empty string is not otherwise used as a legitimate string
value by your application.)

Booleans

Boolean values can have only the values f al se and t r ue. Language mappings use the corresponding native boolean type if one is
available.

Bytes

The Slice type byt e is an (at least) 8-bit type that is guaranteed not to undergo any changes in representation as it is transmitted between
address spaces. This guarantee permits exchange of binary data such that it is not tampered with in transit. All other Slice types are subject
to changes in representation during transmission.

See Also

® Sequences
® Classes
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User-Defined Types

In addition to providing the built-in basic types, Slice allows you to define complex types: enumerations, structures, sequences, and
dictionaries.

Enumerations
Structures
Sequences
Dictionaries
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Enumerations

Enumeration Syntax and Semantics

A Slice enumerated type definition looks identical to C++:

Slice

nodul e M

{
enum Fruit { Apple, Pear, Orange }

This definition introduces a type named Fr ui t that becomes a new type in its own right. Slice guarantees that the values of enumerators
increase from left to right, so Appl e compares less than Pear in every language mapping. By default, the first enumerator has a value of

zero, with sequentially increasing values for subsequent enumerators.

A Slice enum type introduces a new namespace scope, so the following is legal:

Slice

nodul e M
{
enum Fruit { Apple, Pear, Orange }
enum Conmput er Brands { Apple, Dell, HP, Lenovo }

The example below shows how to refer to an enumerator from a different scope:

Slice

nodule M
{

enum Col or { Red, Green, Blue }
}
nodul e N
{

struct Pi xel

{

M : Color ¢ = Bl ue;

}

}

Slice does not permit empty enumerations.

In Ice releases prior to Ice 3.7, an enum type did not create a new namespace and its enumerators were in the same namespace

as the enum type itself. With these releases, you had to select longer enumerator names to avoid a naming clash.

112
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Custom Enumerator Values

Slice also permits you to assign custom values to enumerators:

Slice

const int PearValue = 7;
enum Fruit { Apple = 0, Pear = PearValue, Orange }

Custom values must be unique and non-negative, and may refer to Slice constants of integer types. If no custom value is specified for an
enumerator, its value is one greater than the enumerator that immediately precedes it. In the example above, Or ange has the value 8.

The maximum value for an enumerator value is the same as the maximum value fori nt , 231 - 1.

Slice does not require custom enumerator values to be declared in increasing order:

Slice

enum Fruit { Apple =5, Pear = 3, Orange = 1} /1 Legal

Note however that when there is an inconsistency between the declaration order and the numerical order of the enumerators, the behavior of
comparison operations may vary between language mappings.

For an application that is still using version 1.0 of the Ice encoding, changing the definition of an enumerated type may break
backward compatibility with existing applications. For more information, please refer to the encoding rules for enumerators.

See Also

Structures
Sequences
Dictionaries

[ ]
[ ]
[ ]
® Constants and Literals
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Structures

Slice supports structures containing one or more named members of arbitrary type, including user-defined complex types. For example:

Slice
nodul e M
{
struct Ti meOF Day
{
short hour; // 0 - 23
short m nute; // 0 - 59
short second; // 0 - 59
}
}

As in C++, this definition introduces a new type called Ti meOf Day. Structure definitions form a namespace, so the names of the structure
members need to be unique only within their enclosing structure.

Data member definitions using a named type are the only construct that can appear inside a structure. It is impossible to, for example, define
a structure inside a structure:

Slice
struct TwoPoints
{
struct Poi nt /1 1llegal!
{
short x;
short v;
}
Poi nt coordil;
Poi nt coord?2;
}

This rule applies to Slice in general: type definitions cannot be nested (except for modules, which do support nesting). The reason for this
rule is that nested type definitions can be difficult to implement for some target languages and, even if implementable, greatly complicate the

scope resolution rules. For a specification language, such as Slice, nested type definitions are unnecessary — you can always write the
above definitions as follows (which is stylistically cleaner as well):
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Slice

struct Point
{

short x;

short v;
}
struct TwoPoints /1 Legal (and cl eaner!)
{

Poi nt coordl;

Poi nt coord?2;
}

An integral type (byt e, short,int, | ong)
A floating point type (f | oat or doubl e)
string

bool
enum

Slice

struct Location

{

string nane;

Poi nt pt;
bool display = true;
string source = "GPS";

The legal syntax for literal values is the same as for Slice constants, and you may also use a constant as a default value. The language
mapping guarantees that data members are initialized to their declared default values using a language-specific mechanism.
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Constants and Literals
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Sequences

Sequences are variable-length collections of elements:

Slice

nodul e M

{

sequence<Fruit> FruitPlatter;

A sequence can be empty—that is, it can contain no elements, or it can hold any number of elements up to the memory limits of your
platform.

Sequences can contain elements that are themselves sequences. This arrangement allows you to create lists of lists:

Slice

nodul e M

{

sequence<Frui t Pl atter> FruitBanquet;

Sequences are used to model a variety of collections, such as vectors, lists, queues, sets, bags, or trees. (It is up to the application to decide
whether or not order is important; by discarding order, a sequence serves as a set or bag.)

See Also

Enumerations
Structures
Dictionaries
Constants and Literals
Classes
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Dictionaries

On this page:

¢ Dictionary Syntax and Semantics
® Allowable Types for Dictionary Keys and Values

Dictionary Syntax and Semantics

A dictionary is a mapping from a key type to a value type.

For example:
Slice
nmodul e M
{
struct Enpl oyee
{
| ong nunber ;
string firstNaneg;
string | ast Nane;
}
di ctionary<l ong, Enpl oyee> Enpl oyeeMap;
}

This definition creates a dictionary named Enpl oyeeMap that maps from an employee number to a structure containing the details for an
employee. Whether or not the key type (the employee number, of type | ong in this example) is also part of the value type (the Enpl oyee str
ucture in this example) is up to you — as far as Slice is concerned, there is no need to include the key as part of the value.

Dictionaries can be used to implement sparse arrays, or any lookup data structure with non-integral key type. Even though a sequence of
structures containing key-value pairs could be used to model the same thing, a dictionary is more appropriate:

® A dictionary clearly signals the intent of the designer, namely, to provide a mapping from a domain of values to a range of values. (A
sequence of structures of key-value pairs does not signal that same intent as clearly.)

® At the programming language level, sequences are implemented as vectors (or possibly lists), that is, they are not well suited to
model sparsely populated domains and require a linear search to locate an element with a particular value. On the other hand,
dictionaries are implemented as a data structure (typically a hash table or red-black tree) that supports efficient searching in O(log n)
average time or better.

Allowable Types for Dictionary Keys and Values

The key type of a dictionary need not be an integral type. For example, we could use the following definition to translate the names of the
days of the week:

Slice

di ctionary<string, string> WekdaysEngli shToGer man;

The server implementation would take care of initializing this map with the key-value pairs Monday- Mont ag, Tuesday- Di enst ag, and so
on.

The value type of a dictionary can be any Slice type. However, the key type of a dictionary is limited to one of the following types:
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Integral types (short,int, | ong)

bool

byte

string

enum

Structures containing only data members of legal key types

Other complex types, such as dictionaries, and floating-point types (f | oat and doubl e) cannot be used as the key type. Complex types are
disallowed because they complicate the language mappings for dictionaries, and floating-point types are disallowed because
representational changes of values as they cross machine boundaries can lead to ill-defined semantics for equality.

See Also

Basic Types
Enumerations
Structures

Sequences

Constants and Literals
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On this page:

Integer literals

String literals
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Allowable Types for Constants

Slice allows you to define constants for the following types:

string
enum

Here are a few examples:

An integral type (bool , byt e, short,int, | ong)
A floating point type (f | oat or doubl e)

Slice

nodul e M
{
const
const
const
const
const

const

bool
byt e
string
short
doubl e

Fruit

AppendByDefault = true
Lower Ni bbl e = 0xOf;
Advice = "Don't Panic!";
TheAnswer = 42;

Pl = 3.1416;

enum Fruit { Apple, Pear, Orange }

FavoriteFruit = Pear;

The syntax for literals is the same as for C++ and Java (with a few minor exceptions).

Boolean constants

Boolean constants can only be initialized with the keywords f al se and t r ue. (You cannot use 0 and 1 to represent f al se and t r ue.)

Integer literals

Integer literals can be specified in decimal, octal, or hexadecimal notation.

For example:

Slice
const byte TheAnswer = 42;
const byte TheAnswerlnCctal = 052;
const byte TheAnswerl nHex = O0x2A; /1 or 0Ox2a
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Be aware that, if you interpret byt e as a number instead of a bit pattern, you may get different results in different languages. For example,
for C++, byt e maps to unsi gned char whereas, for Java, byt e maps to byt e, which is a signed type.

Note that suffixes to indicate long and unsigned constants (I , L, u, U, used by C++) are illegal:

Slice

const | ong Wong = Ou; /1 Syntax error
const | ong WongToo = 1000000L; // Syntax error

The value of an integer literal must be within the range of its constant type, as shown in the Built-In Basic Types table; otherwise the
compiler will issue a diagnostic.

Floating-point literals

Floating-point literals use C++ syntax, except that you cannot use an | or L suffix to indicate an extended floating-point constant; however, f
and F are legal (but are ignored).

Here are a few examples:

Slice
const float P1 = -3.14f; /1 Integer & fraction, with suffix
const float P2 = +3. le-3; /1l Integer, fraction, and exponent
const float P3 = .1; /1 Fraction part only
const float P4 = 1.; /1 Integer part only
const float P5 = .9E5; /1 Fraction part and exponent
const float P6 = 5e2; /'l Integer part and exponent

Floating-point literals must be within the range of the constant type (f | oat or doubl e); otherwise, the compiler will issue a diagnostic.

String literals

Slice string literals support the same escape sequences as C++, with the exception of hexadecimal escape sequences that are limited to two
hexadecimal digits.

Escape Name Corresponding ASCII Notes
Sequence or
Unicode Code Point

\' single quote 0x27
" double quote 0x22
\? question mark 0x3f
\\ backslash 0x5¢
\a audible bell 0x07
\b backspace 0x08
\ f form feed 0x0c
\n line feed 0x0a
\r carriage return 0x0d
\t horizontal tab 0x09
\v vertical tab 0x0b
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octal escape sequence

hexadecimal escape

sequence

universal character name U+nnnn
universal character name U+nnnnnnnn

A backslash (\) followed by another character is simply preserved as is.

1 to 3 octal digits (0-7) that represent a byte value between 0 and

255

1 to 2 hexadecimal digits (0-9, a-f, A-F)

Exactly 4 hexadecimal digits.

Use the \Unnnnnnnn notation for astral characters.

Exactly 8 hexadecimal digits.

Octal and hexadecimal escape sequences can represent ASCII characters (ordinal value 0 to 127) or the UTF-8 encoding of non-ASCII

characters.

A string literal can contain printable ASCII characters (including the escape sequences presented above) and non-ASCII characters;
non-printable ASCII characters (such as an unescaped tab) are not allowed.

Here are some examples:

const

const
const
const
const
const
const
const
const
const
const
const

const
const
const
const
const

const
const

stri

stri
stri
stri
stri
stri
stri
stri
stri
stri
stri
stri

stri
stri
stri
stri
stri

stri
stri

uni ver sa

const

stri

uni ver sa

const

stri

encodi ng,

const

stri

encodi ng,

const

stri

encodi ng,
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ng AnOrdi naryString = "Hello World!"

ng Doubl eQuote = B W
ng TwoSi ngl eQuotes = "'\'";
ng QuestionhMark = "\ 7"
ng Backsl ash = "\
ng Audi bl eBel |l = "\a";
ng Backspace = "\'b";
ng FornfFeed = "\ fY
ng New ine = "\'n";
ng CarriageReturn = "\r";
ng Horizontal Tab = "\t
ng Vertical Tab = "\v";
ng Cctal Escape = "\ 007"
ng HexEscapel = "\ x07"
ng HexEscape2 = "\ x41F"
ng Universall = "\ u0041";

ng Universal 2 = "\U00000041"

ng EuroSi gnl
ng EuroSi gn2
character nane

ng EuroSign3 = "\U000020ac"
character nane

ng EuroSi gnd = "\ xe2\ x82\ xAC"
usi ng hex escape sequences
ng EuroSign5 = "\ 342\ 202\ 254"
usi ng octal escape sequences

n €ll ;
"\ u20AC';

ng EuroSi gn6 = "\ 342\ x82\ 254";

using a mx or hex and octal

11

11
11
11
11
11

11
11

11

11

/11

11

"‘and \' are K

Sanme as \a
Ditto
Sane as AF
Sane as A
Ditto

Euro sign (U+20AQ)
Euro sign as a short

Euro sign as a |l ong
Euro sign in UTF-8
Euro sign in UTF-8

Euro sign in UTF-8

escape sequences
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Slice

const string NullString = null; /1 11legal!

Null strings simply do not exist in Slice and, therefore, do not exist as a legal value for a string anywhere in the Ice platform. The reason for
this decision is that null strings do not exist in many programming languages.

Constant Expressions

A constant definition may also refer to another constant. It is not necessary for both constants to have the same Slice type, but the value of
the existing constant must be compatible with the type of the constant being defined.

Consider the examples below:

Slice
const int SIZE = 500;
const int DEFAULT _SIZE = SIZE; // K
const short SHORT _SIZE = SIZE; // K

const byte BYTE_SIZE = Sl ZE; /1 ERROR

The DEFAULT_SI ZE constant is legal because it has the same type as Sl ZE, and SHORT_SI ZE is legal because the value of SI ZE (500) is
within the range of the Slice short type. However, BYTE_SI ZE is illegal because the value of S| ZE is outside the range of the byt e type.

See Also

Enumerations
Structures
Sequences

[ ]
[ ]
[ ]
® Dictionaries
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Interfaces, Operations, and Exceptions

The central focus of Slice is on defining interfaces, for example:

Slice
nodul e M
{
struct Ti neOf Day
{
short hour; !/l 0 - 23
short m nute; // 0 - 59
short second; // 0 - 59

interface C ock
{
Ti meOf Day get Ti me();
void setTime(Ti meOfDay tine);

This definition defines an interface type called O ock. The interface supports two operations: get Ti me and set Ti ne. Clients access an
object supporting the G ock interface by invoking an operation on the proxy for the object: to read the current time, the client invokes the ge
t Ti me operation; to set the current time, the client invokes the set Ti ne operation, passing an argument of type Ti neCf Day .

