| Title: | Interactive Charts of Nested and Hierarchical Data with 'D3.js' | 
| Version: | 0.5.0 | 
| Description: | Builds interactive 'd3.js' hierarchical visualisation easily. D3partitionR makes it easy to build and customize sunburst, circle treemap, treemap, partition chart, ... | 
| Depends: | R (≥ 3.3.1) | 
| Imports: | data.table, magrittr, htmlwidgets, functional, RColorBrewer, titanic | 
| License: | AGPL-3 | 
| Encoding: | UTF-8 | 
| LazyData: | true | 
| RoxygenNote: | 6.0.1 | 
| NeedsCompilation: | no | 
| Packaged: | 2017-10-07 14:24:29 UTC; Antoi | 
| Author: | Antoine Guillot [aut, cre], Mike Bostock [aut, cph] (d3.js library, http://d3js.org, nested treemap, icicle, zoomable circle treemap and sunb), Susie Lu [aut, cph] (d3-legend, http://d3-legend.susielu.com/), Kerry Rodden [aut, cph] (Breadcrumb Code for fixed sized breadcrumb.), Nadieh Bremer [aut, cph] (Placement of labels on arcs, https://www.visualcinnamon.com/2015/09/placing-text-on-arcs.html), Hub Spot [aut, cph] (tether.js) | 
| Maintainer: | Antoine Guillot <antoine.guil@outlook.fr> | 
| Repository: | CRAN | 
| Date/Publication: | 2017-10-07 14:36:03 UTC | 
Creates a D3partitionR object
Description
Creates a D3partitionR object
Usage
D3partitionR()
Value
A blank D3partitionR object (S3 class)
Shiny bindings for D3partitionR
Description
Output and render functions for using D3partitionR within Shiny applications and interactive Rmd documents.
Usage
D3partitionROutput(outputId, width = "100%", height = "400px")
renderD3partitionR(expr, env = parent.frame(), quoted = FALSE)
Arguments
| outputId | output variable to read from | 
| width,height | Must be a valid CSS unit (like  | 
| expr | An expression that generates a D3partitionR | 
| env | The environment in which to evaluate  | 
| quoted | Is  | 
Append data to a D3partitionR object
Description
Append data to a D3partitionR object
Usage
add_data(D3partitionR_object, data, steps, count = "value", color = "name",
  label = "name", tooltip = "name", aggregate_fun = NULL)
Arguments
| D3partitionR_object | The D3partitionR object to which the data should be appended | 
| data | a data.frame object | 
| steps | The vector of steps to be used | 
| count | The variable to be used as the count variable, typically, the number of occurences. | 
| color | a variable to use as color (default: name) | 
| label | a variable to use as label (default: name) | 
| tooltip | a variable to use as tooltip (default: name) | 
| aggregate_fun | A named list of function which will be used to aggregates to variables used in color, label or tooltips. This only applies to variable in the provided dataset. | 
Value
The D3partitionR object with the appended data
Add informations (for instance new names, colors, ....) to the nodes of a D3_partitionR object
Description
Add informations (for instance new names, colors, ....) to the nodes of a D3_partitionR object
Usage
add_nodes_data(D3partitionR_object, nodes_data)
Arguments
| D3partitionR_object | The D3partitionR object to which the data should be appended | 
| nodes_data | a names list where the name of each element is the name of a node. The data will be appended to the node in the nested list | 
Value
The D3partitionR object with the appended nodes data
Add a title to a D3partitionR object
Description
Add a title to a D3partitionR object
Usage
add_title(D3partitionR_object, text, style = NULL)
Arguments
| D3partitionR_object | The D3partitionR object to which the data should be appended | 
| text | Title text | 
| style | A valid CSS string which will be applied to the title) | 
Value
A D3partitionR object
Aggregate a data.frame in long format with a column containing steps of each session For instance the function can be used with a frame of the form Unique ID - Step - Value 1 - ... -Value N
Description
Aggregate a data.frame in long format with a column containing steps of each session For instance the function can be used with a frame of the form Unique ID - Step - Value 1 - ... -Value N
Usage
aggregate_sessions_to_path(data, step_col = "step", id_col = "ID",
  values_cols = NULL, agg_function_path = sum, agg_function_session = sum,
  sep = "->")
Arguments
| data | A dataframe | 
| step_col | The name of the column containig the steps. The steps are assumed to be ordered | 
| id_col | Column containing the unique identifier of each session | 
| values_cols | Names of the other columns to keep. Default: NULL | 
| agg_function_path | Aggregation function on a path level | 
| agg_function_session | Aggregation function on a session level | 
| sep | String used to separate the different steps. Default: "->" | 
Value
A data.table with the columns specified in count_col, value_cols and one column per step in the path
Compile D3partitionR object to plot it
Description
Compile D3partitionR object to plot it
Usage
compile_D3_partitionR(D3partitionR_object)
Arguments
| D3partitionR_object | The D3partitionR object to which the data should be appended | 
Value
A D3partitionR compiled object
Return al the leaf names
Description
Return al the leaf names
Usage
compute_unique_leaf_name(nested_list)
Arguments
| nested_list | A nested_list where each node has a name attribute | 
Transform a dataframe to a nested lists structure (i.e. hierarchical).
