Package ‘NMAR’

January 16, 2026
Type Package

Title Estimation under not Missing at Random Nonresponse
Version 0.1.1

Description Methods to estimate finite-population parameters under nonresponse that is not missing at
random (NMAR, nonignorable). Incorporates auxiliary information and user-
specified response models,
and supports independent samples and complex survey designs via objects from the 'sur-
vey' package.
Provides diagnostics and optional variance estimates. For methodological background see
Qin, Leung and Shao (2002) <doi:10.1198/016214502753479338> and Rid-
dles, Kim and Im (2016) <doi:10.1093/jssam/smv047>.

License MIT + file LICENSE

URL https://github.com/ncn-foreigners/NMAR,
https://ncn-foreigners.ue.poznan.pl/NMAR/index.html

BugReports https://github.com/ncn-foreigners/NMAR/issues
Encoding UTF-8

Imports stats, nlegslv, utils, generics, Formula

RoxygenNote 7.3.3

Suggests knitr, rmarkdown, testthat (>= 3.0.0), numDeriv, survey,
svrep, broom, progressr, future, future.apply, spelling

VignetteBuilder knitr
Config/testthat/edition 3
Depends R (>=3.5)
LazyData true
Language en-US
NeedsCompilation no

Author Maciej Beresewicz [aut, cre] (ORCID:
<https://orcid.org/0000-0002-8281-4301>),
Igor Kotodziej [aut, ctb],
Mateusz Iwaniuk [aut, ctb]

https://doi.org/10.1198/016214502753479338
https://doi.org/10.1093/jssam/smv047
https://github.com/ncn-foreigners/NMAR
https://ncn-foreigners.ue.poznan.pl/NMAR/index.html
https://github.com/ncn-foreigners/NMAR/issues
https://orcid.org/0000-0002-8281-4301

2 Contents

Maintainer Maciej Beresewicz <maciej.beresewicz@ue.poznan.pl>

Repository CRAN

Date/Publication 2026-01-16 10:50:02 UTC

Contents
coef.nmar_result e 3
coef.summary_nmar_resulto o 3
confint.nmar_result e e 4
confint.summary_nmar_result L 4
el_engine e 5
engine_config 8
ENZINE_NAME« v v e v v e e e e e e e e e e e e e e e e e 9
exptilt_engine L 10
exptilt_nonparam_engine Lo e 12
fitted.nmar_result e 14
format.nmar_engine e e 15
formulanmar_result. 15
glance.nmar_result L L 16
0102 16
nmar_engine_helpers L L 18
polish_households 19
Print.nmar_engineo e e e e 20
print.nmar_result 21
printnmar_result_el 21
print.nmar_result_exptilt L. 22
print.summary_nmar_result oL 22
riddles_casel e 23
riddles_case2 e e e 24
riddles_case3 25
riddles_cased 26
SC e e e e e e 27
summary.nmar_result L. e e e e e e e 27
summary.nmar_result_el 28
summary.nmar_result_exptilt oL 0oL 28
tidy.nmar_result oL 29
veov.nmar_result L L e e e e e 29
VOUNG . . o o oo o e e e 30
weights.nmar_result 31

Index 32

coef.nmar_result 3

coef.nmar_result Default coefficients for NMAR results

Description

Returns missingness-model coefficients if available.

Usage
S3 method for class 'nmar_result'
coef(object, ...)
Arguments
object An ‘nmar_result® object.
Ignored.
Value

A named numeric vector or ‘NULL".

coef.summary_nmar_result
Coefficient table for summary objects

Description

Returns a coefficients table (Estimate, Std. Error, statistic, p-value) from a ‘summary_nmar_result**
object when missingness-model coefficients and a variance matrix are available. If the summary
does not carry missingness-model coefficients, returns ‘NULL".

Usage
S3 method for class 'summary_nmar_result'
coef(object, ...)
Arguments
object An object of class ‘summary_nmar_result® (or subclass).
Ignored.
Details

The statistic column is labelled "t value" when finite degrees of freedom are available (e.g., survey
designs); otherwise, it is labelled "z value".

4 confint.summary_nmar._result

Value

A data.frame with rows named by coefficient, or ‘NULL" if not available.

confint.nmar_result Wald confidence interval for base NMAR results

Description

‘Wald confidence interval for base NMAR results

Usage
S3 method for class 'nmar_result'
confint(object, parm, level = 0.95, ...)
Arguments
object An object of class ‘nmar_result".
parm Ignored.
level Confidence level.
Ignored.
Value

A 1x2 numeric matrix with confidence limits.

confint.summary_nmar_result
Confidence intervals for coefficient table (summary objects)

Description

Returns Wald-style confidence intervals for missingness-model coefficients from a ‘summary_nmar_result**
object. Uses t-quantiles when finite degrees of freedom are available, otherwise normal quantiles.

Usage

S3 method for class 'summary_nmar_result'
confint(object, parm, level = 0.95, ...)

el_engine 5

Arguments
object An object of class ‘summary_nmar_result* (or subclass).
parm A specification of which coefficients are to be given confidence intervals, either a
vector of names or a vector of indices; by default, all coefficients are considered.
level The confidence level required.
Ignored.
Value

A numeric matrix with columns giving lower and upper confidence limits for each parameter. Row
names correspond to coefficient names. Returns ‘NULL* if coefficients are unavailable.

el_engine Empirical likelihood (EL) engine for NMAR

Description

Constructs an engine specification for the empirical likelihood (EL) estimator of a full-data mean
under nonignorable nonresponse (NMAR).

