Changes in v1.5.0
- Add
textmodel_lss.tokens() to use
wordvector::textmodel_word2vec() as the underlying
engine.
- Rename
w to k in
textmodel_lss.fcm() to make it consistent with other
methods.
Changes in v1.4.5
- Enable grouping by multiple variables using
smooth_lss().
- Fix tests for
textplot_*() for upcoming
ggplot2.
Changes in v1.4.4
- Fix a bug in
as.textmodel_lss() when a
textmodel_wordvector object is given.
- Add
sampling to textplot_terms() to
improve highlighting of words when the distribution of polarity scores
is asymmetric.
Changes in v1.4.3
- Improve the handling of
textmodel_wordvector objects
from the wordvector package in
as.textmodel_lss().
- Deprecate
auto_weight in
textmodel_lss().
- Deprecate
textplot_simil().
Changes in v1.4.2
- Add
as.textmodel_lss() for objects from the
wordvector package.
- Reduce dependent packages by moving rsparse,
irlba and rsvd to Suggests.
- Fix handling of phrasal patterns in
textplot_terms().
- Improve objects created by
as.textmodel_lss.textmodel_lss().
Changes in v1.4.1
- Add
group to smooth_lss() to smooth LSS
scores by group.
- Add
optimize_lss() as an experimental function.
Changes in v1.4.0
- Change the default value to
max_highlighted = 1000 in
textplot_terms().
- Add
... to customize text labels to
textplot_terms().
- Highlight words in different colors when a dictionary is passed to
highlighted.
- Add
mode = "predict" and remove = FALSE to
bootstrap_lss().
Changes in v1.3.2
- Fix the error in
textplot_terms() when the frequency of
terms are zero (#85).
Changes in v1.3.1
- Fix the range of scores when
cut is used.
- Add
bootstrap_lss() as an experimental function.
Changes in v1.3.0
- Add
cut to predict.
- Move examples to the new package website:
http://koheiw.github.io/LSX.
- Rename “rescaling” to “rescale” for simplicity and consistency.
- Improve random sampling of words to highlight in
textplot_terms() to avoid congestion.
Changes in v1.2.0
- Add
group_data to textmodel_lss() to
simplify the workflow.
- Add
max_highlighted to textplot_terms() to
automatically highlight polarity words.
Changes in v1.1.4
- Update
as.textmodel_lss() to avoid errors in
textplot_terms() when terms is used.
Changes in v1.1.3
- Restore examples for
textmodel_lss().
- Defunct
char_keyness() that has been deprecated for
long.
Changes in v1.1.2
- Update examples to pass CRAN tests.
Changes in v1.1.1
- Add
min_n to predict() to make polarity
scores of short documents more stable.
Changes in v1.1.0
- Add
as.textmodel_lss() for textmodel_lss objects to
allow modifying existing models.
- Allow
terms in textmodel_lss() to be a
named numeric vector to give arbitrary weights.
Changes in v1.0.2
- Add the
auto_weight argument to
textmodel_lss() and as.textmodel_lss() to
improve the accuracy of scaling.
- Remove the
group argument from
textplot_simil() to simplify the object.
- Make
as.seedwords() to accept multiple indices for
upper and lower.
Changes in v1.0.0
- Add
max_count to textmodel_lss.fcm() that
will be passed to x_max in
rsparse::GloVe$new().
- Add
max_words to textplot_terms() to avoid
overcrowding.
- Make
textplot_terms() to work with objects from
textmodel_lss.fcm().
- Add
concatenator to as.seedwords().
Changes in v0.9.9
- Correct how
textstat_context() and
char_context() computes statistics.
- Deprecate
char_keyness().
Changes in v0.9.8
- Stop using functions and arguments deprecated in quanteda
v3.0.0.
Changes in v0.9.7
- Make
as.textmodel_lss.matrix() more reliable.
- Remove quanteda.textplots from dependencies.
Changes in v0.9.6
- Updated to reflect changes in quanteda (creation of
quanteda.textstats).
Changes in v0.9.4
- Fix
char_context() to always return more frequent words
in context.
- Experimental
textplot_factor() has been removed.
as.textmodel_lss() takes a pre-trained
word-embedding.
Changes in v0.9.3
- Add
textstat_context() and char_context()
to replace char_keyness().
- Make the absolute sum of seed weight equal to 1.0 in both upper and
lower ends.
textplot_terms() takes glob patterns in character
vector or a dictionary object.
char_keyness() no longer raise error when no patter is
found in tokens object.
- Add
engine to smooth_lss() to apply
locfit() to large datasets.
Changes in v0.9.2
- Updated unit tests for the new versions of stringi and
quanteda.
Changes in v0.9.0
- Renamed from LSS to LSX for CRAN submission.
Changes in v0.8.7
- Added
textplot_terms() to improve visualization of
model terms.