MFPCA
is an R
-package for calculating a PCA
for multivariate functional data observed on different domains, that may
also differ in dimension. The estimation algorithm relies on univariate
basis expansions for each element of the multivariate functional
data.
MFPCA
allows to calculate a principal component analysis
for multivariate (i.e. combined) functional data on up to
three-dimensional domains:
It implements various univariate bases:
The representation of the data is based on the object-oriented funData
package, hence all functionalities for plotting, arithmetics etc.
included therein may be used.
The MFPCA
pacakge is available on CRAN
.
To install the latest version directly from GitHub, please use
devtools::install_github("ClaraHapp/MFPCA")
(install devtools
before).
If you would like to use the cosine bases make sure that the
C
-library fftw3
is installed on your
computer before you install MFPCA
. Otherwise,
MFPCA
is installed without the cosine bases and will throw
an error if you attempt to use functions that need
fftw3
.
The MFPCA
package depends on the R
-package
funData
for representing (multivariate) functional data. It uses functionalities
from abind
,
foreach
,
irlba
,
Matrix
,
mgcv
and plyr
.
The theoretical foundations of multivariate functional principal component analysis are described in:
C. Happ, S. Greven (2018): Multivariate Functional Principal Component Analysis for Data Observed on Different (Dimensional) Domains. Journal of the American Statistical Association, 113(522): 649-659 .
For more details on the implementation, which is based on the funData
package, and a case study, see:
C. Happ-Kurz (2020): Object-Oriented Software for Functional Data. Journal of Statistical Software, 93(5): 1-38 .
Please use GitHub issues for reporting bugs or issues.