Usage

el_engine(
standardize = TRUE,
trim_cap = Inf,
on_failure = c("return”, "error"),
variance_method = c("bootstrap”, "none"),
bootstrap_reps = 500,
auxiliary_means = NULL,
control = list(),
strata_augmentation = TRUE,
n_total = NULL,

start = NULL,
family = c("logit"”, "probit")
)
Arguments
standardize logical; standardize predictors. Default TRUE.
trim_cap numeric; cap for EL weights (Inf = no trimming).
on_failure character; "return” or "error” on solver failure.

variance_method
character; one of "bootstrap” or "none".

bootstrap_reps integer; number of bootstrap replicates when variance_method = "bootstrap”.

6 el_engine

auxiliary_means

named numeric vector; population means for auxiliary design columns. Names
must match the materialized model.matrix column names on the first RHS (after
formula expansion), e.g., factor indicator columns created by model.matrix()
or transformed terms like I (X*2). Auxiliary intercepts are always dropped au-
tomatically, so do not supply (Intercept). If NULL (default) and the outcome
contains at least one NA, auxiliary means are estimated from the full input (in-
cluding nonrespondents): IID uses unweighted column means of the auxiliary
design; survey designs use the design-weighted means based on weights(design).
This corresponds to the QLS case where i, is replaced by X (the full-sample
mean) when auxiliary variables are observed for all sampled units.

control Optional solver configuration forwarded to nlegslv::nleqslv(). Provide a
single list that may include solver tolerances (e.g., xtol, ftol, maxit) and, op-
tionally, top-level entries global and xscalm for globalization and scaling. Ex-
ample: control = list(maxit = 500, xtol = 1e-10, ftol =1e-10, global =
"gline"”, xscalm="auto").

strata_augmentation
logical; when TRUE (default), survey designs with an identifiable strata structure
are augmented with stratum indicators and corresponding population shares in
the auxiliary block (Wu-style strata augmentation). Has no effect for data. frame
inputs or survey designs without strata.

n_total numeric; optional when supplying respondents-only data (no NA in the outcome).
For data. frame inputs, set to the total number of sampled units before filtering
to respondents. For survey.design inputs, set to the total design-weight total
on the same analysis scale as weights(design) (default sum(weights(design))).
If omitted and the outcome contains no NAs, the estimator errors, requesting
n_total.

start list; optional starting point for the solver. Fields:

* beta: named numeric vector of missingness-model coefficients on the orig-
inal (unscaled) scale, including (Intercept).

* Wor z: starting value for population response rate (8 <W < 1) or its logit (z).
If both are provided, z takes precedence.

* lambda: named numeric vector of auxiliary multipliers on the original scale
(names must match auxiliary design columns; no intercept). Values are
mapped to the scaled space internally.

family Missingness (response) model family. Either "logit" (default) or "probit”,
or a custom family object: a list with components name, linkinv, mu.eta,
score_eta, and optionally d2mu.deta2. When d2mu. deta2 is absent the solver
uses Broyden/numeric Jacobians.

Details

The implementation follows Qin, Leung, and Shao (2002): the response mechanism is modeled as
w(y,z;8) = P(R=1|Y = y,X = z) and the joint law of (Y] X) is represented nonparametri-
cally by respondent masses that satisfy empirical likelihood constraints. The mean is estimated as
a respondent weighted mean with weights proportional to w; = a;/D; (3, W, \), where a; are base
weights (a; = 1 for IID data and a; = d; for survey designs) and D; is the EL denominator.

el_engine 7

For data.frame inputs the estimator solves the Qin-Leung-Shao (QLS) estimating equations for
(8, W, A\) with W reparameterized as z = logit(W), and profiles out the response multiplier Ay
using the closed-form QLS identity (their Eq. 10). For survey.design inputs the estimator uses a
design-weighted analogue (Chen and Sitter 1999; Wu 2005) with an explicit Ay and an additional
linkage equation involving the nonrespondent design-weight total 7.

Numerical stability:

» W is optimized on the logit scale so 0 < W < 1.

* The response-model linear predictor is capped and EL denominators D; are floored at a small
positive value; the analytic Jacobian is consistent with this guard via an active-set mask.

* Optional trimming (trim_cap) is applied only after solving, to the unnormalized masses w; =
a;/ D;; this changes the returned weights and therefore the point estimate.

Formula syntax and data constraints: nmar() accepts a partitioned right-hand side y_miss ~
auxiliaries | response_only. Variables left of | enter auxiliary moment constraints; variables
right of | enter only the response model. The outcome (LHS) is always included as a response-
model predictor through the evaluated LHS expression; explicit use of the outcome on the RHS is
rejected. The response model always includes an intercept; the auxiliary block never includes an
intercept.

To include a covariate in both the auxiliary constraints and the response model, repeat it on both
sides, e.g. y_miss ~ X | X.

Auxiliary means: If auxiliary_means = NULL (default) and the outcome contains at least one
NA, auxiliary means are estimated from the full input and used as X in the QLS constraints. For
respondents-only data (no NA in the outcome), n_total must be supplied; and if the auxiliary
RHS is non-empty, auxiliary_means must also be supplied. When standardize = TRUE, supply
auxiliary_means on the original data scale; the engine applies the same standardization internally.

Survey scale: For survey.design inputs, n_total (if provided) must be on the same analysis
scale as weights(design). The default is sum(weights(design)).

