Changes in v1.4.0
- Change the default value to
max_highlighted = 1000
in textplot_terms()
.
- Add
...
to customize text labels to textplot_terms()
.
- Highlight words in different colors when a dicitonary is passed to
highlighted
.
- Add
mode = "predict"
and remove = FALSE
to bootstrap_lss()
.
Changes in v1.3.2
- Fix the error in
textplot_terms()
when the frequency of terms are zero (#85).
Changes in v1.3.1
- Fix the range of scores when
cut
is used.
- Add
bootstrap_lss()
as an experimental function.
Changes in v1.3.0
- Add
cut
to predict
.
- Move examples to the new package website: http://koheiw.github.io/LSX.
- Rename “rescaling” to “rescale” for simplicity and consistency.
- Improve random sampling of words to highlight in
textplot_terms()
to avoid congestion.
Changes in v1.2.0
- Add
group_data
to textmodel_lss()
to simplify the workflow.
- Add
max_highlighted
to textplot_terms()
to automatically highlight polarity words.
Changes in v1.1.4
- Update
as.textmodel_lss()
to avoid errors in textplot_terms()
when terms
is used.
Changes in v1.1.3
- Restore examples for
textmodel_lss()
.
- Defunct
char_keyness()
that has been deprecated for long.
Changes in v1.1.2
- Update examples to pass CRAN tests.
Changes in v1.1.1
- Add
min_n
to predict()
to make polarity scores of short documents more stable.
Changes in v1.1.0
- Add
as.textmodel_lss()
for textmodel_lss objects to allow modifying existing models.
- Allow
terms
in textmodel_lss()
to be a named numeric vector to give arbitrary weights.
Changes in v1.0.2
- Add the
auto_weight
argument to textmodel_lss()
and as.textmodel_lss()
to improve the accuracy of scaling.
- Remove the
group
argument from textplot_simil()
to simplify the object.
- Make
as.seedwords()
to accept multiple indices for upper
and lower
.
Changes in v1.0.0
- Add
max_count
to textmodel_lss.fcm()
that will be passed to x_max
in rsparse::GloVe$new()
.
- Add
max_words
to textplot_terms()
to avoid overcrowding.
- Make
textplot_terms()
to work with objects from textmodel_lss.fcm()
.
- Add
concatenator
to as.seedwords()
.
Changes in v0.9.9
- Correct how
textstat_context()
and char_context()
computes statistics.
- Deprecate
char_keyness()
.
Changes in v0.9.8
- Stop using functions and arguments deprecated in quanteda v3.0.0.
Changes in v0.9.7
- Make
as.textmodel_lss.matrix()
more reliable.
- Remove quanteda.textplots from dependencies.
Changes in v0.9.6
- Updated to reflect changes in quanteda (creation of quanteda.textstats).
Changes in v0.9.4
- Fix
char_context()
to always return more frequent words in context.
- Experimental
textplot_factor()
has been removed.
as.textmodel_lss()
takes a pre-trained word-embedding.
Changes in v0.9.3
- Add
textstat_context()
and char_context()
to replace char_keyness()
.
- Make the absolute sum of seed weight equal to 1.0 in both upper and lower ends.
textplot_terms()
takes glob patterns in character vector or a dictionary object.
char_keyness()
no longer raise error when no patter is found in tokens object.
- Add
engine
to smooth_lss()
to apply locfit()
to large datasets.
Changes in v0.9.2
- Updated unit tests for the new versions of stringi and quanteda.
Changes in v0.9.0
- Renamed from LSS to LSX for CRAN submission.
Changes in v0.8.7
- Added
textplot_terms()
to improve visualization of model terms.