Invoking an operation on a proxy instructs the Ice run time to send a message to the target object. The target object can be in another
address space or can be collocated (in the same process) as the caller — the location of the target object is transparent to the client. If the
target object is in another (possibly remote) address space, the Ice run time invokes the operation via a remote procedure call; if the target is
collocated with the client, the Ice run time bypasses the network stack altogether to deliver the request more efficiently.

You can think of an interface definition as the equivalent of the public part of a C++ class definition or as the equivalent of a Java interface,
and of operation definitions as (virtual) member functions. Note that nothing but operation definitions are allowed to appear inside an
interface definition. In particular, you cannot define a type, an exception, or a data member inside an interface. This does not mean that your
object implementation cannot contain state — it can, but how that state is implemented (in the form of data members or otherwise) is hidden
from the client and, therefore, need not appear in the object's interface definition.

An Ice object has exactly one (most derived) Slice interface type. Of course, you can create multiple Ice objects that have the same type; to
draw the analogy with C++, a Slice interface corresponds to a C++ class definition, whereas an Ice object corresponds to a C++ class
instance (but Ice objects can be implemented in multiple different address spaces).

Ice also provides multiple interfaces for the same Ice object via a feature called facets.

A Slice interface defines the smallest grain of distribution in Ice: each Ice object has a unique identity (encapsulated in its proxy) that
distinguishes it from all other Ice objects; for communication to take place, you must invoke operations on an object's proxy. There is no
other notion of an addressable entity in Ice. You cannot, for example, instantiate a Slice structure and have clients manipulate that structure
remotely. To make the structure accessible, you must create an interface that allows clients to access the structure.

The partition of an application into interfaces therefore has profound influence on the overall architecture. Distribution boundaries must follow
interface boundaries; you can spread the implementation of interfaces over multiple address spaces (and you can implement multiple
interfaces in the same address space), but you cannot implement parts of interfaces in different address spaces.

Topics

Operations

User Exceptions
Run-Time Exceptions
Proxies for Ice Objects
Interface Inheritance
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See Also

® Classes
® \ersioning
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Operations

On this page:

Parameters and Return Values
Optional Parameters and Return Values
Style of Operation Definition
Overloading Operations

Idempotent Operations

Parameters and Return Values

An operation definition must contain a return type and zero or more parameter definitions. For example, in the Cl ock interface, the get Ti e
operation has a return type of Ti meCf Day and the set Ti e operation has a return type of voi d. You must use voi d to indicate that an
operation returns no value — there is no default return type for Slice operations.

An operation can have one or more input parameters. For example, set Ti me accepts a single input parameter of type Ti meCf Day called t
i me. Of course, you can use multiple input parameters:

Slice

nodul e M

{

i nterface G rcadi anRhyt hm

{
voi d set Sl eepPeriod(Ti neO Day startTime, TinmeODay stopTine);
/1

Note that the parameter name (as for Java) is mandatory. You cannot omit the parameter name, so the following is in error:

Slice

nodule M

{

i nterface Circadi anRhyt hm

{
voi d set Sl eepPeri od(Ti meOf Day, TinmeOfDay); // Error!
11

By default, parameters are sent from the client to the server, that is, they are input parameters. To pass a value from the server to the client,
you can use an output parameter, indicated by the out keyword. For example, an alternative way to define the get Ti ne operation in the Cl
ock interface would be:

Slice

void getTinme(out TinmeOrDay tine);

This achieves the same thing but uses an output parameter instead of the return value. As with input parameters, you can use multiple
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output parameters:

Slice

nodul e M

{

i nterface Circadi anRhyt hm
{
voi d set Sl eepPeriod(Ti meOf Day startTinme, TimeODay stopTine);
voi d get Sl eepPeriod(out TineCf Day startTi ne,
out TinmeCf Day stopTine);
/1

If you have both input and output parameters for an operation, the output parameters must follow the input parameters:

Slice

voi d changeSl eepPeri od( Ti meOf Day startTi nme,
Ti meOX Day stopTi ne, Il K

out TinmeOf Day prevStartTine,
out TinmeCf Day prevStopTine);

voi d changeSl eepPeri od(out Ti neCfDay prevStartTime, out TimeO Day prevS
topTime, // Error

Ti meOf Day startTine,
Ti reXf Day stopTine);

Slice does not support parameters that are both input and output parameters (call by reference). The reason is that, for remote calls,
reference parameters do not result in the same savings that one can obtain for call by reference in programming languages. (Data still needs
to be copied in both directions and any gains in marshaling efficiency are negligible.) Also, reference (or input-output) parameters result in
more complex language mappings, with concomitant increases in code size.

Optional Parameters and Return Values

An operation's return value and parameters may be declared as optional to indicate that a program can leave their values unset. Parameters
not declared as optional are known as required parameters; a program must supply legal values for all required parameters. In the
discussion below, we use parameter to refer to input parameters, output parameters, and return values.

A unigue, non-negative integer tag must be assigned to each optional parameter:

Slice

optional (3) bool example(optional (2) string name, out optional (1) int
val ue) ;

The scope of a tag is limited to its operation and has no effect on other operations.

An operation's signature can include any combination of required and optional parameters, but output parameters still must follow input
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parameters:

Slice

bool exampl e(string nane, optional (3) string referrer, out optional (1)
string prono, out int id);

Language mappings specify an API for passing optional parameters and testing whether a parameter is present. Refer to the language
mapping sections for more details on the optional parameter API.

A well-behaved program must test for the presence of an optional parameter and not assume that it is always set. Dereferencing
an unset optional parameter causes a run-time error.

Style of Operation Definition

As you would expect, language mappings follow the style of operation definition you use in Slice: Slice return types map to programming
language return types, and Slice parameters map to programming language parameters.

For operations that return only a single value, it is common to return the value from the operation instead of using an out-parameter. This
style maps naturally into all programming languages. Note that, if you use an out-parameter instead, you impose a different API style on the
client: most programming languages permit the return value of a function to be ignored whereas it is typically not possible to ignore an output
parameter.

For operations that return multiple values, it is common to return all values as out-parameters and to use a return type of voi d. However, the
rule is not all that clear-cut because operations with multiple output values can have one particular value that is considered more "important"
than the remainder. A common example of this is an iterator operation that returns items from a collection one-by-one:

Slice

bool next(out RecordType r);

The next operation returns two values: the record that was retrieved and a Boolean to indicate the end-of-collection condition. (If the return
value is f al se, the end of the collection has been reached and the parameter r has an undefined value.) This style of definition can be
useful because it naturally fits into the way programmers write control structures. For example:

whi | e(next (record))
{

/'l Process record...

i f(next(record))

{
// Got a valid record...

Overloading Operations

Slice does not support any form of overloading of operations. For example:

127 Copyright 2018, ZeroC, Inc.



Ice 3.7.1 Documentation

Slice

i nterface G rcadi anRhyt hm
{
void nodi fy(Ti meODay startTinme, TinmeODay endTine);
voi d nodi fy( Ti meOf Day startTinme, [l Error
Ti meCf Day endTi e,
out tineCfDay prevStartTine,
out TinmeCf Day prevEndTi ne);

Operations in the same interface must have different names, regardless of what type and number of parameters they have. This restriction
exists because overloaded functions cannot sensibly be mapped to languages without built-in support for overloading.

Name mangling is not an option in this case: while it works fine for compilers, it is unacceptable to humans.

Idempotent Operations

Some operations, such as get Ti e in the Cl ock interface, do not modify the state of the object they operate on. They are the conceptual
equivalent of C++ const member functions. Similary, set Ti me does modify the state of the object, but is idempotent. You can indicate this
in Slice as follows:

Slice

interface C ock

{
i denmpot ent Ti meOf Day get Ti me();

i denpotent void setTinme(Ti mreOfDay tine);

This marks the get Ti me and set Ti e operations as idempotent. An operation is idempotent if two successive invocations of the operation
have the same effect as a single invocation. For example, x = 1; is an idempotent operation because it does not matter whether it is
executed once or twice — either way, x ends up with the value 1. On the other hand, x += 1; is not an idempotent operation because
executing it twice results in a different value for x than executing it once. Obviously, any read-only operation is idempotent.

The i denpot ent keyword is useful because it allows the Ice run time to be more aggressive when performing automatic retries to recover
from errors. Specifically, Ice guarantees at-most-once semantics for operation invocations:

® For normal (not idempotent) operations, the Ice run time has to be conservative about how it deals with errors. For example, if a
client sends an operation invocation to a server and then loses connectivity, there is no way for the client-side run time to find out
whether the request it sent actually made it to the server. This means that the run time cannot attempt to recover from the error by
re-establishing a connection and sending the request a second time because that could cause the operation to be invoked a second
time and violate at-most-once semantics; the run time has no option but to report the error to the application.

® Fori denpot ent operations, on the other hand, the client-side run time can attempt to re-establish a connection to the server and
safely send the failed request a second time. If the server can be reached on the second attempt, everything is fine and the
application never notices the (temporary) failure. Only if the second attempt fails need the run time report the error back to the
application. (The number of retries can be increased with an Ice configuration parameter.)

See Also
® Interfaces, Operations, and Exceptions

® User Exceptions
® Run-Time Exceptions
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Proxies for Ice Objects
Interface Inheritance
Automatic Retries
Optional Values
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User Exceptions

On this page:

® User Exception Syntax and Semantics
® Default Values for User Exception Members
® Declaring User Exceptions in Operations
® Restrictions for User Exceptions

® User Exception Inheritance

User Exception Syntax and Semantics

Looking at the set Ti ne operation in the Cl ock interface, we find a potential problem: given that the Ti meCf Day structure uses short as
the type of each field, what will happen if a client invokes the set Ti me operation and passes a Ti mreCf Day value with meaningless field
values, such as - 199 for the minute field, or 42 for the hour? Obviously, it would be nice to provide some indication to the caller that this is
meaningless. Slice allows you to define user exceptions to indicate error conditions to the client. For example:

Slice

nmodul e M

{

exception Error {} // Enpty exceptions are | egal

excepti on RangeError

{
Ti meCf Day errorTi ne;
Ti mef Day m nTi ne;
Ti mef Day maxTi ne;

}

A user exception is much like a structure in that it contains a number of data members. However, unlike structures, exceptions can have zero
data members, that is, be empty. Like classes, user exceptions support inheritance and may include optional data members.

Default Values for User Exception Members

You can specify a default value for an exception data member that has one of the following types:

An integral type (byt e, short,int, | ong)
A floating point type (f | oat or doubl e)
string

bool

enum

For example:
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Slice
nmodul e M
{
excepti on RangeError
{
Ti meOf Day errorTine;
Ti mef Day mi nTi ne;
Ti mef Day maxTi ne;
string reason = "out of range";
}

The legal syntax for literal values is the same as for Slice constants, and you may also use a constant as a default value. The language
mapping guarantees that data members are initialized to their declared default values using a language-specific mechanism.

Declaring User Exceptions in Operations

Exceptions allow you to return an arbitrary amount of error information to the client if an error condition arises in the implementation of an
operation. Operations use an exception specification to indicate the exceptions that may be returned to the client:

Slice
nodul e M
{
i nterface C ock
{
i denpotent Ti meOr Day get Ti nme();
i denmpotent void setTi me(Ti meOf Day tine)
throws RangeError, Error;
}

This definition indicates that the set Ti me operation may throw either a RangeEr r or or an Er r or user exception (and no other type of
exception). If the client receives a RangeEr r or exception, the exception contains the Ti neOf Day value that was passed to set Ti ne and
caused the error (in the er r or Ti me member), as well as the minimum and maximum time values that can be used (in the mi nTi me and ma
xTi me members). If set Ti e failed because of an error not caused by an illegal parameter value, it throws Er r or . Obviously, because Er r
or does not have data members, the client will have no idea what exactly it was that went wrong — it simply knows that the operation did not
work.

To indicate that an operation does not throw any user exception, simply omit the exception specification. (There is no empty exception
specification in Slice.)

As of Ice 3.7, the server-side Ice run time does not verify that a user exception raised by an operation is compatible with the exceptions listed
in its Slice definition, although your implementation language may enforce its own restrictions. The Ice run time in the client does validate
user exceptions and raises UnknownUser Except i on if it receives an unexpected user exception.

Restrictions for User Exceptions

Exceptions are not first-class data types and first-class data types are not exceptions:

® You cannot pass an exception as a parameter value.
® You cannot use an exception as the type of a data member.
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® You cannot use an exception as the element type of a sequence.
® You cannot use an exception as the key or value type of a dictionary.
® You cannot throw a value of non-exception type (such as a value of type i nt or stri ng).

The reason for these restrictions is that some implementation languages use a specific and separate type for exceptions (in the same way as
Slice does). For such languages, it would be difficult to map exceptions if they could be used as an ordinary data type. (C++ is somewhat
unusual among programming languages by allowing arbitrary types to be used as exceptions.)

User Exception Inheritance

Exceptions support inheritance. For example:

Slice

exception ErrorBase
{

string reason;
}
enum RTErr or
{

Di vi deByZero, NegativeRoot, Illegal Null /* ... */

exception Runti meError extends ErrorBase

{

RTError err;

enum LError { Val ueQut O Range, Val ueslnconsistent, /* ... */ }

exception Logi cError extends ErrorBase

{

LError err;

excepti on RangeError extends Logi cError
{

Ti mreOf Day errorTine;

Ti meOf Day mi nTi ne;

Ti meX Day maxTi Ire;

These definitions set up a simple exception hierarchy:

® ErrorBase is at the root of the tree and contains a string explaining the cause of the error.

® Derived from Er r or Base are Runt i neEr r or and Logi cError. Each of these exceptions contains an enumerated value that
further categorizes the error.

® Finally, RangeErr or is derived from Logi cEr r or and reports the details of the specific error.

Setting up exception hierarchies such as this not only helps to create a more readable specification because errors are categorized, but also
can be used at the language level to good advantage. For example, the Slice C++ mapping preserves the exception hierarchy so you can
catch exceptions generically as a base exception, or set up exception handlers to deal with specific exceptions.