Convergence and identification: the stacked EL system can have multiple solutions. Adding
response-only predictors (variables to the right of |) can make the problem sensitive to starting
values. Inspect diagnostics such as jacobian_condition_number and consider supplying start =
list(beta=..., W=...) when needed.

Variance: The EL engine supports bootstrap standard errors via variance_method = "bootstrap”
or can skip variance with variance_method = "none"”. Set a seed for reproducible bootstrap results.

Bootstrap requires suggested packages: for IID resampling it requires future. apply (and future);
for survey replicate-weight bootstrap it requires survey and svrep.

Value

A list of class "nmar_engine_el" (also inheriting from "nmar_engine") containing configuration
fields to be supplied to nmar(). Users rarely access fields directly; instead, pass the engine to
nmar () together with a formula and data.

References

Qin, J., Leung, D., and Shao, J. (2002). Estimation with survey data under nonignorable nonre-
sponse or informative sampling. Journal of the American Statistical Association, 97(457), 193-200.
doi:10.1198/016214502753479338

https://doi.org/10.1198/016214502753479338

8 engine_config

Chen, J., and Sitter, R. R. (1999). A pseudo empirical likelihood approach for the effective use of
auxiliary information in complex surveys. Statistica Sinica, 9, 385-406.

Wu, C. (2005). Algorithms and R codes for the pseudo empirical likelihood method in survey
sampling. Survey Methodology, 31(2), 239-243.

See Also

nmar, weights.nmar_result, summary.nmar_result

Examples

set.seed(1)

n <- 200

X <= rnorm(n)

Y <- 2+ 0.5 x X + rnorm(n)

p <- plogis(-0.7 + 0.4 * scale(Y)[, 11)
R <= runif(n) <p

if (all(R)) R[1] <- FALSE

df <- data.frame(Y_miss =Y, X = X)
df$Y_miss[!R] <- NA_real_

Estimate auxiliary mean from full data (QLS "use Xbar" case)
eng <- el_engine(auxiliary_means = NULL, variance_method = "none")

Put X in both the auxiliary block and the response model (QLS-like)
fit <- nmar(Y_miss ~ X | X, data = df, engine = eng)
summary (fit)

Response-only predictors can be placed to the right of |:
Z <= rnorm(n)

df2 <- data.frame(Y_miss =Y, X =X, Z = Z)

df2$Y_miss[!R] <- NA_real_

eng2 <- el_engine(auxiliary_means
fit2 <- nmar(Y_miss ~ X | Z, data
print(fit2)

NULL, variance_method = "none")
df2, engine = eng2)

Survey design usage
if (requireNamespace("survey”, quietly = TRUE)) {
des <- survey::svydesign(ids = ~1, weights = ~1, data = df)

eng3 <- el_engine(auxiliary_means = NULL, variance_method = "none")
fit3 <- nmar(Y_miss ~ X, data = des, engine = eng3)
summary (fit3)

}

engine_config Extract engine configuration

engine_name 9

Description

Returns the underlying configuration of an engine as a named list. This is intended for programmatic
inspection (e.g., parameter tuning, logging). The returned object should be treated as read-only.

Usage

engine_config(x)

Arguments

X An object inheriting from class ‘nmar_engine*.

Value

A named list of configuration fields.

engine_name Canonical engine name

Description

Returns a stable, machine-friendly identifier for an engine object. This identifier is also used in
‘nmar_result$meta$engine_name* to keep a consistent naming scheme between configurations and
results.

Usage

engine_name(x)

Arguments

X An object inheriting from class ‘nmar_engine‘.

Value

A single character string, e.g. "empirical_likelihood".

10 exptilt_engine

exptilt_engine Exponential tilting (ET) engine for NMAR estimation

Description

Constructs a configuration for the exponential tilting estimator under nonignorable nonresponse
(NMAR). The estimator solves Sa(¢p,%) = 0, using nlegslv to apply EM algorithm.

Usage

exptilt_engine(
standardize = FALSE,
on_failure = c("return”, "error"),
variance_method = c("bootstrap”, "none"),
bootstrap_reps = 10,
supress_warnings = FALSE,
control = list(),
family = c("logit", "probit"),
y_dens = c("normal”, "lognormal”, "exponential”, "binomial"),
stopping_threshold = 1,
sample_size = 2000

)

Arguments
standardize logical; standardize predictors. Default TRUE.
on_failure character; "return” or "error” on solver failure

variance_method
character; one of "bootstrap”, or "none”.
bootstrap_reps integer; number of bootstrap replicates when variance_method = "bootstrap”.
supress_warnings
Logical; suppress variance-related warnings.
control Named list of control parameters passed to nlegslv::nlegslv. Common pa-
rameters include:
* maxit: Maximum number of iterations (default: 100)
¢ method: Solver method - "Newton” or "Broyden” (default: "Newton")

n on non

e global: Global strategy - "dbldog”, "pwldog”, "gline"”, "gline", "hook",
or "none"” (default: "dbldog")

¢ xtol: Tolerance for relative error in solution (default: 1e-8)

e ftol: Tolerance for function value (default: 1e-8)

* btol: Tolerance for backtracking (default: 0.01)

* allowSingular: Allow singular Jacobians (default: TRUE)

See ?nleqgslv::nleqgslv for full details.

exptilt_engine

family

y_dens

11

character; response model family, either "logit” or "probit”, or a family ob-
ject created by logit_family() /probit_family().

n o n

Outcome density model ("auto”,
"binomial").

normal”, "lognormal”, "exponential”, or

stopping_threshold

sample_size

Details

Numeric; early stopping threshold. If the maximum absolute value of the score
function falls below this threshold, the algorithm stops early (default: 1).