Description
Transform a dataframe to a nested lists structure (i.e. hierarchical).
Usage
df_to_nest(data, step_cols, nodes_data = NULL, count_col = "value",
  value_cols = NULL, agg_function = sum, na_behavior = "rm")
Arguments
| data | The data frame to convert to the nested structure. It needs to have several comlumns, each ones account for a given step | 
| step_cols | vector containing the names of the columns which should be used as steps. The vector should be ordered. ex: c('step1','step2','step3') | 
| nodes_data | A named list to add addition informations to each nodes | 
| count_col | Number of occurences in this path (succesion of steps). Default: NULL | 
| value_cols | Names of the other columns to keep. Default: NULL | 
| agg_function | aggregation function to be applied to value_cols.Ex: mean, sum. Default: sum. Weighted version can also be used, the weighting will be done using the counting variable | 
| na_behavior | How to deal with missing data ? | 
Value
A data.table with the columns specified in count_col, value_cols and one column per step in the path
Find the maximum values of a given var in a tree
Description
Find the maximum values of a given var in a tree
Usage
find_min_max_tree(nested_list, variable = "value")
Arguments
| nested_list | A nested_list where each node has a name attribute | 
| variable | A nested_list where each node has a name attribute | 
Return al the possible nodes names
Description
Return al the possible nodes names
Usage
get_all_nodes_names(nested_list, variable = "name")
Arguments
| nested_list | A nested_list where each node has a name attribute | 
| variable | the variable to collect | 
Check if a variable is present in a D3partitionR object
Description
Check if a variable is present in a D3partitionR object
Usage
is_present_variable(variable, D3partitionR_object)
Arguments
| variable | The variable which presence is to be checked | 
| D3partitionR_object | The D3partitionR object | 
Value
TRUE/FALSE
Plot D3partitionR object
Description
Plot D3partitionR object
Usage
## S3 method for class 'D3partitionR'
plot(x, width = NULL, height = NULL,
  elementId = NULL, sizingPolicy = NULL, ...)
Arguments
| x | A D3partitionR object to plot | 
| width | width of the widget in pixel/percent | 
| height | height of the widget in pixel/percent | 
| elementId | html id of the widget | 
| sizingPolicy | sizing policy | 
| ... | parameters for method consistency | 
Examples
require(titanic)
require(data.table)
## Reading data
titanic_data = data.table(titanic::titanic_train)
##Agregating data to have unique sequence for the 4 variables
var_names=c('Sex','Embarked','Pclass','Survived')
data_plot=titanic_data[,.N,by=var_names]
data_plot[,(var_names):=lapply(var_names,function(x){data_plot[[x]]=paste0(x,' ',data_plot[[x]])
})]
## Plotting the chart
library("magrittr")
d3=D3partitionR() %>%
 add_data(data_plot,count = 'N',steps=c('Sex','Embarked','Pclass','Survived')) %>%
 add_title('Titanic')
## Not run: 
plot(d3)
## End(Not run)
Check if the scale variable is discrete or continuous
Description
Check if the scale variable is discrete or continuous
Usage
scale_type(color_variable, D3partitionR_object)
Arguments
| color_variable | The color variable to be assessed | 
| D3partitionR_object | The D3partitionR object | 
Value
TRUE/FALSE
Set the chart_type
Description
Set the chart_type
Usage
set_chart_type(D3partitionR_object, chart_type)
Arguments
| D3partitionR_object | The D3partitionR object to which the data should be appended | 
| chart_type | type fo chart to use (in c('sunburst','treemap','circle_treemap','partition_chart','icicle') ) | 
Value
A D3partitionR object
Add a custom discrete color scale
Description
Add a custom discrete color scale
Usage
set_continuous_color_scale(D3partitionR_object, color_palette)
Arguments
| D3partitionR_object | The D3partitionR object to which the data should be appended | 
| color_palette | a vector of two colors, the first one is use on the bottom of the scale, the other on the top. | 