Looking at the exception hierarchy, it is not clear whether, at run time, the application will only throw most derived exceptions, such as Rang
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eError, orifit will also throw base exceptions, such as Logi cError, Runti meError, and Err or Base. If you want to indicate that a base
exception, interface, or class is abstract (will not be instantiated), you can add a comment to that effect.

Note that, if the exception specification of an operation indicates a specific exception type, at run time, the implementation of the operation
may also throw more derived exceptions. For example:

Slice

exception Base
{

11
}
exception Derived extends Base
{

11
}
i nterface Exanpl e
{

void op() throws Base; /1 NMay throw Base or Derived
}

In this example, op may throw a Base or a Der i ved exception, that is, any exception that is compatible with the exception types listed in the
exception specification can be thrown at run time.

As a system evolves, it is quite common for new, derived exceptions to be added to an existing hierarchy. Assume that we initially construct
clients and server with the following definitions:

Slice

exception Error
{

11
}
interface Application
{

voi d doSonet hing() throws Error
}

Also assume that a large number of clients are deployed in field, that is, when you upgrade the system, you cannot easily upgrade all the
clients. As the application evolves, a new exception is added to the system and the server is redeployed with the new definition:
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Slice

exception Error

{
/1

exception Fatal ApplicationError extends Error

{
/1

interface Application

{

voi d doSomet hi ng() throws Error

This raises the question of what should happen if the server throws a Fat al Appl i cati onErr or from doSonet hi ng. The answer
depends whether the client was built using the old or the updated definition:

® |[f the client was built using the same definition as the server, it simply receives a Fat al Appl i cati onError.

® |f the client was built with the original definition, that client has no knowledge that Fat al Appl i cati onErr or even exists. In this
case, the Ice run time automatically slices the exception to the most-derived type that is understood by the receiver (Er r or, in this
case) and discards the information that is specific to the derived part of the exception. (This is exactly analogous to catching C++
exceptions by value — the exception is sliced to the type used in the cat ch-clause.)

Exceptions support single inheritance only. (Multiple inheritance would be difficult to map into many programming languages.)

See Also

Constants and Literals
Operations

Run-Time Exceptions
Proxies for Ice Objects
Interface Inheritance
Optional Data Members
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Run-Time Exceptions

In addition to any user exceptions that are listed in an operation's exception specification, an operation can also throw Ice run-time
exceptions. Run-time exceptions are predefined exceptions that indicate platform-related run-time errors. For example, if a networking error
interrupts communication between client and server, the client is informed of this by a run-time exception, such as Connect Ti neout Excep

tion or Socket Excepti on.

The exception specification of an operation must not list any run-time exceptions. (It is understood that all operations can raise run-time
exceptions and you are not allowed to restate that.)

On this page:

® Inheritance Hierarchy for Exceptions
® Local Versus Remote Exceptions
® Request Failed Exceptions
® ObjectNotExistException
® FacetNotExistException
® OperationNotExistException
® Unknown Exceptions
® UnknownUserException
® UnknownLocalException
® UnknownException

Inheritance Hierarchy for Exceptions

All the Ice run-time and user exceptions are arranged in an inheritance hierarchy, as shown below:

Exception

LocalException UserException

) N

Specific Run-Time
Exceplions...

Specific User Exceplions...

Inheritance structure for exceptions.

| ce: : Excepti on is at the root of the inheritance hierarchy. Derived from that are the (abstract) types | ce: : Local Excepti onand | ce: :
User Except i on. In turn, all run-time exceptions are derived from | ce: : Local Except i on, and all user exceptions are derived from | ce:
: User Excepti on.

Ice run-time exceptions are all defined in Slice as | ocal excepti ons. Local exception is a synonym for Ice run-time exception.

This figures shows the complete hierarchy of the Ice run-time exceptions:
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Exception L

T~ SyscallException

A

A"

ConnectionFailedException
ConnectionLostException

Y

ConnectionRefusedException

ProtocolException L

~—
.

A

InitializationException
lllegalldentityException
IdentityParseException
PlugininitializationException
DNSException
ProxyParseException
NoEndpointException
ObjectAdapterDeactivatedException
ObjectAdapterldinUseException
VersionMismatchException
CommunicatorDestroyedException
EndpointParseException
EndpointSelectionTypeParseException
PlugininitializationException
AlreadyRegisteredException
MotRegisteredException
TwowayOnlyException
CloneNotimplementedException
SecurityException
FixedProxyException
FeatureMotSupportedException

BadMagicException
UnsupportedProtocolException
UnsupportedEncodingException
UnknownMessageException
ConnectionNotValidatedException
UnknownRequestidException
UnknownReplyStatusException
CloseConnectionException
ConnectionManuallyClosedException
AbortBatchRequestException
lllegalMessageSizeException
CompressionException
DatagramLimitException

Ice run-time exception hierarchy. (Shaded exceptions can be sent by the server.)

| FileException

1]

ObjectNotExistException
OperationMNotExistException
FaceNotExistException

EmeoutE xception

ConnectTimeoutException
ConnectionTimeoutException
CloseTimeoutException
Invocation TimeoutException

~_

MarshalException
F Y

ProxyUnmarshalException
UnmarshalQutOfBoundsException
lllegalindirectionException
MemoryLimitException
EncapsulationException
MNoValueFactoryException
StringConversionException

Note that Ice run-time exception hierarchy groups several exceptions into a single box to save space (which, strictly, is incorrect UML
syntax). Also note that some run-time exceptions have data members, which, for brevity, we have omitted in the Ice run-time exception
hierarchy. These data members provide additional information about the precise cause of an error.
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Many of the run-time exceptions have self-explanatory names, such as Menor yLi ni t Except i on. Others indicate problems in the Ice run
time, such as Encapsul ati onExcept i on. Still others can arise only through application programming errors, such as Twoway Onl yExcep
ti on. In practice, you will likely never see most of these exceptions. However, there are a few run-time exceptions you will encounter and
whose meaning you should know.

Local Versus Remote Exceptions

Most error conditions are detected on the client side and raised locally in the client. For example, if an attempt to contact a server fails, the
client-side run time raises a Connect Ti meout Excepti on.

However, there are a few specific error conditions (shown as shaded in the Ice run-time exception hierarchy diagram) that are detected by
the server and transmitted to the client via the Ice protocol: Obj ect Not Exi st Except i on, Facet Not Exi st Excepti on and Oper ati onN
ot Exi st Except i on (collectively the Request Failed exceptions) plus UnknownExcept i on, UnknownLocal Except i on and UnknownUs
er Except i on (collectively the Unknown exceptions).

All other run-time exceptions (not shaded in the Ice run-time exception hierarchy) are detected by the client-side run time and are raised
locally.

It is possible for the implementation of an operation to throw Ice run-time exceptions (as well as user exceptions). For example, if a client
holds a proxy to an object that no longer exists in the server, your server application code is required to throw an Obj ect Not Exi st Except
i on. If you do throw run-time exceptions from your application code, you should take care to throw a run-time exception only if appropriate,
that is, do not use run-time exceptions to indicate something that really should be a user exception. Doing so can be very confusing to the
client: if the application "hijacks" some run-time exceptions for its own purposes, the client can no longer decide whether the exception was
thrown by the Ice run time or by the server application code. This can make debugging very difficult.

Request Failed Exceptions

Obj ect Not Exi st Excepti on
This exception indicates that a request was delivered to the server but the server could not locate a servant with the identity that is

embedded in the proxy. In other words, the server could not find an object to dispatch the request to.

The Ice run time raises Cbj ect Not Exi st Except i on only if there are no facets in existence with a matching identity; otherwise,
it raises Facet Not Exi st Excepti on.

Most likely, this is the case because the object existed some time in the past and has since been destroyed, but the same exception is also
raised if a client uses a proxy with the identity of an object that has never been created.

Facet Not Exi st Excepti on

The client attempted to contact a non-existent facet of an object, that is, the server has at least one servant with the given identity, but no
servant with a matching facet name.

Oper at i onNot Exi st Excepti on

This exception is raised if the server could locate an object with the correct identity but, on attempting to dispatch the client's operation
invocation, the server found that the target object does not have such an operation. You will see this exception in only two cases:

® Client and server have been built with Slice definitions for an interface that disagree with each other, that is, the client was built with
an interface definition for the object that indicates that an operation exists, but the server was built with a different version of the
interface definition in which the operation is absent.

® You have used an unchecked down-cast on a proxy of the incorrect type.

Obj ect Not Exi st Except i on, Facet Not Exi st Excepti on and Oper at i onNot Exi st Except i on derive from Request Fai |
edExcepti on, and don't add any data member for this exception:
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Slice

{
{

nodul e | ce

| ocal slice RequestFail Exception

Identity id;
string facet;
string operation;

Request Fai | edExcept i on itself is not transmissible as a response from a server to client—only the three derived exceptions

are.

If you throw one of these three exceptions from the implementation of an operation, and you leave i d, f acet or operati on emp
ty, lce will automatically fill-in the missing data members using values from Current.

Unknown Exceptions

Any error condition on the

server side that is not described by one of the three preceding exceptions is made known to the client as one of

three generic exceptions: UnknownUser Except i on, UnknownLocal Excepti on, or UnknownExcept i on. Furthermore if a servant
implementation throws one of these Unknown exceptions, the Ice run time transmits it as is—it does not wrap it a new UnknownLocal Excep

tion.
nmodul e | ce
{
| ocal exception UnknownException
{
string unknown;
}
| ocal exception UnknownLocal Exception extends UnknownExcepti on
{
}
| ocal exception UnknownUser Exception extends UnknownException
{
}
}
UnknownUserException

This exception indicates that an operation implementation has thrown a Slice exception that is not declared in the operation's exception
specification (and is not derived from one of the exceptions in the operation's exception specification). Ice itself never throws this exception,
as all user-exception checking for a given operation is performed only in the client's generated code and Ice run-time. It is nevertheless
permissible for a servant to throw this exception.

UnknownlLocal Excepti on

If an operation implementation raises a run-time exception other than Cbj ect Not Exi st Except i on, Facet Not Exi st Excepti on, Qper a
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ti onNot Exi st Excepti on or UnknownExcepti on (such as a Not Regi st er edExcept i on), the client receives an UnknownLocal Exc
ept i on. In other words, the Ice protocol does not transmit the exact exception that was encountered in the server, but simply returns a bit to
the client in the reply to indicate that the server encountered a run-time exception.

A common cause for a client receiving an UnknownLocal Except i on is failure to catch and handle all exceptions in the server. For
example, if the implementation of an operation encounters an exception it does not handle, the exception propagates all the way up the call
stack until the stack is unwound to the point where the Ice run time invoked the operation. The Ice run time catches all Ice exceptions that
"escape" from an operation invocation and returns them to the client as an UnknownLocal Excepti on.

UnknownExcepti on

An operation has thrown a non-Ice exception. For example, if the operation in the server throws a C++ exception, such as a st d: : bad_al |
oc, or a Java exception, such as a C assCast Except i on, the client receives an UnknownExcept i on.

See Also

User Exceptions

Interfaces, Operations, and Exceptions
Operations

Proxies for Ice Objects

Interface Inheritance

Versioning
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Proxies for Ice Objects

Building on the Cl ock example, we can create definitions for a world-time server:

nmodul e M
{
exception Generi cError
{
string reason;
}
struct Ti neOr Day
{
short hour; /1 0
short m nute; /10
short second,; /10
}

exception BadTi meVal extends

interface d ock

{

Slice

GenericError {}

i denpot ent Ti meOf Day get Ti me();
i denpotent void setTinme(TimeOfDay tinme) throws BadTi neVal ;

di ctionary<string, C ock*> TineMap; // Time zone name to clock map

exception BadZoneNanme extends GenericError {}

interface Wrl dTi me

{
i denpot ent voi d addZone(string zoneNanme, C ock* zoned ock);
voi d renoveZone(string zoneNane) throws BadZoneNane;
i denpot ent Cl ock* findZone(string zoneNane) throws BadZoneNane;
i denmpot ent Ti meMap |i st Zones();
i denpot ent voi d set Zones(Ti neMap zones);
}

The Wor | dTi me interface acts as a collection manager for clocks, one for each time zone. In other words, the Wor | dTi ne interface
manages a collection of pairs. The first member of each pair is a time zone name; the second member of the pair is the clock that provides
the time for that zone. The interface contains operations that permit you to add or remove a clock from the map (addZone and r enbveZone
), to search for a particular time zone by name (f i ndZone), and to read or write the entire map (I i st Zones and set Zones).

The Wor | dTi me example illustrates an important Slice concept: note that addZone accepts a parameter of type G ock* and f i ndZone ret
urns a parameter of type Cl ock* . In other words, interfaces are types in their own right and can be passed as parameters. The * operator is
known as the proxy operator. Its left-hand argument must be an interface (or class) and its return type is a proxy. A proxy is like a pointer
that can denote an object. The semantics of proxies are very much like those of C++ class instance pointers:

® A proxy can be null.
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® A proxy can dangle (point at an object that is no longer there).

® Operations dispatched via a proxy use late binding: if the actual run-time type of the object denoted by the proxy is more derived
than the proxy's type, the implementation of the most-derived interface will be invoked.

When a client passes a Cl ock proxy to the addZone operation, the proxy denotes an actual C ock object in a server. The Cl ock Ice object
denoted by that proxy may be implemented in the same server process as the Wor | dTi e interface, or in a different server process. Where
the O ock object is physically implemented matters neither to the client nor to the server implementing the Wor | dTi e interface; if either
invokes an operation on a particular clock, such as get Ti me, an RPC call is sent to whatever server implements that particular clock. In
other words, a proxy acts as a local "ambassador" for the remote object; invoking an operation on the proxy forwards the invocation to the
actual object implementation. If the object implementation is in a different address space, this results in a remote procedure call; if the object
implementation is collocated in the same address space, the Ice run time may optimize the invocation.

Note that proxies also act very much like pointers in their sharing semantics: if two clients have a proxy to the same object, a state change
made by one client (such as setting the time) will be visible to the other client.

Proxies are strongly typed (at least for statically typed languages, such as C++ and Java). This means that you cannot pass something other
than a Cl ock proxy to the addZone operation; attempts to do so are rejected at compile time.