Integer; maximum sample size for stratified random sampling (default: 2000).
When the dataset exceeds this size, a stratified random sample is drawn to op-
timize memory usage. The sampling preserves the ratio of respondents to non-
respondents in the original data.

The method is a robust Propensity-Score Adjustment (PSA) approach for Not Missing at Random
(NMAR). It uses Maximum Likelihood Estimation (MLE), basing the likelihood on the observed
part of the sample (f(Y;|9; = 1, X)), making it robust against outcome model misspecification.
The propensity score is estimated by assuming an instrumental variable (X5) that is independent
of the response status given other covariates and the study variable. Estimator calculates fractional
imputation weights w;. The final estimator is a weighted average, where the weights are the inverse
of the estimated response probabilities 7;, satisfying the estimating equation:

Z Q(Yi,AXi;a)

T

)

i€ER

where R is the set of observed respondents.

Value

An engine object of class c("nmar_engine_exptilt”,

non

nmar_engine"). This is a configuration

list; it is not a fit. Pass it to nmar.

References

Minsun Kim Riddles, Jae Kwang Kim, Jongho Im A Propensity-score-adjustment Method for Non-
ignorable Nonresponse Journal of Survey Statistics and Methodology, Volume 4, Issue 2, June 2016,

Pages 215-245.

Examples

generate_test_data <- function(

n_rows = 500,

n_cols =1,
case = 1

r
a=20.8,
b=-0.2

) {

Generate X variables - fixed to match comparison

exptilt_nonparam_engine

X <- as.data.frame(replicate(n_cols, rnorm(n_rows, @, sqrt(x_var))))
colnames(X) <- paste@("x", 1:n_cols)

Generate Y - fixed coefficients to match comparison
eps <- rnorm(n_rows, @, sqrt(eps_var))
if (case == 1) {
Use fixed coefficient of 1 for all x variables to match: y = -1 + x1 + epsilon
X$Y <- as.vector(-1 + as.matrix(X) %*% rep(1, n_cols) + eps)

}
else if (case == 2) {
X$Y <- -2 + 0.5 * exp(as.matrix(X) %*% rep(1, n_cols)) + eps
}
else if (case == 3) {
X$Y <- -1 + sin(2 * as.matrix(X) %*% rep(1, n_cols)) + eps
}

else if (case == 4) {
X$Y <- -1 + 0.4 * as.matrix(X)*3 %*% rep(1, n_cols) + eps
}

Y_original <- X$Y

Missingness mechanism - identical to comparison
pi_obs <= 1 / (1 + exp(-(a + b * X$Y)))

Create missing values
mask <- runif(nrow(X)) > pi_obs
mask[1] <- FALSE # Ensure at least one observation is not missing
X$Y[mask] <- NA

return(list(X = X, Y_original = Y_original))
}
res_test_data <- generate_test_data(n_rows = 500, n_cols = 1, case = 1)
X <- res_test_data$x

exptilt_config <- exptilt_engine(
y_dens = 'normal’,
control = list(maxit = 10),
stopping_threshold = 0.1,
standardize = FALSE,
family = 'logit',
bootstrap_reps = 5
)
formula = Y ~ x1
res <- nmar(formula = formula, data = x, engine = exptilt_config, trace_level = 1)
summary(res)

exptilt_nonparam_engine
Nonparametric exponential tilting (EM) engine for NMAR

exptilt_nonparam_engine 13

Description

Constructs a configuration for the nonparametric exponential tilting estimator under nonignorable
nonresponse (NMAR). This engine implements the "Fully Nonparametric Approach" from **Ap-
pendix 2** of Riddles et al. (2016). The estimator uses an Expectation-Maximization (EM) algo-
rithm to directly estimate the nonresponse odds O(x1,y) for aggregated, categorical data.

Usage

nn

exptilt_nonparam_engine(refusal_col = , max_iter = 100, tol_value = 1e-06)

Arguments
refusal_col character; the column name in data that contains the aggregated counts of non-
respondents (refusals).
max_iter integer; the maximum number of iterations for the EM algorithm.
tol_value numeric; the convergence tolerance for the EM algorithm. The loop stops when
the sum of absolute changes in the odds matrix is less than this value.
Details

This engine is designed for cases where all variables (outcomes Y, response predictors X_18,
and instrumental variables $X_2§) are categorical, and the input data is pre-aggregated into strata.

The method assumes an instrumental variable X is available. The response probability is assumed
to depend on X7 and Y, but *not* on X5.

The EM algorithm iteratively solves for the nonresponse odds:

M.

O(t+1)(xy1ﬂ7y*) - _¥Yn
Ny

where M 15?3?? is the expected count of non-respondents (calculated in the E-step) and N+, is the

observed count of respondents for a given stratum (x_1, y).

The final output from the nmar call is an object containing data_to_return, an aggregated data

frame where the original ’refusal’ counts have been redistributed into the outcome columns (e.g.,
’Voted_A’, *Voted_B’) as expected non-respondent counts.

Value

n on

An engine object of class c("nmar_engine_exptilt_nonparam”, "nmar_engine"). This is a con-
figuration list; it is not a fit. Pass it to nmar.