Value
A D3partitionR object
Add a custom discrete color scale
Description
Add a custom discrete color scale
Usage
set_discrete_color_scale(D3partitionR_object, color_palette)
Arguments
| D3partitionR_object | The D3partitionR object to which the data should be appended | 
| color_palette | A vector (or a named vector with levels of the variable color) | 
Value
A D3partitionR object
Set the labels parameters
Description
Set the labels parameters
Usage
set_labels_parameters(D3partitionR_object, visible = T, cut_off = 3,
  style = NULL)
Arguments
| D3partitionR_object | The D3partitionR object to which the data should be appended | 
| visible | boolean, should the labels be diplayed ? Default: TRUE | 
| cut_off | a numeric variable between 0 and 100. Nodes which represent less than cut_off percents of the current root will have their labels hidden. | 
| style | a valid CSS string to be applied to the labels. Default: NULL | 
Value
A D3partitionR object
Set the legend parameter
Description
Set the legend parameter
Usage
set_legend_parameters(D3partitionR_object, visible = T, zoom_subset = F,
  width = 100)
Arguments
| D3partitionR_object | The D3partitionR object to which the data should be appended | 
| visible | boolean, should the trail be diplayed ? Default: TRUE | 
| zoom_subset | boolean, if TRUE, only the modalities present in the children of the zoomed rrot are displayed kin the legend. | 
| width | legend width in pixel | 
Value
A D3partitionR object
Configuration of a D3partitionR object as a Shiny input
Description
Configuration of a D3partitionR object as a Shiny input
Usage
set_shiny_input(D3partitionR_object, input_id,
  enabled_inputs = list(clicked_node = T, leaves = T, nodes = T, ancestors =
  T, children_path = F))
Arguments
| D3partitionR_object | The D3partitionR object to which the data should be appended | 
| input_id | The id of the input | 
| enabled_inputs | which inputs should be enabled ? defaut to list(clicked_node=T,leaf=T,nodes=T,ancestors=T,child_path=F) | 
Value
A D3partitionR object
Set the tooltips parameter
Description
Set the tooltips parameter
Usage
set_tooltip_parameters(D3partitionR_object, visible = T, style = NULL,
  builder = "table")
Arguments
| D3partitionR_object | The D3partitionR object to which the data should be appended | 
| visible | boolean, should the trail be diplayed ? Default: TRUE | 
| style | a valid CSS string to be applied to the tooltip. Default: NULL | 
| builder | Tooltip builder to use for the tooltip. Can either one of the predefined tooltip ('table','basic') or a js expression returning a tooltip. | 
Value
A D3partitionR object
Enable/disable the trail of steps
Description
Enable/disable the trail of steps
Usage
set_trail(D3partitionR_object, visible = T)
Arguments
| D3partitionR_object | The D3partitionR object to which the data should be appended | 
| visible | boolean, should the trail be diplayed ? Default: TRUE | 
Value
A D3partitionR object
Strip a dataframe containing a step into separate columns
Description
Strip a dataframe containing a step into separate columns
Usage
strip_path(data, path_col = "path", count_col = "count",
  value_cols = NULL, sep = "->")
Arguments
| data | A dataframe containing the path. | 
| path_col | Name of the column containing the path. The path should be a string of the format "step 1 -> step 2 -> step 3" .Default: "path" | 
| count_col | Name of the column containing the number of occurences of the path. Default: "count" | 
| value_cols | Names of the other columns to keep. Default: NULL | 
| sep | String used to separate the different steps. Default: "->" | 
Value
A data.table with the columns specified in count_col, value_cols and one column per step in the path
Build tooltip html function
Description
Build tooltip html function
Usage
tooltip_builder(type)
Arguments
| type | a tooltip type: 'basic' (i.e the variable value) or 'table'(i.e. a table with the variables names and value) |