See Also

Classes

Interfaces, Operations, and Exceptions
User Exceptions

Run-Time Exceptions

Interface Inheritance
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Interface Inheritance

On this page:

Interface Inheritance

Interface Inheritance Limitations

Implicit Inheritance from Object

Null Proxies

Self-Referential Interfaces

Empty Interfaces

Interface Versus Implementation Inheritance

Interface Inheritance

Interfaces support inheritance. For example, we could extend our world-time server to support the concept of an alarm clock:

Slice
nmodul e M
{
interface Al arnC ock extends O ock
{
i denmpot ent Ti meOf Day get Al ar nili me() ;
i denpot ent voi d set Al arnili me( Ti meOf Day al ar nili ne)
t hrows BadTi neVal ;
}

The semantics of this are the same as for C++ or Java: Al ar nCl ock is a subtype of C ock and an Al ar mnCl ock proxy can be substituted
wherever a O ock proxy is expected. Obviously, an Al ar nCl ock supports the same get Ti ne and set Ti nme operations as a C ock but
also supports the get Al ar nili ne and set Al ar nTi me operations.

Multiple interface inheritance is also possible. For example, we can construct a radio alarm clock as follows:

Slice
nodul e M
{
i nterface Radio
{
voi d set Frequency(long hertz) throws GenericError;
voi d set Vol une(long dB) throws GenericError;
}

enum Al ar mvbde { Radi oAl arm BeepAl arm}

i nterface Radi oCl ock extends Radi o, Al arnCl ock
{

voi d set Mbde( Al ar mMvbde node) ;

Al ar mvbde get Mbde() ;
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expected. The inheritance diagram for this definition looks as follows:

Radio
=<interface=>

Clock
=<interface==>

F

AlarmClock
=<interface==

RadioClock
<<intarface=>

Inheritance diagram for Radi oCl ock.

Interfaces that inherit from more than one base interface may share a common base interface. For example, the following definition is legal:

Slice
interface B{ /* ... */ }
interface 11 extends B { /* */ }
interface 12 extends B { /* * }
interface D extends 11, 12 { /* [}

This definition results in the familiar diamond shape:

=]
sinterfacaes>

— =

1z
<<interface>»>

<<interface>=>
]

<<interfacaes>

Diamond-shaped inheritance.

Interface Inheritance Limitations

If an interface uses multiple inheritance, it must not inherit the same operation name from more than one base interface. For example, the
following definition is illegal:
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Slice

i nterface C ock
{

void set(TineOrDay tine); [l set tine
}
interface Radio
{

voi d set(long hertz); /1 set frequency
}
i nterface Radi oCl ock extends Radi o, C ock [l 1llegal!
{

11
}

This definition is illegal because Radi oCl ock inherits two set operations, Radi o: : set and O ock: : set . The Slice compiler makes this
illegal because (unlike C++) many programming languages do not have a built-in facility for disambiguating the different operations. In Slice,
the simple rule is that all inherited operations must have unigue names. (In practice, this is rarely a problem because inheritance is rarely
added to an interface hierarchy "after the fact". To avoid accidental clashes, we suggest that you use descriptive operation names, such as s
et Ti me and set Fr equency. This makes accidental name clashes less likely.)

Implicit Inheritance from Object

All Slice interfaces are ultimately derived from Cbj ect . For example, the inheritance hierarchy would be shown more correctly as:

Object
=<interface=>

—

Implicit inheritance

—

Implicit inheritance Clock
<<interface==>
[
Radio AlarmClock
=<intarfaca>> =zinterface>>
RadioClock
<<jnterface>>

Implicit inheritance from Obj ect .

Because all interfaces have a common base interface, we can pass any type of interface as that type. For example:
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Slice

i nterface ProxyStore

{
i denpotent voi d putProxy(string name, Object* o);
i denpot ent (Obj ect* get Proxy(string nane);

bj ect is a Slice keyword (note the capitalization) that denotes the root type of the inheritance hierarchy. The Pr oxy St or e interface is a
generic proxy storage facility: the client can call put Pr oxy to add a proxy of any type under a given name and later retrieve that proxy again
by calling get Pr oxy and supplying that name. The ability to generically store proxies in this fashion allows us to build general-purpose
facilities, such as a naming service that can store proxies and deliver them to clients. Such a service, in turn, allows us to avoid hard-coding
proxy details into clients and servers.

Inheritance from type Obj ect is always implicit. For example, the following Slice definition is illegal:

Slice

interface MyInterface extends Object { /* ... */ } /] Error!

It is understood that all interfaces inherit from type Cbj ect ; you are not allowed to restate that.

Type Obj ect is mapped to an abstract type by the various language mappings, so you cannot instantiate an Ice object of that type.

Null Proxies

Looking at the Pr oxy St or e interface once more, we notice that get Pr oxy does not have an exception specification. The question then is
what should happen if a client calls get Pr oxy with a name under which no proxy is stored? Obviously, we could add an exception to
indicate this condition to get Pr oxy. However, another option is to return a null proxy. Ice has the built-in notion of a null proxy, which is a
proxy that "points nowhere". When such a proxy is returned to the client, the client can test the value of the returned proxy to check whether
it is null or denotes a valid object.

A more interesting question is: "which approach is more appropriate, throwing an exception or returning a null proxy?" The answer depends
on the expected usage pattern of an interface. For example, if, in normal operation, you do not expect clients to call get Pr oxy with a
non-existent name, it is better to throw an exception. (This is probably the case for our Pr oxy St or e interface: the fact that there isno | i st
operation makes it clear that clients are expected to know which names are in use.)

On the other hand, if you expect that clients will occasionally try to look up something that is not there, it is better to return a null proxy. The
reason is that throwing an exception breaks the normal flow of control in the client and requires special handling code. This means that you
should throw exceptions only in exceptional circumstances. For example, throwing an exception if a database lookup returns an empty result
set is wrong; it is expected and normal that a result set is occasionally empty.

It is worth paying attention to such design issues: well-designed interfaces that get these details right are easier to use and easier to
understand. Not only do such interfaces make life easier for client developers, they also make it less likely that latent bugs cause problems
later.

Self-Referential Interfaces

Proxies have pointer semantics, so we can define self-referential interfaces. For example:
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Slice
i nterface Link
{
i denpot ent SonmeType get Val ue();
i denmpot ent Li nk* next ();
}

The Li nk interface contains a next operation that returns a proxy to a Li nk interface. Obviously, this can be used to create a chain of

interfaces; the final link in the chain returns a null proxy from its next operation.

Empty Interfaces

The following Slice definition is legal:

Slice

interface Enpty {}

The Slice compiler will compile this definition without complaint. An interesting question is: "why would | need an empty interface?" In most

cases, empty interfaces are an indication of design errors. Here is one example:

Slice

i nterface ThingBase {}

i nterface Thingl extends Thi ngBase

{
/1 Operations here..
}
i nterface Thing2 extends Thi ngBase
{
/1l Operations here..
}

Looking at this definition, we can make two observations:

® Thi ngl and Thi ng2 have a common base and are therefore related.

® Whatever is common to Thi ngl and Thi ng2 can be found in interface Thi ngBase.

Of course, looking at Thi ngBase, we find that Thi ngl and Thi ng2 do not share any operations at all because Thi ngBase is empty. Given
that we are using an object-oriented paradigm, this is definitely strange: in the object-oriented model, the only way to communicate with an
object is to send a message to the object. But, to send a message, we need an operation. Given that Thi ngBase has no operations, we
cannot send a message to it, and it follows that Thi ngl and Thi ng2 are not related because they have ho common operations. But of
course, seeing that Thi ngl and Thi ng2 have a common base, we conclude that they are related, otherwise the common base would not

exist. At this point, most programmers begin to scratch their head and wonder what is going on here.

One common use of the above design is a desire to treat Thi ngl and Thi ng2 polymorphically. For example, we might continue the

previous definition as follows:
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Slice

i nterface Thi ngUser

{
voi d put Thi ng( Thi ngBase* thing);

Now the purpose of having the common base becomes clear: we want to be able to pass both Thi ngl and Thi ng2 proxies to put Thi ng.
Does this justify the empty base interface? To answer this question, we need to think about what happens in the implementation of put Thi n
g. Obviously, put Thi ng cannot possibly invoke an operation on a Thi ngBase because there are no operations. This means that put Thi n
g can do one of two things:

1. putThing can simply remember the value of t hi ng.
2. putThing can try to down-cast to either Thi ngl or Thi ng2 and then invoke an operation. The pseudo-code for the implementation
of put Thi ng would look something like this:

voi d put Thi ng( Thi ngBase t hi ng)
{
i f(is_a(Thingl, thing))
{
/1 Do sonething with Thingl...
}
el se if(is_a(Thing2, thing))
{
/1 Do sonething with Thing2...
}
el se
{
/1 M ght be a ThingBase?
11
}
}

The implementation tries to down-cast its argument to each possible type in turn until it has found the actual run-time type of the
argument. Of course, any object-oriented text book worth its price will tell you that this is an abuse of inheritance and leads to
maintenance problems.

If you find yourself writing operations such as put Thi ng that rely on artificial base interfaces, ask yourself whether you really need to do
things this way. For example, a more appropriate design might be:
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Slice
i nterface Thingl
{
/1l Operations here..
}
i nterface Thing2
{
/1l Operations here..
}
i nterface Thi ngUser
{
voi d put Thi ngl( Thi ngl* thing);
voi d put Thi ng2( Thi ng2* t hi ng);
}

With this design, Thi ngl and Thi ng2 are not related, and Thi ngUser offers a separate operation for each type of proxy. The
implementation of these operations does not need to use any down-casts, and all is well in our object-oriented world.

Another common use of empty base interfaces is the following:

Slice

i nterface PersistentObject {}

i nterface Thi ngl extends Persistent Obj ect

{
/1l Operations here. ..
}
i nterface Thing2 extends Persistent Object
{
/1l Operations here. ..
}

Clearly, the intent of this design is to place persistence functionality into the Per si st ent Obj ect base implementation and require objects
that want to have persistent state to inherit from Per si st ent Obj ect . On the face of things, this is reasonable: after all, using inheritance in
this way is a well-established design pattern, so what can possibly be wrong with it? As it turns out, there are a number of things that are
wrong with this design:
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® The above inheritance hierarchy is used to add behavior to Thi ngl and Thi ng2. However, in a strict OO model, behavior can be

invoked only by sending messages. But, because Per si st ent Cbj ect has no operations, no messages can be sent.

This raises the question of how the implementation of Per si st ent Obj ect actually goes about doing its job; presumably, it knows
something about the implementation (that is, the internal state) of Thi ngl and Thi ng2, so it can write that state into a database.
But, if so, Per si st ent Obj ect, Thi ngl, and Thi ng2 can no longer be implemented in different address spaces because, in that
case, Per si st ent Obj ect can no longer get at the state of Thi ngl and Thi ng2.

Alternatively, Thi ngl and Thi ng2 use some functionality provided by Per si st ent Obj ect in order to make their internal state
persistent. But Per si st ent Cbj ect does not have any operations, so how would Thi ngl and Thi ng2 actually go about achieving
this? Again, the only way that can work is if Per si st ent Cbj ect, Thi ngl, and Thi ng2 are implemented in a single address space
and share implementation state behind the scenes, meaning that they cannot be implemented in different address spaces.
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® The above inheritance hierarchy splits the world into two halves, one containing persistent objects and one containing non-persistent
ones. This has far-reaching ramifications:

® Suppose you have an existing application with already implemented, non-persistent objects. Requirements change over
time and you find that you now would like to make some of your objects persistent. With the above design, you cannot do
this unless you change the type of your objects because they now must inherit from Per si st ent Cbj ect . Of course, this is
extremely bad news: not only do you have to change the implementation of your objects in the server, you also need to
locate and update all the clients that are currently using your objects because they suddenly have a completely new type.
What is worse, there is no way to keep things backward compatible: either all clients change with the server, or none of
them do. It is impossible for some clients to remain "unupgraded".

® The design does not scale to multiple features. Imagine that we have a number of additional behaviors that objects can
inherit, such as serialization, fault-tolerance, persistence, and the ability to be searched by a search engine. We quickly end
up in a mess of multiple inheritance. What is worse, each possible combination of features creates a completely separate
type hierarchy. This means that you can no longer write operations that generically operate on a number of object types.
For example, you cannot pass a persistent object to something that expects a non-persistent object, even if the receiver of
the object does not care about the persistence aspects of the object. This quickly leads to fragmented and hard-to-maintain
type systems. Before long, you will either find yourself rewriting your application or end up with something that is both
difficult to use and difficult to maintain.

The foregoing discussion will hopefully serve as a warning: Slice is an interface definition language that has nothing to do with implementatio
n (but empty interfaces almost always indicate that implementation state is shared via mechanisms other than defined interfaces). If you find
yourself writing an empty interface definition, at least step back and think about the problem at hand; there may be a more appropriate
design that expresses your intent more cleanly. If you do decide to go ahead with an empty interface regardless, be aware that, almost
certainly, you will lose the ability to later change the distribution of the object model over physical server processes because you cannot
place an address space boundary between interfaces that share hidden state.

Interface Versus Implementation Inheritance

Keep in mind that Slice interface inheritance applies only to interfaces. In particular, if two interfaces are in an inheritance relationship, this in
no way implies that the implementations of those interfaces must also inherit from each other. You can choose to use implementation
inheritance when you implement your interfaces, but you can also make the implementations independent of each other. (To C++
programmers, this often comes as a surprise because C++ uses implementation inheritance by default, and interface inheritance requires
extra effort to implement.)

In summary, Slice inheritance simply establishes type compatibility. It says nothing about how interfaces are implemented and, therefore,
keeps implementation choices open to whatever is most appropriate for your application.

See Also

Interfaces, Operations, and Exceptions
Operations

User Exceptions

Run-Time Exceptions

Proxies for Ice Objects

IceGrid
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Classes

In addition to interfaces, Slice permits the definition of classes. Classes are like structures on steroids, with inheritance and the ability to hold
optional data members.

Classes support inheritance and are therefore polymorphic: at run time, you can pass a class instance to an operation as long as the actual
class type is derived from the formal parameter type in the operation's signature.