References

Minsun Kim Riddles, Jae Kwang Kim, Jongho Im A Propensity-score-adjustment Method for Non-
ignorable Nonresponse Journal of Survey Statistics and Methodology, Volume 4, Issue 2, June 2016,
Pages 215-245. (See **Appendix 2** for this specific method).

14 fitted.nmar_result

Examples

Test data (Riddles 2016, Table 9)
voting_data_example <- data.frame(
Gender = rep(c("Male”, "Male”, "Male”, "Male”, "Female"”, "Female"”, "Female", "Female"), 1),
Age_group = c("20-29", "30-39", "40-49", ">=50", "20-29", "30-39", "40-49", "50+"),
Voted_A = c(93, 104, 146, 560, 106, 129, 170, 501),
Voted_B = c(115, 233, 295, 350, 159, 242, 262, 218),
Other = c(4, 8, 5, 3, 8, 5, 5, 7),
Refusal = c(28, 82, 49, 174, 62, 70, 69, 211),
Total = c(240, 427, 495, 1087, 335, 446, 506, 937)
)

np_em_config <- exptilt_nonparam_engine(
refusal_col = "Refusal”,
max_iter = 100,
tol_value = 0.001

)

Formula: Y1 + Y2 + ... ~ Xl_vars | X2_vars
Here, Y = Voted_A, Voted_B, Other

x1 = Gender (response model)

x2 = Age_group (instrumental variable)

em_formula <- Voted_A + Voted_B + Other ~ Gender | Age_group

results_em_np <- nmar(
formula = em_formula,
data = voting_data_example,
engine = np_em_config,
trace_level = 0@

)

View the final adjusted counts
(Original counts + expected non-respondent counts)
print(results_em_np$data_final)

fitted.nmar_result Default fitted values for NMAR results

Description

Returns fitted response probabilities if available.

Usage

S3 method for class 'nmar_result'
fitted(object, ...)

format.nmar_engine 15

Arguments
object An ‘nmar_result* object.
Ignored.
Value

A numeric vector (possibly length 0).

format.nmar_engine One-line formatter for NMAR engines

Description

Returns a single concise line summarizing an engine configuration.

Usage
S3 method for class 'nmar_engine'
format(x, ...)
Arguments
X An engine object inheriting from ‘nmar_engine‘.
Unused.
Value

A length-1 character vector.

formula.nmar_result Default formula for NMAR results

Description

Returns the estimation formula if available.

Usage
S3 method for class 'nmar_result'
formula(x, ...)

Arguments
X An ‘nmar_result* object.

Ignored.

16

Value

A formula or ‘NULL".

nmar

glance.nmar_result Glance summary for NMAR results

Description

One-row diagnostics for NMAR fits.

Usage
S3 method for class 'nmar_result'
glance(x, ...)
Arguments
X An object of class ‘nmar_result*.
Ignored.
Value

A one-row data frame with diagnostics and metadata.

nmar Not Missing at Random (NMAR) Estimation

Description

High-level interface for NMAR estimation.

nmar () validates basic inputs and dispatches to an engine (for example el_engine). The engine
controls the estimation method and interprets formula; see the engine documentation for model-

specific requirements.

Usage

nmar (formula, data, engine, trace_level = 0)

nmar 17

Arguments

formula A two-sided formula. Many engines support a partitioned right-hand side via
|, for example y_miss ~blockl1_vars | block2_vars. The meaning of these
blocks is engine-specific (see the engine documentation). In the common "miss-
ing values indicate nonresponse" workflow, the left-hand side is the outcome
with NA values for nonrespondents.

data A data.frame or a survey.design containing the variables referenced by formula.
engine An NMAR engine configuration object, typically created by el_engine, exptilt_engine,

or exptilt_nonparam_engine. This object defines the estimation method and
tuning parameters and must inherit from class "nmar_engine".

trace_level Integer 0-3; controls verbosity during estimation (default 9):

* 0: no output (silent mode);

* 1: major steps only (initialization, convergence, final results);
* 2: iteration summaries and key diagnostics;

* 3: full diagnostic output.

Value

An object of class "nmar_result"” with an engine-specific subclass (for example "nmar_result_el").
Use summary (), se, confint (), weights(), coef (), fitted(), and generics: :tidy()/generics::glance()
to access estimates, standard errors, weights, and diagnostics.

See Also

el_engine, exptilt_engine, exptilt_nonparam_engine, summary.nmar_result, weights.nmar_result

Examples

set.seed(1)

n <- 200

x1 <= rnorm(n)

z1 <= rnorm(n)

y_true <- 0.5 + 0.3 * x1 + 0.2 * z1 + rnorm(n, sd = 0.3)
resp <- rbinom(n, 1, plogis(2 + 0.1 *x y_true + 0.1 * z1))
if (all(resp == 1)) respl[sample.int(n, 1)] <- oL

y_obs <- ifelse(resp == 1, y_true, NA_real_)

Empirical likelihood engine

df_el <- data.frame(Y_miss = y_obs, X = x1, Z = z1)

eng_el <- el_engine(variance_method = "none")

fit_el <- nmar(Y_miss ~ X | Z, data = df_el, engine = eng_el)
summary (fit_el)

Exponential tilting engine (illustrative)
dat_et <- data.frame(y = y_obs, x2 = z1, x1 = x1)
eng_et <- exptilt_engine(

y_dens = "normal”,

family = "logit”,

18 nmar_engine_helpers

variance_method = "none”
)
fit_et <- nmar(y ~ x2 | x1, data = dat_et, engine = eng_et)
summary (fit_et)

Survey design example (same outcome, random weights)
if (requireNamespace("survey”, quietly = TRUE)) {
w <- runif(n, 0.5, 2)
des <- survey::svydesign(ids = ~1, weights = ~w,
data = data.frame(Y_miss = y_obs, X = x1, Z = z1))
eng_svy <- el_engine(variance_method = "none")
fit_svy <- nmar(Y_miss ~ X | Z, data = des, engine = eng_svy)
summary (fit_svy)

Bootstrap variance usage
if (requireNamespace("future.apply”, quietly = TRUE)) {
set.seed(2)
eng_boot <- el_engine(
variance_method = "bootstrap”,
bootstrap_reps = 20
)
fit_boot <- nmar(Y_miss ~ X | Z, data = df_el, engine = eng_boot)
se(fit_boot)

nmar_engine_helpers S3 helpers for NMAR engine objects

Description

Lightweight, user-facing methods for engine configuration objects (class ‘nmar_engine‘). These
improve discoverability and provide a consistent print surface across engines while keeping the
objects as simple lists internally.

Design

- ‘engine_name()‘ returns a canonical identifier used across the package (e.g., in ‘nmar_result$meta$engine_name®).
- ‘print.nmar_engine()‘ provides a concise, readable summary of the engine configuration; engine-

specific classes reuse the parent method unless they need to override it. - ‘engine_config()* returns

the underlying configuration as a named list for programmatic inspection.

polish_households 19

polish_households Polish Household Budget Data with Simulated Nonignorable Nonre-
sponse

Description

This dataset is derived from the ‘h05° dataset (Polish household budgets for 2005) found in the
‘RClas‘ package. The original data was cleaned to remove all rows with missing values.

Usage

polish_households

Format

A data frame with 19,330 rows and 17 columns. The key variables are:

class TODO
voi TODO
bio TODO
type TODO
d345 TODO
d347 TODO
d348 TODO
d36 TODO
d38 TODO
dé1 TODO
noper TODO
income TODO
expenditure TODO

y_exp Numeric. The **true** scaled expenditure (‘expenditure / mean(expenditure)‘). This is the
complete study variable without missingness.

resp TODO
R Integer. The simulated response indicator (1=responded, O=nonresponse).

y_exp_miss Numeric. The **observed** scaled expenditure, containing 7,778 ‘NA‘ values where
‘R =0°. This is the variable to be used as the NMAR-affected outcome.

20 print.nmar._engine

Details

To create a realistic test case for nonignorable nonresponse (NMAR), a nonresponse mechanism
was simulated and applied to the scaled expenditure variable (‘y_exp®).

The key simulation steps were: 1. ‘y_exp* (true study variable) was created by scaling total expen-
diture. 2. A true response probability (‘resp‘) was created using the logistic model: ‘plogis(1 - 0.6 *
y_exp)‘. 3. A response indicator (‘R‘) was simulated based on this probability. 4. The final variable
‘y_exp_miss‘ was generated by setting ‘y_exp‘ to ‘NA* wherever ‘R‘ was 0.

The response is **nonignorable** because the probability of missingness depends directly on the
value of the expenditure variable itself.

Source

TODO

See Also

‘riddles_casel*, ‘riddles_case2°‘, ‘riddles_case3‘, ‘riddles_case4*

print.nmar_engine Print method for NMAR engines

Description

Provides a compact, human-friendly summary for ‘nmar_engine‘ objects. Child classes inherit this
method; they can override it if they need a different presentation.

Usage
S3 method for class 'nmar_engine'
print(x, ...)
Arguments
X An engine object inheriting from ‘nmar_engine‘.
Unused.
Value

x*, invisibly.

print.nmar._result

21

print.nmar_result Print method for nmar_result

Description

Print method for nmar_result

Usage
S3 method for class 'nmar_result'
print(x, ...)
Arguments
X nmar_result object
Additional parameters
Value

‘x ¢, invisibly.

print.nmar_result_el Print method for EL results

Description

Compact print for objects of class nmar_result_el.

Usage

S3 method for class 'nmar_result_el'
print(x, ...)

Arguments
X An object of class nmar_result_el.
Ignored.
Value

X, invisibly.

22 print.summary_nmar._result

print.nmar_result_exptilt
Print method for Exponential Tilting results (engine-specific)

Description

This print method is tailored for ‘nmar_result_exptilt* objects and shows a concise, human-friendly
summary of the estimation result together with exptilt-specific diagnostics (loss, iterations) and a
compact view of the response coefficients stored in the fitted model.

Usage
S3 method for class 'nmar_result_exptilt'
print(x, ...)
Arguments
X An object of class ‘nmar_result_exptilt*.
Ignored.
Value

x*, invisibly.

print.summary_nmar_result
Print method for summary.nmar_result

Description

Print method for summary.nmar_result

Usage
S3 method for class 'summary_nmar_result'
print(x, ...)
Arguments
X summary_nmar_result object
Additional parameters
Value

x*, invisibly.

riddles_casel 23

riddles_casel Riddles Simulation, Case 1: Linear Mean

Description

A simulated dataset of 500 observations based on Simulation Study I (Model 1, Case 1) of Riddles,
Kim, and Im (2016). The data features a nonignorable nonresponse (NMAR) mechanism where the
response probability depends on the study variable ‘y*.