Topics

Simple Classes

Class Inheritance

Class Inheritance Semantics
Classes as Unions
Self-Referential Classes
Classes Versus Structures
Classes with Operations
Classes Implementing Interfaces
Class Inheritance Limitations
Pass-by-Value Versus Pass-by-Reference
Passing Interfaces by Value
Classes with Compact Type IDs
Value Factories
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Simple Classes

A Slice class definition is similar to a structure definition, but uses the cl ass keyword. For example:

Slice
nodul e M
{
cl ass Ti meX¥ Day
{
short hour; /Il 0 - 23
short m nute; // 0 - 59
short second; // 0 - 59
}
}

Apart from the keyword cl ass, this definition is identical to the structure example. You can use a Slice class wherever you can use a Slice
structure (but, as we will see shortly, for performance reasons, you should not use a class where a structure is sufficient). Unlike structures,
classes can be empty:

Slice

class Emptyd ass {} [l K
struct EnmptyStruct {} [/ Error

Much the same design considerations as for empty interfaces apply to empty classes: you should at least stop and rethink your approach
before committing yourself to an empty class.

A class can define any number of data members, including optional data members. You can also specify a default value for a data member if
its type is one of the following:

An integral type (byt e, short,int, | ong)
A floating point type (f | oat or doubl e)
string

bool

enum

For example:

Slice

cl ass Location

{

string nane;

Poi nt pt;
bool display = true;
string source = "GPS";

The legal syntax for literal values is the same as for Slice constants, and you may also use a constant as a default value. The language
mapping guarantees that data members are initialized to their declared default values using a language-specific mechanism.

See Also
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® Structures
® Constants and Literals
® Optional Data Members
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Class Inheritance

On this page:

¢ Simple Inheritance
¢ Implicit Inheritance from Value

Simple Inheritance

Unlike structures, classes support inheritance. For example:

Slice
nodul e M
{
cl ass Ti mef Day
{
short hour; /1 0 - 23
short m nute; /!l 0 - 59
short second,; /1 0 - 59
}
cl ass DateTi me extends Ti meCf Day
{
short day; /11 - 31
short nonth; /11 - 12
short year; /1 1753 onwar ds
}

This example illustrates one major reason for using a class: a class can be extended by inheritance, whereas a structure is not extensible.

The previous example defines Dat eTi ne to extend the Ti meCf Day class with a date.

If you are puzzled by the comment about the year 1753, search the Web for "1752 date change". The intricacies of calendars for

various countries prior to that year can keep you occupied for months...

Classes only support single inheritance. The following is illegal:
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Slice
cl ass Ti mef Day
{
short hour; /1 0 - 23
short m nute; /1 0 - 59
short second; /1 0 - 59
}
class Date
{
short day;
short nonth;
short vyear;
}
cl ass DateTi me extends Ti meOf Day, Date [l Error!
{
/1
}

A derived class also cannot redefine a data member of its base class:

Slice

cl ass Base
{

i nt integer;
}
cl ass Derived extends Base
{

int integer; /1 Error, integer redefined
}

Implicit Inheritance from Value

All classes implicitly inherit from Val ue. This way, a Val ue parameter in an operation accepts any class instance.

See Also

® Structures
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Class Inheritance Semantics

Classes use the same pass-by-value semantics as structures. If you pass a class instance to an operation, the class and all its members are
passed. The usual type compatibility rules apply: you can pass a derived instance where a base instance is expected. If the receiver has
static type knowledge of the actual derived run-time type, it receives the derived instance; otherwise, if the receiver does not have static type
knowledge of the derived type, depending on the format used to encode the class, it will either fail to read the instance or slice the instance
to the base type.

For an example, suppose we have the following definitions:

Slice
Il In file dock.ice:
nodule M
{
cl ass Ti mef Day
{
short hour; /Il 0 - 23
short m nute; // 0 - 59
short second; // 0 - 59

interface C ock

{
Ti meOf Day get Ti me();
void setTime(TimeOfDay tine);

I/ In file DateTine.ice:
#i ncl ude <d ock.ice>

nodul e M

{
cl ass DateTi ne extends Ti meCf Day

{

short day; /11 - 31
short nont h; /11 - 12
short year; /1 1753 onwards

Because Dat eTi ne is a sub-class of Ti meCf Day, the server can return a Dat eTi e instance from get Ti ne, and the client can pass a Dat
eTi ne instance to set Ti nme. In this case, if both client and server are linked to include the code generated for both Cl ock. i ce and Dat eT
i me. i ce, they each receive the actual derived Dat eTi ne instance, that is, the actual run-time type of the instance is preserved.

Contrast this with the case where the server is linked to include the code generated for both Cl ock. i ce and Dat eTi ne. i ce, but the client
is linked only with the code generated for O ock. i ce. In other words, the server understands the type Dat eTi ne and can return a Dat eTi
me instance from get Ti e, but the client only understands Ti neCOf Day. In this case, there are two possible outcomes depending on the
format used by the server to encode the instance:

® with the sliced format, the derived Dat eTi ne instance returned by the server is sliced to its Ti meCf Day base type in the client
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* with the compact format, get Ti ne fails with the | ce: : NoObj ect Fact or yExcept i on exception

See Design Considerations for Objects for additional information on the sliced and compact formats.

Class hierarchies are useful if you need polymorphic values (instead of polymorphic interfaces). For example:

sequence<Shape> ShapeSeq;

i nterface ShapeProcessor

{

voi d processShapes(ShapeSeq ss);

Slice

cl ass Shape
{

/1 Definitions for shapes, such as size, center,
}
class Circle extends Shape
{

/'l Definitions for circles, such as radius..
}
cl ass Rectangl e extends Shape
{

/1 Definitions for rectangles, such as width and |ength..
}

Note the definition of ShapeSeq and its use as a parameter to the pr ocessShapes operation: the class hierarchy allows us to pass a

polymorphic sequence of shapes (instead of having to define a separate operation for each type of shape).

The receiver of a ShapeSeq can iterate over the elements of the sequence and down-cast each element to its actual run-time type. (The

receiver can also ask each element for its type ID to determine its type.)

See Also

® Structures
® Type IDs
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Classes as Unions

Slice does not offer a dedicated union construct because it is redundant. By deriving classes from a common base class, you can create the
same effect as with a union:

Slice
nodul e M
{
cl ass Shape
{
/1 Definitions for shapes, such as size, center, etc.
}
class G rcle extends Shape
{
/1 Definitions for circles, such as radius...
}
cl ass Rectangl e extends Shape
{
/1 Definitions for rectangles, such as width and | ength...
}
i nterface ShapeShifter
{
Shape transl ate(Shape s, |ong xDi stance, | ong yDi stance);
}

The parameter s of the t r ansl at e operation can be viewed as a union of two members: a G r cl e and a Rect angl e. The receiver ofa S
hape instance can use the type ID of the instance to decide whether it received a Ci r cl e or a Rect angl e. Alternatively, if you want
something more along the lines of a conventional discriminated union, you can use the following approach:
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Slice

cl ass Uni onDi scri ni nat or
{

int d;
}
cl ass Menber1l extends UnionDi scrin nator
{

[l d=1

string s;

float f;
}
cl ass Menber2 extends Uni onDi scri m nator
{

[l d==2

byte b;

int i;
}

With this approach, the Uni onDi scri mi nat or class provides a discriminator value. The "members" of the union are the classes that are
derived from Uni onDi scri m nat or . For each derived class, the discriminator takes on a distinct value. The receiver of such a union uses
the discriminator value in a swi t ch statement to select the active union member.

See Also

® Type IDs
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Self-Referential Classes

Classes can be self-referential.

For example:

Slice

cl ass Link

{

SomeType val ue;
Li nk next;

This looks very similar to the self-referential interface example, but the semantics are very different. Note that val ue and next are data
members, not operations, and that the type of next is Li nk (not Li nk*). As you would expect, this forms the same linked list arrangement
as the Li nk interface in Self-Referential Interfaces: each instance of a Li nk class contains a next member that points at the next link in the
chain; the final link's next member contains a null value. So, what looks like a class including itself really expresses pointer semantics: the n
ext data member contains a pointer to the next link in the chain.

You may be wondering at this point what the difference is then between the Li nk interface in Self-Referential Interfaces and the Li nk class
shown above. The difference is that classes have value semantics, whereas proxies have reference semantics. To illustrate this, consider
the Li nk interface from Self-Referential Interfaces once more:

Slice

interface Link

{
i denpot ent SonmeType get Val ue();

i denpot ent Li nk* next ();

Here, get Val ue and next are both operations and the return value of next is Li nk*, that is, next returns a proxy. A proxy has reference s
emantics, that is, it denotes an object somewhere. If you invoke the get Val ue operation on a Li nk proxy, a message is sent to the
(possibly remote) servant for that proxy. In other words, for proxies, the object stays put in its server process and we access the state of the
object via remote procedure calls. Compare this with the definition of our Li nk class:

Slice

class Link

{

SoneType val ue;
Li nk next;

Here, val ue and next are data members and the type of next is Li nk, which has value semantics. In particular, while next looks and feels
like a pointer, it cannot denote an instance in a different address space. This means that if we have a chain of Li nk instances, all of the
instances are in our local address space and, when we read or write a value data member, we are performing local address space
operations. This means that an operation that returns a Li nk instance, such as get Head, does not just return the head of the chain, but the

entire chain, as shown:

159 Copyright 2018, ZeroC, Inc.


https://doc.zeroc.com/display/Ice37/Interface+Inheritance#InterfaceInheritance-Self-ReferentialInterfaces
https://doc.zeroc.com/display/Ice37/Interface+Inheritance#InterfaceInheritance-Self-ReferentialInterfaces
https://doc.zeroc.com/display/Ice37/Interface+Inheritance#InterfaceInheritance-Self-ReferentialInterfaces
https://doc.zeroc.com/display/Ice37/Interface+Inheritance#InterfaceInheritance-Self-ReferentialInterfaces

Ice 3.7.1 Documentation

Client Server Client Server

getHead

h{—'

O

Class version of Li nk before and after calling get Head.

On the other hand, for the interface version of Li nk, we do not know where all the links are physically implemented. For example, a chain of
four links could have each object instance in its own physical server process; those server processes could be each in a different continent. If
you have a proxy to the head of this four-link chain and traverse the chain by invoking the next operation on each link, you will be sending
four remote procedure calls, one to each object.

Self-referential classes are particularly useful to model graphs. For example, we can create a simple expression tree along the following
lines:

Slice

enum UnaryQp { UnaryPl us, UnaryM nus, Not }
enum BinaryOp { Plus, Mnus, Miltiply, Divide, And, O }

cl ass Node {}

cl ass UnaryQperat or extends Node

{
UnaryOp operator;
Node operand;
}
cl ass Bi naryQperat or extends Node
{
Bi naryQp op;
Node operandil;
Node operand?;
}
cl ass Operand extends Node
{
| ong val;
}

The expression tree consists of leaf nodes of type Oper and, and interior nodes of type Unar yOper at or and Bi nar yOper at or , with one
or two descendants, respectively. All three of these classes are derived from a common base class Node. Note that Node is an empty class.
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This is one of the few cases where an empty base class is justified. (See the discussion on empty interfaces; once we add operations to this
class hierarchy, the base class is no longer empty.)

If we write an operation that, for example, accepts a Node parameter, passing that parameter results in transmission of the entire tree to the
server:

Slice

i nterface Eval uator

{

| ong eval (Node expression); // Send entire tree for eval uation

Self-referential classes are not limited to acyclic graphs; the Ice run time permits loops: it ensures that no resources are leaked and that
infinite loops are avoided during marshaling.

See Also

® Classes with Operations
® Self-Referential Interfaces
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Classes Versus Structures

One obvious question to ask is: why does Ice provide structures as well as classes, when classes obviously can be used to model
structures? The answer has to do with the cost of implementation: classes provide a number of features that are absent for structures:

® Classes support inheritance.
® Classes can be self-referential.
® Classes can have optional data members.

Obviously, an implementation cost is associated with the additional features of classes, both in terms of the size of the generated code and
the amount of memory and CPU cycles consumed at run time. On the other hand, structures are simple collections of values (“plain old
structs") and are implemented using very efficient mechanisms. This means that, if you use structures, you can expect better performance
and smaller memory footprint than if you would use classes. Use a class only if you need at least one of its more powerful features.

See Also
® Structures

® Classes with Operations
® Classes Implementing Interfaces
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Classes with Operations

Classes, in addition to data members, can have operations.

Deprecated Feature

Operations on classes are deprecated as of Ice 3.7. Skip this page unless you need to communicate with old applications that rely

on this feature.

The syntax for operation definitions in classes is identical to the syntax for operations in interfaces. For example, we can modify the

expression tree from Self-Referential Classes as follows:

Slice

nmodul e M

{
enum UnaryQp { UnaryPl us, UnaryM nus,

enum BinaryOp { Plus, Mnus, Miltiply,

cl ass Node

{

i denpotent |ong eval ();

cl ass UnaryQperat or extends Node

{
UnaryOp operator;

Node oper and;

cl ass Bi naryQperat or extends Node
{

Bi naryQp op;

Node operandil;

Node operand?;

cl ass Operand

{

| ong val;

Not }
Di vi de,

And, O }

The only change compared to the version in Self-Referential Classes is that the Node class now has an eval operation. The semantics of

this are as for a virtual member function in C++: each derived class inherits the operation from its base class and can choose to override the
operation's definition. For our expression tree, the Oper and class provides an implementation that simply returns the value of its val memb
er, and the Unar yOper at or and Bi nar yOper at or classes provide implementations that compute the value of their respective subtrees. If
we call eval on the root node of an expression tree, it returns the value of that tree, regardless of whether we have a complex expression or

a tree that consists of only a single Oper and node.

Operations on classes are normally executed in the caller's address space, that is, operations on classes are local operations that do not

result in a remote procedure call.
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It is also possible to invoke an operation on a remote class instance.

Of course, this immediately raises an interesting question: what happens if a client receives a class instance with operations from a server,
but client and server are implemented in different languages? Classes with operations require the receiver to supply a factory for instances of
the class. The Ice run time only marshals the data members of the class. If a class has operations, the receiver of the class must provide a
class factory that can instantiate the class in the receiver's address space, and the receiver is responsible for providing an implementation of
the class's operations.

Therefore, if you use classes with operations, it is understood that client and server each have access to an implementation of the class's
operations. No code is shipped over the wire (which, in an environment of heterogeneous nodes using different operating systems and
languages is infeasible).

See Also

® Self-Referential Classes
® Pass-by-Value Versus Pass-by-Reference
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Classes Implementing Interfaces

Deprecated Feature
Like operations on classes, classes inheriting from interfaces or providing remote operations like interfaces are deprecated as of
Ice 3.7. Skip this page unless you need to communicate with old applications that rely on this feature.

A Slice class can also be used as a servant in a server, that is, an instance of a class can be used to provide the behavior for an interface,
for example:

Slice
nodul e M
{
interface Tine
{
i denpot ent Ti meOf Day get Ti me();
i denpotent void setTinme(Ti neOfDay tine);
}
class O ock inplenents Tine
{
TimreOf Day tine;
}

The i mpl enent s keyword indicates that the class Cl ock provides an implementation of the Ti e interface. The class can provide data
members and operations of its own; in the preceding example, the C ock class stores the current time that is accessed via the Ti ne interfac
e. A class can implement several interfaces, for example:

Slice
interface Time
{
i denpotent Ti meOr Day get Ti nme();
i denmpotent void setTinme(Ti mreO Day tine);
}
interface Radio
{
i denpot ent voi d set Frequency(long hertz);
i denpotent voi d set Vol une(long dB);
}
cl ass Radi od ock inplenents Tinme, Radio
{
Ti meOf Day tine;
| ong hertz;
}

The class Radi oC ock implements both Ti ne and Radi o interfaces.
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A class, in addition to implementing an interface, can also extend another class:

Slice
interface Tine
{
i denmpot ent Ti meOf Day get Ti me();
i denmpotent void setTinme(Ti mreO Day tine);
}
class dock inplenents Tine
{
Ti meOf Day time;
}
interface Al arnCl ock extends Tine
{
i denpot ent Ti meOF Day get Al ar nili me() ;
i denpotent voi d set Al arnili me( Ti mreOf Day al ar nili ne) ;
}
i nterface Radio
{
i denpotent voi d set Frequency(long hertz);
i denpot ent voi d set Vol une(l ong dB);
}

cl ass Radi oAl ar nCl ock extends C ock
i mpl enents Al arntC ock, Radio

Ti meX Day al ar nili ne;
| ong hertz;

These definitions result in the following inheritance graph:

166

Copyright 2018, ZeroC, Inc.



Ice 3.7.1 Documentation

Time
<<interfacess

Radio AlarmClock Clock
<<zinterface>> <<jnterface>>
F
RadioClock
=<interface=>

A Class using implementation and interface inheritance.
For this definition, Radi o and Al ar nCl ock are abstract interfaces, and G ock and Radi oAl ar nCl ock are concrete classes. As for Java,
a class can implement multiple interfaces, but can extend at most one class.

See Also

® Class Inheritance Limitations
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Class Inheritance Limitations

As for interface inheritance, a class cannot redefine an operation or data member that it inherits from a base interface or class. For example:

Slice
nmodul e M
{
i nterface Baselnterface
{
void op();
}
cl ass Based ass
{
i nt nenber;
}
cl ass DerivedCd ass extends Based ass i npl enents Basel nterface
{
voi d sonmeQperation(); Il K
int op(); /1 Error!
int soneMenber; Il K
| ong nenber; /1 Error!
}
}
See Also

® |nterface Inheritance
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Pass-by-Value Versus Pass-by-Reference

On this page:

® Passing a Class by Reference
® Object vs Value

Passing a Class by Reference

As we saw in Self-Referential Classes, classes naturally support pass-by-value semantics: passing a class transmits the data members of
the class to the receiver. Any changes made to these data members by the receiver affect only the receiver's copy of the class; the data
members of the sender's class are not affected by the changes made by the receiver.

In addition to passing a class by value, you can pass a class by reference.
Deprecated Feature

Passing class instances by reference - as proxies - is deprecated as of Ice 3.7. Skip this paragraph unless you need to
communicate with old applications that rely on this feature.

For example:
Slice
nmodul e M
{
cl ass Ti mek Day
{
short hour;
short m nute;
short second;
string format();
}
i nterface Exanpl e
{
Ti meOf Day* get(); // Note: returns a proxy!
}
}

Note that the get operation returns a proxy to a Ti neOf Day class and not a Ti neOf Day instance itself. The semantics of this are as
follows:

® When the client receives a Ti meOf Day proxy from the get call, it holds a proxy that differs in no way from an ordinary proxy for an

interface.
® The client can invoke operations via the proxy, but cannot access the data members. This is because proxies do not have the
concept of data members, but represent interfaces: even though the Ti meOf Day class has data members, only its operations can

be accessed via a the proxy.

The net effect is that, in the preceding example, the server holds an instance of the Ti meCf Day class. A proxy for that instance was passed
to the client. The only thing the client can do with this proxy is to invoke the f or mat operation. The implementation of that operation is
provided by the server and, when the client invokes f or mat , it sends an RPC message to the server just as it does when it invokes an
operation on an interface. The implementation of the f or mat operation is entirely up to the server. (Presumably, the server will use the data
members of the Ti meCf Day instance it holds to return a string containing the time to the client.)

The preceding example looks somewhat contrived for classes only. However, it makes perfect sense if classes implement interfaces: parts of
your application can exchange class instances (and, therefore, state) by value, whereas other parts of the system can treat these instances
as remote interfaces.
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For example:
Slice

interface Tine
{

string format();

11
}
class TinmeOf Day i nplenents Tine
{

short hour;

short m nute;

short second;
}
interface 11
{

Ti meOf Day get(); /1 Pass by val ue
void put(TineOfDay tine); [// Pass by val ue

}
interface 12
{

Ti me* get(); /1l Pass by reference
}

In this example, clients dealing with interface | 1 are aware of the Ti neOf Day class and pass it by value whereas clients dealing with
interface | 2 deal only with the Ti ne interface. However, the actual implementation of the Ti e interface in the server uses Ti meOf Day inst
ances.

Be careful when designing systems that use such mixed pass-by-value and pass-by-reference semantics. Unless you are clear about what
parts of the system deal with the interface (pass by reference) aspects and the class (pass by value) aspects, you can end up with
something that is more confusing than helpful.

Object vs Value

In non-local operations, you can use an Cbj ect or Val ue parameter to mean "accept any class or interface passed by value". Obj ect and
Val ue are synonymous in this context, and mean any value.

For example, interface | 1 in the preceding example could be rewritten as:

Slice
interface Untypedl 1
{
Val ue get(); /1 Pass by val ue
void put(Value tine); // Pass by val ue
}

or
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Slice
interface Untypedl 1
{
bj ect get(); /1 Pass by val ue
void put(Qoject tine); [// Pass by val ue
}

In local operations, Obj ect and Val ue are not interchangeable: Obj ect designates the base class for all servants, while Val ue designates
the base class for all mapped classes.

Finally for proxies, Cbj ect * always means any proxy, while Val ue* is never correct.
See Also

® Self-Referential Classes
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Passing Interfaces by Value

Deprecated Feature

Passing interfaces by value is deprecated as of Ice 3.7, just like passing classes by reference. Skip this page unless you need to

communicate with old applications that rely on this feature.

Consider the following definitions:

Slice
nodul e M
{
interface Tine
{
i denpot ent Ti meOf Day get Ti me();
/1
}
interface Record
{
voi d addTi meStanmp(Tine t); // Note:
/1
}

Time t, not Tinme* t

Note that addTi meSt anp accepts a parameter of type Ti e, not of type Ti me*. The question is, what does it mean to pass an interface by
value? Obviously, at run time, we cannot pass an an actual interface to this operation because interfaces are abstract and cannot be
instantiated. Neither can we pass a proxy to a Ti ne object to addTi neSt anp because a proxy cannot be passed where an interface is

expected.

However, what we can pass to addTi meSt anp is something that is not abstract and derives from the Ti ne interface. For example, at run
time, we could pass an instance of the Ti neOf Day class we saw earlier. Because the Ti meCf Day class derives from the Ti ne interface,
the class type is compatible with the formal parameter type Ti e and, at run time, what is sent over the wire to the server is the Ti meCf Day

class instance.

See Also

® Pass-by-Value Versus Pass-by-Reference
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Classes with Compact Type IDs

You can optionally associate a numeric identifier with a class. The Ice run time substitutes this value, known as a compact type ID, in place
of its equivalent string type ID during marshaling to conserve space. The compact type ID follows immediately after the class name,

enclosed in parentheses:

Slice

nodul e M

{
cl ass Conpact Exanpl e(4)

{
/1

In this example, the Ice run time marshals the value 4 instead of its string equivalent " : : M : Conpact Exanpl e". The specified value must

be a non-negative integer that is unique within the translation unit.

Using values less than 255 produces the most efficient encoding.

See Also

® Classes

® Type IDs
® Data Encoding for Class Type IDs
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Value Factories

Prior to Ice 3.7, an application needed to register an object factory with the Ice run time for two use cases:

1. to successfully unmarshal an instance of a Slice class that defined operations, or
2. to supply a custom implementation of a Slice class, regardless of whether that class defined operations.

Since Ice 3.7 deprecates classes with operations, we now refer to instances of Slice classes as values and the Ice run time provides a new
(but similar) API for managing value factories. Generally speaking, applications will rarely need to use this API, with use case #2 above now
being the primary motivation.

The following Slice definitions comprise the value factory API:

Slice
nmodul e | ce
{
| ocal interface Val ueFactory
{
Val ue create(string type);
}
| ocal interface Val ueFact or yManager
{
voi d add(Val ueFactory factory, string type);
Val ueFactory find(string type);
}
| ocal interface Communi cat or
{
Val ueFact or yManager get Val ueFact or yManager () ;
/1
}
}

An application-defined value factory must provide an implementation of the Val ueFact ory interface. Its cr eat e operation receives the
Slice type ID corresponding to the Slice class that the Ice run time is attempting to unmarshal. The cr eat e implementation can return nil if
it's unable to instantiate the type or doesn't recognize the type, otherwise the factory must return an instance of the requested type or a type
derived from the requested type.

The Ice run time supplies a default implementation of the Val ueFact or yManager interface, although an application can optionally
substitute its own implementation during communicator initialization. You can obtain the value factory manager by calling get Val ueFact or
yManager on the communicator object. The manager's add operation registers a factory for a particular Slice type ID, or you can pass an
empty string as the type and Ice will use that factory as the default in cases where no other factory was registered for a type. The add operat
ion raises Al r eadyRegi st er edExcept i on if another factory has already been registered for the specified type.

Finally, the manager's f i nd operation returns the factory registered for a type, or nil if no match was found.
Please refer to the relevant language mapping chapters for instructions on using the value factory API in your programming language.
See Also

® Classes
® Type IDs
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Forward Declarations

Both interfaces and classes can be forward declared. Forward declarations permit the creation of mutually dependent objects, for example:

Slice
nmodul e Fam |y
{
interface Child; /1 Forward declaration
sequence<Chil d*> Children; // K
interface Parent
{
Children getChildren();: // OK
}
interface Child /1 Definition
{
Par ent * get Mot her () ;
Par ent * get Fat her () ;
}
}

Without the forward declaration of Chi | d, the definition obviously could not compile because Chi | d and Par ent are mutually dependent
interfaces. You can use forward-declared interfaces and classes to define types (such as the Chi | dr en sequence in the previous example).
Forward-declared interfaces and classes are also legal as the type of a structure, exception, or class member, as the value type of a
dictionary, and as the parameter and return type of an operation.

The definition of a forward-declared interface or class must appear in the same translation unit if that type is used as a proxy, or if that type is
used in any context in which it could be marshaled:

Slice
nmodul e Fam |y
{
interface Child; /1 Forward decl aration
cl ass Chore; /1 Forward decl aration
sequence<Chil d*> Children; // Error - undefined proxy type!
i nterface Parent
{
Chor e next Chore(); /1l Error - undefined class type
}
}

Finally, you cannot inherit from a forward-declared interface or class until after its definition has been seen by the compiler:
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Slice
i nterface Base; /'l Forward decl aration
interface Derivedl extends Base {} /'l Error!
interface Base {} /1 Definition
i nterface Derived2 extends Base {} /1 OK, definition was seen

Not inheriting from a forward-declared base interface or class until its definition is seen is necessary because, otherwise, the compiler could
not enforce that derived interfaces must not redefine operations that appear in base interfaces.

A multi-pass compiler could be used, but the added complexity is not worth it.

See Also

® Interfaces, Operations, and Exceptions
® Classes
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Optional Data Members

On this page:

® Overview of Optional Data Members
® Declaring Optional Data Members
® Optional Data Members with Default Values

Overview of Optional Data Members

A data member of a Slice class or exception may be declared as optional to indicate that a program can leave its value unset. Data members
not declared as optional are known as required members; a program must supply legal values for all required members.

Declaring Optional Data Members

Each optional data member in a type must be assigned a unique, non-negative integer tag:

Slice

nodul e M

{

class C
{
string nane;
bool acti ve;
optional (2) string alternateNane;
optional (5) int overrideCode;

Itis legal for a base type's tag to be reused by a derived type:

Slice

excepti on Base

{
optional (1) int systenCode;
}
exception Derived extends Base
{
optional (1) string diagnostic; // K
}

The scope of a tag is limited to its enclosing type and has no effect on base or derived types.

Language mappings specify an API for setting an optional member and testing whether a member is set. Here is an example in C++:
C++11C++98
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auto ¢ = nake_shared<C();

C->name = "xyz":
c->active = true;
c->al ternateNane = "abc";

c->overri deCode = 42

i f(c->alternateNane)

{

cout << "alt nane =

/1 required
/1 required
/1 optiona
/1 optiona

<< c->al ternat eNane << endl

CPtr ¢ = new C

c->name = "Xxyz",
c->active = true;

c->al ternateNane = "abc";
c->overri deCode = 42

i f(c->alternateNane)

{

cout << "alt nane =

/1 required
/1 required
/1 optiona
/1 optiona

<< c->al ternat eNane << endl

As you can see, the C++ language mapping makes setting an optional member as simple as assigning it a value. Refer to the language
mapping sections for more details on the optional data member API.