Usage

riddles_casel

Format

A data frame with 500 rows and 4 variables:

X Numeric. The auxiliary variable, x ~ Normal(0, 0.5).

y Numeric. The study variable with nonignorable nonresponse. ‘y* contains ‘NA‘s for nonrespon-
dents.

y_true Numeric. The complete, true value of ‘y* before missingness was introduced.

delta Integer. The response indicator (1 = responded, O = nonresponse).

Details

This dataset was generated using the following model parameters (n = 500):

Density for x: x ~ Normal(mean = 0, variance = 0.5)
Density for error: e ~ Normal(mean = 0, variance = 0.9)
True Model (Case 1): y_true=-1+x+e

Response Model (NMAR): logit(pi) = 0.8 - 0.2 * y_true

Source

Riddles, M. K., Kim, J. K., & Im, J. (2016). A Propensity-Score-Adjustment Method for Nonig-
norable Nonresponse. Journal of Survey Statistics and Methodology, 4(1), 1-31.

24 riddles_case2

riddles_case?2 Riddles Simulation, Case 2: Exponential Mean

Description

A simulated dataset of 500 observations based on Simulation Study I (Model 1, Case 2) of Riddles,
Kim, and Im (2016). The data features a nonignorable nonresponse (NMAR) mechanism where the
response probability depends on the study variable ‘y*.

Usage

riddles_case?

Format

A data frame with 500 rows and 4 variables:

X Numeric. The auxiliary variable, x ~ Normal(0, 0.5).

y Numeric. The study variable with nonignorable nonresponse. ‘y* contains ‘NA ‘s for nonrespon-
dents.

y_true Numeric. The complete, true value of ‘y* before missingness was introduced.

delta Integer. The response indicator (1 = responded, O = nonresponse).

Details

This dataset was generated using the following model parameters (n = 500):

Density for x: x ~ Normal(mean = 0, variance = 0.5)
Density for error: e ~ Normal(mean = 0, variance = 0.9)
True Model (Case 2): y_true =-2 + 0.5 * exp(x) + e
Response Model (NMAR): logit(pi) = 0.8 - 0.2 * y_true

Source

Riddles, M. K., Kim, J. K., & Im, J. (2016). A Propensity-Score-Adjustment Method for Nonig-
norable Nonresponse. Journal of Survey Statistics and Methodology, 4(1), 1-31.

riddles_case3 25

riddles_case3 Riddles Simulation, Case 3: Sine Wave Mean

Description

A simulated dataset of 500 observations based on Simulation Study I (Model 1, Case 3) of Riddles,
Kim, and Im (2016). The data features a nonignorable nonresponse (NMAR) mechanism where the
response probability depends on the study variable ‘y*.

Usage

riddles_case3

Format

A data frame with 500 rows and 4 variables:

X Numeric. The auxiliary variable, x ~ Normal(0, 0.5).

y Numeric. The study variable with nonignorable nonresponse. ‘y* contains ‘NA‘s for nonrespon-
dents.

y_true Numeric. The complete, true value of ‘y* before missingness was introduced.

delta Integer. The response indicator (1 = responded, O = nonresponse).

Details

This dataset was generated using the following model parameters (n = 500):

Density for x: x ~ Normal(mean = 0, variance = 0.5)
Density for error: e ~ Normal(mean = 0, variance = 0.9)
True Model (Case 3): y_true=-1+sin(2 *x) +e
Response Model (NMAR): logit(pi) = 0.8 - 0.2 * y_true

Source

Riddles, M. K., Kim, J. K., & Im, J. (2016). A Propensity-Score-Adjustment Method for Nonig-
norable Nonresponse. Journal of Survey Statistics and Methodology, 4(1), 1-31.

26 riddles_case4

riddles_case4 Riddles Simulation, Case 4: Cubic Mean

Description

A simulated dataset of 500 observations based on Simulation Study I (Model 1, Case 4) of Riddles,
Kim, and Im (2016). The data features a nonignorable nonresponse (NMAR) mechanism where the
response probability depends on the study variable ‘y*.

Usage

riddles_case4

Format

A data frame with 500 rows and 4 variables:

X Numeric. The auxiliary variable, x ~ Normal(0, 0.5).

y Numeric. The study variable with nonignorable nonresponse. ‘y* contains ‘NA‘s for nonrespon-
dents.

y_true Numeric. The complete, true value of ‘y* before missingness was introduced.

delta Integer. The response indicator (1 = responded, O = nonresponse).

Details

This dataset was generated using the following model parameters (n = 500):

Density for x: x ~ Normal(mean = 0, variance = 0.5)
Density for error: e ~ Normal(mean = 0, variance = 0.9)
True Model (Case 4): y_true=-1+04*x"3 +e¢e
Response Model (NMAR): logit(pi) = 0.8 - 0.2 * y_true

Source

Riddles, M. K., Kim, J. K., & Im, J. (2016). A Propensity-Score-Adjustment Method for Nonig-
norable Nonresponse. Journal of Survey Statistics and Methodology, 4(1), 1-31.

se 27

se Extract standard error for NMAR results

Description

Returns the standard error of the primary mean estimate.

Usage
se(object, ...)
Arguments
object An ‘nmar_result® or subclass.
Ignored.
Value

Numeric scalar.

summary.nmar_result Summary method for nmar_result

Description

Summary method for nmar_result

Usage
S3 method for class 'nmar_result'’
summary(object, conf.level = 0.95, ...)
Arguments
object nmar_result object
conf.level Confidence level for intervals.

Additional parameters

Value

An object of class ‘summary_nmar_result’.

28 summary.nmar._result_exptilt

summary.nmar_result_el
Summary method for EL results

Description

Summarize estimation, standard error and missingness-model coefficients.