A well-behaved program must test for the presence of an optional member and not assume that it is always set. Dereferencing an
unset optional member causes a run-time error.

In all supported language mappings, an optional data member's initial condition is unset if not otherwise assigned during construction. Again

using C++ as an example:
C++11C++98

auto ¢ = nake_shared<C();
assert (! c->al ternat eNane);

¢ = make_shared<C>("xyz",
assert (c->al t ernat eNane) ;

// default constructor

/] not set

true, "abc", 42);

/'l one-shot constructor
/1 set by constructor

CPtr ¢ = new G
assert (! c->al ternat eNane);

c = new C("xyz", true,
assert (c->al t ernat eNane) ;

abc", 42);

// default constructor
/'l not set

// one-shot constructor
/1 set by constructor
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Optional Data Members with Default Values

You can declare a default value for optional members just as you can for required members:

Slice

class C
{
string nane;
bool active = true;
optional (2) string alternateNane;
optional (5) int overrideCode = -1,

An optional data member with a default value is considered to be set by default:

C++11C++98
auto ¢ = nake_shared<C(); /1 default constructor
assert (! c->al ternateNane); /1l not set
assert (c->overri deCode); /1l set to default val ue
CPtr ¢ = new C /1 default constructor
assert(!c->alternateNane); // not set
assert (c->overri deCode); /1 set to default val ue

Each language mapping provides an API for resetting an optional data member to its unset condition.
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See Also

® Classes
® User Exceptions
® Optional Values
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Type IDs

Interface, class and user exception Slice types have an internal type identifier, known as the type ID. The type ID is simply the fully-qualified
name of each type. For example, the type ID of the Chi | d interface in the preceding example is : : Fami | y: : Chi | dren: : Chi | d. A type
ID starts with a leading : : and is formed by starting with the global scope (: : ) and forming the fully-qualified name of a type by appending
each module name in which the type is nested, and ending with the name of the type itself; the components of the type ID are separated by

The type ID of the Slice Obj ect typeis:: | ce:: Qoj ect.

Type IDs are used internally by the Ice run time as a unique identifier for each type. For example, when an exception is raised, the
marshaled form of the exception that is returned to the client is preceded by its type ID on the wire. The client-side run time first reads the
type ID and, based on that, unmarshals the remainder of the data as appropriate for the type of the exception.

Type IDs are also used by the i ce_i sA operation.

See Also

® ice_isA
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Operations on Object

The Obj ect interface has a number of operations. We cannot define type Obj ect in Slice because bj ect is a keyword; regardless, here
is what (part of) the definition of Obj ect would look like if it were legal:

Slice

sequence<string> Str Seq;
i nterface Ohject /1 "Pseudo" Slice!
{

i denpotent void i ce_ping();

i denpot ent bool ice_ isA(string typel D);

i denpotent string ice_id();

i denmpotent StrSeq ice_ids();

11
}

Note that, apart from the illegal use of the keyword Obj ect as the interface name, the operation names all contain the i ce_ prefix. This
prefix is reserved for use by Ice and cannot clash with a user-defined operation. This means that all Slice interfaces can inherit from Obj ect
without name clashes. We discuss these built-in operations below.

On this page:
ice_ping
ice_isA
ice_id
ice_ids

i ce_ping

All interfaces support the i ce_pi ng operation. That operation is useful for debugging because it provides a basic reachability test for an
object: if the object exists and a message can successfully be dispatched to the object, i ce_pi ng simply returns without error. If the object
cannot be reached or does not exist, i ce_pi ng throws a run-time exception that provides the reason for the failure.

ice isA

The i ce_i sA operation accepts a type identifier (such as the identifier returned by i ce_i d) and tests whether the target object supports the
specified type, returning t r ue if it does. You can use this operation to check whether a target object supports a particular type. For example,
referring to the diagram Implicit Inheritance from Object once more, assume that you are holding a proxy to a target object of type Al ar nCl o
ck. The table below illustrates the result of calling i ce_i sA on that proxy with various arguments. (We assume that all types in the Implicit
inheritance from Object diagram are defined in a module Ti nmes):

Argument Result
i lce:: Object true
::Times:: O ock true

c:Times:: AlarnClock true
::Tinmes:: Radio fal se
. Times:: Radi od ock false

Calling i ce_i sAon a proxy denoting an object of type AlarmClock.
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As expected, i ce_i sAreturns true for : : Ti mes: : Cl ock and : : Ti mes: : Al ar nCl ock and also returns true for : : | ce: : Qbj ect (becaus

e all interfaces support that type). Obviously, an Al ar nCl ock supports neither the Radi o nor the Radi oCl ock interfaces, soi ce_i sAretu
rns false for these types.

ice id

The i ce_i d operation returns the type ID of the most-derived type of an interface.

ice_ ids

The i ce_i ds operation returns a sequence of type IDs that contains all of the type IDs supported by an interface. For example, for the
RadioClock interface in Implicit inheritance from Object, i ce_i ds returns a sequence containing the type IDs : : | ce: : Obj ect, : : Ti nes:
:Cock,::Times:: Al arnCl ock, : : Ti nes: : Radi o, and : : Ti nes: : Radi oCl ock.

See Also
® Type IDs

® |Interface Inheritance
¢ |mplicit inheritance from Object
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Local Types

In order to access certain features of the Ice run time, you must use APIs that are provided by libraries. However, instead of defining an API
that is specific to each implementation language, Ice defines its APIs in Slice using the | ocal keyword. The advantage of defining APIs in
Slice is that a single definition suffices to define the API for all possible implementation languages. The actual language-specific API is then
generated by the Slice compiler for each implementation language. Types that are provided by Ice libraries are defined using the Slice | oca
| keyword.

For example:

Slice

nodul e | ce

{

| ocal interface (ObjectAdapter

{
/1

Any Slice definition (not just interfaces) can have a | ocal modifier. If the | ocal modifier is present, the Slice compiler does not generate
marshaling code for the corresponding type. This means that a local type can never be accessed remotely because it cannot be transmitted
between client and server. (The Slice compiler prevents use of | ocal typesin non-l ocal contexts.)

Slice nmodul es and const ant s are inherently local and cannot be prefixed with the | ocal modifier.

Local interfaces and local classes do not inherit from Obj ect resp. Val ue. Instead, local interfaces and classes have their own, completely
separate inheritance hierarchy. At the root of this hierarchy is the type Local Cbj ect, as shown:

LocalObject
winterfaces

ObjectAdapter Other local
sinterfaces interfaces. ..

Inheritance from Local Qbj ect .

Because local interfaces and local classes form a completely separate inheritance hierarchy, you cannot pass a local interface where a
non-local interface is expected, and vice-versa.

You rarely need to define local types for your own applications — the | ocal keyword exists mainly to allow definition of APIs for the Ice run
time. (Because local objects cannot be invoked remotely, there is little point for an application to define local objects; it might as well define
ordinary programming-language objects instead.) However, there is one exception to this rule: servant locators must be implemented as
local objects.

See Also

® Servant Locators
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Names and Scoping

Slice has a number of rules regarding identifiers. You will typically not have to concern yourself with these. However, occasionally, it is good
to know how Slice uses naming scopes and resolves identifiers.

On this page:

® Naming Scope

® Case Sensitivity

® Qualified Names

® Names in Nested Scopes

® Introduced Identifiers

® Name Lookup Rules

® Scoping Rules for Parameters and Data Members
® Scoping Rules in Prior Ice Releases

Naming Scope

The following Slice constructs establish a naming scope:

the global (file) scope
modules

interfaces

classes

structures
exceptions
parameter lists

Within a naming scope, identifiers must be unique, that is, you cannot use the same identifier for different purposes. For example:

Slice

interface Bad

{
void op(int p, string p); /1 Error!

Because a parameter list forms a naming scope, it is illegal to use the same identifier p for different parameters. Similarly, data members,
operation names, interface and class names, etc. must be unique within their enclosing scope.

Case Sensitivity

Identifiers that differ only in case are considered identical, so you must use identifiers that differ not only in capitalization within a naming
scope. For example:

Slice

struct Bad
{
i nt m
string M [l Error!

The Slice compiler also enforces consistent capitalization for identifiers. Once you have defined an identifier, you must use the same
capitalization for that identifier thereafter. For example, the following is in error:
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Slice

sequence<string> StringSeq;

interface Bad

{
stringSeq op(); /1 Error!

Note that identifiers must not differ from a Slice keyword in case only. For example, the following is in error:

Slice
i nterface Mdul e /1 Error, "module" is a keyword

{

11

Qualified Names

The scope-qualification operator : : allows you to refer to a type in a non-local scope. For example:

Slice

nodul e Types
{

sequence<!| ong> LongSeq;
}
nodul e MyApp
{

sequence<Types: : LongSeq> Nunber Tr ee;
}

Here, the qualified name Types: : LongSeq refers to LongSeq defined in module Types. The global scope is denoted by a leading : : , so
we could also refer to LongSeq as : : Types: : LongSeq.

The scope-qualification operator also allows you to create mutually dependent interfaces that are defined in different modules. The obvious
attempt to do this fails:
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Slice
nmodul e Parents
{
interface Children::Child; [// Syntax error
i nterface Mot her
{
Children:: Child* getChild();
}
i nterface Father
{
Children:: Child* getChild();
}
}
nmodul e Chi |l dren
{
interface Child
{
Par ent s: : Mot her* get Mot her () ;
Parent s: : Fat her* get Fat her ();
}
}

This fails because it is syntactically illegal to forward-declare an interface in a different module. To make it work, we must use a reopened

module:
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Slice
nodul e Children
{
interface Child; /1 Forward declaration
}
nodul e Parents
{
i nterface Mther
{
Children:: Child* getChild(); Il K
}
i nterface Father
{
Children:: Child* getChild(); Il K
}
}
nmodul e Chil dren /1 Reopen nodul e
{
interface Child /] Define Child
{
Parent s: : Mot her* get Mot her () ;
Parent s: : Fat her* get Fat her();
}
}

While this technique works, it is probably of dubious value: mutually dependent interfaces are, by definition, tightly coupled. On the other
hand, modules are meant to be used to place related definitions into the same module, and unrelated definitions into different modules. Of
course, this begs the question: if the interfaces are so closely related that they depend on each other, why are they defined in different
modules? In the interest of clarity, you probably should avoid this construct, even though it is legal.

Names in Nested Scopes

Names defined in an enclosing scope can be redefined in an inner scope. For example, the following is legal:

Slice

nodul e CQuter
{

sequence<string> Seq;

nmodul e | nner

{

sequence<short> Seq;

}

}
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Within module | nner , the name Seq refers to a sequence of short values and hides the definition of Qut er : : Seq. You can still refer to
the other definition by using explicit scope qualification, for example:

Slice
nmodul e Quter
{
sequence<string> Seq;
nmodul e | nner
{
sequence<short > Seq;
struct Confusing
{
Seq a; /1 Sequence of short
c:Quter::Seq b; /1 Sequence of string
}
}
}

Needless to say, you should try to avoid such redefinitions — they make it harder for the reader to follow the meaning of a specification.

Same-named constructs cannot be nested inside each other in certain situations. For example, a module named Mcannot (recursively)
contain any construct also named M The same is true for interfaces and classes, which cannot define an operation with the same name as
the enclosing interface or class. For example, the following examples are all in error:

Slice
nmodul e M
{
interface M{ /* ... */ } /] Error!
interface |
{
void I(); /'l Error
}
}
nmodul e Quter
{
nmodul e | nner
{ i nterface outer /1l Error, even if case differs!
{
/1
}
}
}

The reason for this restriction is that nested types that have the same name are difficult to map into some languages. For example, C++ and

188 Copyright 2018, ZeroC, Inc.



Ice 3.7.1 Documentation

Java reserve the name of a class as the name of the constructor, so an interface | could not contain an operation named | without artificial

rules to avoid the name clash.

Similarly, some languages (such as C# prior to version 2.0) do not permit a qualified name to be anchored at the global scope. If a nested
module or type is permitted to have the same name as the name of an enclosing module, it can become impossible to generate legal code in

some cases.

In the interest of simplicity, Slice prohibits the name of a nested module or type from being the same as the name of one of its enclosing

modules.

Introduced ldentifiers

Within a naming scope, an identifier is introduced at the point of first use; thereafter, within that naming scope, the identifier cannot change

meaning.

For example:

Slice

nodul e M

{

sequence<string> Seq;

interface Bad
{
Seq opl();
int Seq();

/1 Seq and opl introduced here
/1 Error, Seq has changed neani ng

The declaration of op1 uses Seq as its return type, thereby introducing Seq into the scope of interface Bad. Thereafter, Seq can only be
used as a type name that denotes a sequence of strings, so the compiler flags the declaration of the second operation as an error.

Note that fully-qualified identifiers are not introduced into the current scope:

Slice

nodul e M

{

sequences<string> Seq;

interface Bad

{
M :Seq opl();
int Seq();

/1 Only opl introduced here
/] K

In general, a fully-qualified name (one that is anchored at the global scope and, therefore, begins with a :

: scope resolution operator) does

not introduce any name into the current scope. On the other hand, a qualified name that is not anchored at the global scope introduces only

the first component of the name:
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Slice

nodul e M

{

sequence<string> Seq;

i nterface Bad

{
M : Seq opl(); /1 Mand opl introduced here, but not Seq
int Seq(); Il K

Name Lookup Rules
When searching for the definition of a name that is not anchored at the global scope, the compiler first searches backward in the current

scope of a definition of the name. If it can find the name in the current scope, it uses that definition. Otherwise, the compiler successively
searches enclosing scopes for the name until it reaches the global scope. Here is an example to illustrate this:
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Slice
nodul e ML
{
sequence<doubl e> Seq;
nmodul e M2
{
sequence<string> Seq; /1 OK, hides ::M.:: Seq
i nterface Base
{
Seq opl(); /1 Returns sequence of string
}
}
nodul e MB
{
interface Derived extends M::Base
{
Seq op2(); /1 Returns sequence of double
}
sequence<bool > Seq; /1 OK, hides ::M.:: Seq
interface |
{
Seq op(); /1l Returns sequence of boo
}
}
interface |
{
Seq op(); /!l Returns sequence of double
}
}

Note that M2: : Deri ved: : op2 returns a sequence of doubl e, even though ML: : Base: : op1l returns a sequence of st ri ng. That is, the
meaning of a type in a base interface is irrelevant to determining its meaning in a derived interface — the compiler always searches for a
definition only in the current scope and enclosing scopes, and never takes the meaning of a name from a base interface or class.

Scoping Rules for Parameters and Data Members

A Slice operation creates a new naming scope in which all parameter names must be unique:
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Slice
interface
{
void opl(string p, int P); /1l Error, differs only in case
void op2(int n, out int n); /1 Error, duplicate
void op3(string s, int i); Il K
}

It's legal for parameters to reuse the names of symbols in enclosing scopes, including the name of the operation, class, interface or module:

Slice
nodul e M
{
sequence<string> Seq;
interface |
{
string query(string query); /1 OK to reuse operation nane
void opl(int I); /1 OKto reuse nane of enclosing
type
voi d op2(Seq Seq); /1 OKto reuse type name
void op3(int M; /'l OK to reuse nodul e nane
}
}

The rules for data members are similar to those of parameters:

Structures =~ Member names must be unique within the structure.
Exceptions Member names must be unigue within the exception, including any members inherited from base exceptions.

Classes Member names must be unique within the class, including any members inherited from base classes. Members must not
duplicate the names of operations defined by the class or inherited by any base classes or interfaces.

As for parameters, data members can reuse the names of symbols in enclosing scopes. The examples below illustrate these rules:
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Slice
nodul e M
{
struct S
{
int i;
string s; /1 OK to reuse nane of enclosing type
long I|; /1 Error, differs only in case
bool M /[l OK to reuse nodul e nane
}
interface |
{
void op();
}
cl ass Base
{
string nane;
}
class C extends Base inplenents |
{
S S /[l OKto reuse type name
byte c; /1l OK to reuse nane of enclosing type
string op; /1 Error, duplicates inherited I::op
string Nane; // Error, differs only in case from Base:: nane
}
exception ErrorBase
{
string reason;
}
exception Error extends ErrorBase
{
long error; // OKto reuse nane of enclosing type
int reason; // Error, duplicates inherited ErrorBase::reason
}

Scoping Rules in Prior Ice Releases

The scoping rules for parameters and data members were more restrictive in Ice 3.5 and earlier releases:

® A data member cannot have the same name as its enclosing type:
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Slice

class C

{

int ¢c; // Error

® A data member cannot have the same name as its type:

Slice

nodul e M

{
sequence<string> Seq;
struct S

{
Seq Seq; // Error, use ::M:Seq as the type instead

You can work around this limitation by using the fully-qualified type name.

® A parameter cannot have the same name as its operation:

Slice
void op(int op); // Error
® A parameter cannot have the same name as its type:
Slice
nodul e M
{

sequence<string> Seq;
interface |
{
voi d op(Seq Seq); // Error, use ::M:Seq as the type
i nst ead

}

You can work around this limitation by using the fully-qualified type name.

See Also

® |exical Rules
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Metadata

Slice has the concept of a metadata directive. For example:

Slice

["java:type:java.util.LinkedList<lnteger>"] sequence<int> IntSeq;

A metadata directive can appear as a prefix to any Slice definition. Metadata directives appear in a pair of square brackets and contain one
or more string literals separated by commas. For example, the following is a syntactically valid metadata directive containing two strings:

Slice

["a", "b"] interface Exanple {}

Metadata directives are not part of the Slice language per se: the presence of a metadata directive has no effect on the client-server
contract, that is, metadata directives do not change the Slice type system in any way. Instead, metadata directives are targeted at specific
back-ends, such as the code generator for a particular language mapping. In the preceding example, the j ava: prefix indicates that the
directive is targeted at the Java code generator.

Metadata directives permit you to provide supplementary information that does not change the Slice types being defined, but somehow
influences how the compiler will generate code for these definitions. For example, a metadata directive j ava: t ype: j ava. uti | . Li nkedL
i st <T> instructs the Java code generator to map a sequence to a linked list instead of an array (which is the default).

Metadata directives are also used to create skeletons that support Asynchronous Method Dispatch (AMD).

Apart from metadata directives that are attached to a specific definition, there are also global metadata directives. For example:

Slice

[["]java: package: com acrme"] ]

Note that a global metadata directive is enclosed by double square brackets, whereas a local metadata directive (one that is attached to a
specific definition) is enclosed by single square brackets. Global metadata directives are used to pass instructions that affect the entire
compilation unit. For example, the preceding metadata directive instructs the Java code generator to generate the contents of the source file
into the Java package com acne. Global metadata directives must precede any definitions in a file (but can appear following any #i ncl ude
directives).

We discuss specific metadata directives in the relevant chapters to which they apply.

You can find a summary of all metadata directives in Slice Metadata Directives.

See Also

® Slice Metadata Directives
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Serializable Objects

Ice for Java and Ice for .NET allow you to send native Java and CLR objects as operation parameters. The Ice run time automatically
serializes and deserializes the objects as part of an invocation. This mechanism allows you to transmit Java and CLR objects that do not
have a corresponding Slice definition.

On this page:
® The serializable Metadata Directive

® Architectural Implications

The seri al i zabl e Metadata Directive

To enable serialization, the parameter type must be a byte sequence with appropriate metadata. For example:

Slice

["java:serializabl e: SonePackage. JavaCd ass"]
sequence<byt e> JavaQbj ;

i nterface JavaExanpl e

{
voi d sendJavaChj (Javathj o0);

["clr:serializabl e: SomeNanespace. CLRC ass"]
sequence<byte> CLROj ;

i nterface CLRExampl e

{
voi d sendCLROhj (CLRObj 0);

The j ava: seri al i zabl e metadata indicates that the corresponding byte sequence holds a Java serializable type named SonePackage.
JavaCl ass. Your program must provide an implementation of this class; the class must implement j ava. i 0. Seri al i zabl e.

Similarly, the cl r: seri al i zabl e metadata indicates that the corresponding byte sequences holds a CLR serializable type named SoneNa
mespace. CLRO ass. Your program must provide an implementation of this class; the class must be marked with the Seri al i zabl e attrib
ute.

Architectural Implications

The seri al i zabl e metadata directive permits you to transmit arbitrary Java and CLR objects across the network without the need to
define corresponding Slice classes or structures. This is mainly a convenience feature: you could achieve the same thing by using ordinary
Slice byte sequences and explicitly serializing your Java or CLR objects into byte sequences at the sending end, and deserializing them at
the receiving end. The seri al i zabl e metadata conveniently takes care of these chores for you and so is simpler to use.

Despite its convenience, you should use this feature with caution because it destroys language transparency. For example, a serialized Java
object is useless to a C++ server. All the C++ server can do with such an object is to pass it on to some other process as a byte sequence.
(Of course, if that receiving process is a Java process, it can deserialize the byte sequence.)

Further, a serialized object can be deserialized only if client and server agree on the definition of the serialized class. In Java, this is enforced
by the seri al Ver si onUl Dfield of each instance; in the CLR, client and server must reference identical assembly versions. This creates
much tighter coupling of client and server than exchanging Slice-defined types.

And, of course, if you build a system that relies on, for example, the exchange of serialized Java objects and you later find that you need to
add C++ or C# components to the system, these components cannot do anything with the serialized Java objects other than pass them
around as a blob of bytes.
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So, if you do use these features, be clear that this implies tighter coupling between client and server, and that it creates additional library
versioning and distribution issues because all parts of the system must agree on the implementation of the serialized objects.

See Also

® Serializable Objects in Java
® Serializable Objects in C#
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Deprecating Slice Definitions

All Slice compilers support a metadata directive that allows you to deprecate a Slice definition. For example:

Slice

i nterface Exampl e

{

["deprecate: someCperation() has been deprecated, use alternativeQpe
ration() instead."]
voi d sonmeQperation();

voi d alternativeQperation();

The [ "depr ecat e"] metadata directive causes the compiler to emit code that generates a warning if you compile application code that
uses a deprecated feature. This is useful if you want to remove a feature from a Slice definition but do not want to cause a hard error.

The message that follows the colon is optional; if you omit the message and use [ " depr ecat e"] , the Slice compilers insert a default
message into the generated code.

You can apply the [ " depr ecat e"] metadata directive to Slice constructs other than operations (for example, a structure or sequence
definition).

See Also

® Generating Slice Documentation
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Using the Slice Compilers
Ice provides a separate Slice compiler for each language mapping, as shown below:

Language  Compiler

C++ slice2cpp

C# slice2cs
Java slice2java
JavaScript slice2js
MATLAB slice2mat!| ab
Objective-C sl i ce2objc
PHP sl i ce2php
Python sl i ce2py
Ruby slice2rb

The Slice compilers.

The compilers share a similar command-line syntax:

<conpi | er-name> [options] file...

Regardless of which compiler you use, a number of command-line options are common to the compilers for any language mapping. (See the
appropriate language mapping chapter for options that are specific to a particular language mapping.) The common command-line options
are:

® -h, --help
Displays a help message.

® -v, --version
Displays the compiler version.

* - DNAME
Defines the preprocessor symbol NAME.

® - DNAME=DEF
Defines the preprocessor symbol NAME with the value DEF.

* - UNAME
Undefines the preprocessor symbol NAVE.

®* -IDR
Add the directory DI Rto the search path for #i ncl ude directives.

* -E
Print the preprocessor output on st dout .

® --output-dir DIR
Place the generated files into directory DI R, which must already exist.

® -d, --debug
Print debug information showing the operation of the Slice parser.

® --depend
Print dependency information to standard output by default, or to the file specified by the - - depend- fi | e option. No code is
generated when this option is specified. The output includes the complete list of Slice files that the input Slice files depend on
through direct or indirect inclusion; this output may include other files depending on the target programming language. The Ice for
C++ build system uses the script conf i g/ makedepend. py to process and include this output in Makef i | es.
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® --depend-xm
Print dependency information in XML format to standard output by default, or to the file specified by the - - depend-f i | e option. No
code is generated when this option is specified. The output consists of the complete list of Slice files that the input Slice files depend
on through direct or indirect inclusion, and is identical will all Slice compilers.

® --depend-file FILE
Directs dependency information to the specified file. The output format depends on whether - - depend or - - depend- xnl is also
specified.

* --validate
Checks the provided command-line options for correctness, and does not generate any code.

The Slice compilers permit you to compile more than a single source file, so you can compile several Slice definitions at once, for example:

slice2cpp -1. filel.ice file2.ice file3.ice

See Also

® Slice Compilation
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Slice Checksums

As distributed applications evolve, developers and system administrators must be careful to ensure that deployed components are using the
same client-server contract. Unfortunately, mistakes do happen, and it is not always readily apparent when they do.

To minimize the chances of this situation, the Slice compilers support an option that generates checksums for Slice definitions, thereby
enabling two peers to verify that they share an identical client-server contract. The checksum for a Slice definition includes details such as
parameter and member names and the order in which operations are defined, but ignores information that is not relevant to the client-server
contract, such as metadata, comments, and formatting.

This option causes the Slice compiler to construct a dictionary that maps Slice type identifiers to checksums. A server typically supplies an
operation that returns its checksum dictionary for the client to compare with its local version, at which point the client can take action if it
discovers a mismatch.

The dictionary type is defined in the file | ce/ Sl i ceChecksunDi ct . i ce as follows:

Slice

nodul e | ce

{

di ctionary<string, string> SliceChecksunDict;

This type can be incorporated into an application's Slice definitions like this:

Slice
#i ncl ude <lce/ SliceChecksunDict.ice>

nmodul e M
{
i nterface MyServer
{
i denpotent |ce:: SliceChecksunDi ct get SliceChecksuns();
I/

The key of each element in the dictionary is a Slice type ID, and the value is the checksum of that type.

For more information on generating and using Slice checksums, see the appropriate language mapping chapter.

See Also

® Type IDs
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Generating Slice Documentation

On this page:

® Documenting Slice Definitions
® Comment Syntax
Hyperlinks
Explicit Cross References
Markup for Operations
General HTML Markup
® Using Doxygen for Slice Documentation
® Selecting a Doxygen Version
® Configuring Doxygen
® Linking to ZeroC Documentation

Documenting Slice Definitions

Adding comments to your Slice definitions is useful because it helps readers understand the semantics of your application's interfaces and
data types. To make your comments more accessible, you can process your Slice files with Doxygen to produce output in HTML and other
formats. Furthermore, the Slice compiler for each supported language mapping will transfer your Slice comments to the code that it
generates for your Slice types, which means you can also process your generated code with a documentation generator and get meaningful
results. You'll need to consider whether to generate documentation from Slice files, from generated code, or both.

The Slice API reference offers an example of the HTML output that Doxygen generates for Ice's own Slice files.

Comment Syntax

Slice uses a Javadoc-style syntax (described below) for comments. Doxygen and Slice compilers such as sl i ce2cpp and sl i ce2j ava ful
ly support this syntax. The Slice compilers do not recognize any other Doxygen-compatible comment syntax.

As an example of the Slice comment syntax, here is the definition of | ce: : Current:

Slice

/**

* I nformation about the current nethod invocation for servers. Each

* operation on the server has a <tt>Current</tt> as its inplicit fina
* paraneter. <tt>Current</tt> is nostly used for Ice services. Most

* applications ignore this paraneter.

*
**/
|l ocal struct Current

{

/**

* The obj ect adapter.

**/

bj ect Adapt er adapter;

/**

* I nformation about the connection over which the current

* method i nvocation was received. |If the invocation is direct
* due to collocation optinization, this value is set to null

**/

Connecti on con;
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/**

* The Ice object identity.

**/
Identity id;
/**

* The facet.
***/

string facet;

/**

* The operation nane.

**/

string operation;

/**

* The node of the operation.

**/

Oper ati onMbde node;

/**

* The request context, as received fromthe client.

**/

Cont ext ctx;

/**

* The request id unless oneway (0) or collocated (-1).

**/

i nt requestld,;

/**

* The encodi ng version used to encode the input and out put

**/

Copyright 2018, ZeroC, Inc.



Ice 3.7.1 Documentation

Encodi ngVer si on encodi ng;

If you look at the comments, you will see these reflected in the documentation for | ce: : Cur r ent in the online Slice AP