Usage
S3 method for class 'nmar_result_el'
summary (object, ...)
Arguments
object An object of class nmar_result_el.
Ignored.
Value

An object of class summary_nmar_result_el.

summary.nmar_result_exptilt
Summary method for Exponential Tilting results (engine-specific)

Description

Summarize estimation, standard error and model coefficients.

Usage
S3 method for class 'nmar_result_exptilt'
summary(object, conf.level = 0.95, ...)
Arguments
object An object of class ‘nmar_result_exptilt*.
conf.level Confidence level for confidence interval (default 0.95).
Ignored.
Value

An object of class ‘summary_nmar_result_exptilt.

tidy.nmar._result 29

tidy.nmar_result Tidy summary for NMAR results

Description

Return a data frame with the primary estimate and (if available) missingness-model coefficients.

Usage
S3 method for class 'nmar_result'
tidy(x, conf.level = 0.95, ...)
Arguments
X An object of class ‘nmar_result".
conf.level Confidence level for the primary estimate.
Ignored.
Value

A data frame with one row for the primary estimate and, when available, additional rows for the
response-model coefficients.

vcov.nmar_result Variance-covariance for base NMAR results

Description

Variance-covariance for base NMAR results

Usage
S3 method for class 'nmar_result'
vcov(object, ...)
Arguments
object An object of class ‘nmar_result*.
Ignored.
Value

A 1x1 numeric matrix (the variance of the primary estimate).

30 voting

voting Aggregated Exit Poll Data for Gangdong-Gap (2012)

Description

This dataset contains the aggregated exit poll results for the Gangdong-Gap district in Seoul from
the 2012 nineteenth South Korean legislative election. The data is transcribed directly from Table 9
of Riddles, Kim, and Im (2016).

Usage

voting

Format

A data frame with 8 rows and 7 variables:

Gender Factor. The gender of the voter ("Male", "Female").
Age _group Character. The age group of the voter.

Voted_A Numeric. Count of respondents voting for Party A.
Voted_B Numeric. Count of respondents voting for Party B.
Other Numeric. Count of respondents voting for another party.

Refusal Numeric. Count of sampled individuals who refused to respond (this is the nonresponse
count).

Total Numeric. Total individuals sampled in the group (Responders + Refusals).

Details

In the paper’s application, ‘Gender " is used as the nonresponse instrumental variable and ‘Age_group*
is the primary auxiliary variable .

Source

Riddles, M. K., Kim, J. K., & Im, J. (2016). A Propensity-Score-Adjustment Method for Nonignor-
able Nonresponse. *Journal of Survey Statistics and Methodology*, 4(1), 1-31. (Data from Table
9, p. 20).

weights.nmar_result 31

weights.nmar_result Extract weights from an ‘nmar_result*

Description

Return analysis weights stored in an ‘nmar_result® as either probability-scale (summing to 1) or
population-scale (summing to ‘sample$n_total‘). The function normalizes stored masses and at-
taches informative attributes.

Usage

S3 method for class 'nmar_result'

weights(object, scale = c("probability”, "population”), ...)
Arguments

object An ‘nmar_result* object.

scale One of “"probability" (default) or ‘"population”*.

Additional arguments (ignored).

Value

Numeric vector of weights with length equal to the number of respondents.

Index

+ dataset
polish_households, 19
riddles_casel, 23
riddles_case2, 24
riddles_case3s, 25
riddles_case4, 26
voting, 30

* engine_view
engine_config, 8
engine_name, 9
format.nmar_engine, 15
nmar_engine_helpers, 18
print.nmar_engine, 20

* engine
el_engine, 5
exptilt_engine, 10
exptilt_nonparam_engine, 12

* nmar
nmar, 16

* result_param
coef.nmar_result, 3
confint.nmar_result, 4
fitted.nmar_result, 14
formula.nmar_result, 15
se, 27
vcov.nmar_result, 29
weights.nmar_result, 31

* result_view
coef.summary_nmar_result, 3
confint.summary_nmar_result, 4
glance.nmar_result, 16
print.nmar_result, 21
print.nmar_result_el, 21
print.nmar_result_exptilt, 22
print.summary_nmar_result, 22
summary.nmar_result, 27
summary.nmar_result_el, 28
summary.nmar_result_exptilt, 28
tidy.nmar_result, 29

32

coef.nmar_result, 3
coef.summary_nmar_result, 3
confint.nmar_result, 4
confint.summary_nmar_result, 4

el_engine, 5, 16, 17
engine_config, 8

engine_name, 9
exptilt_engine, 10, 17
exptilt_nonparam_engine, 12, 17

fitted.nmar_result, 14
format.nmar_engine, 15
formula.nmar_result, 15

glance.nmar_result, 16

nmar, 8, 11, 13,16
nmar_engine_helpers, 18

polish_households, 19
print.nmar_engine, 20
print.nmar_result, 21
print.nmar_result_el, 21
print.nmar_result_exptilt, 22
print.summary_nmar_result, 22

riddles_casel, 23
riddles_case2, 24
riddles_case3s, 25
riddles_case4, 26

se, 17,27
summary.nmar_result, 8, 17,27
summary.nmar_result_el, 28
summary.nmar_result_exptilt, 28

tidy.nmar_result, 29

vcov.nmar_result, 29
voting, 30

weights.nmar_result, 8, 17, 31

	coef.nmar_result
	coef.summary_nmar_result
	confint.nmar_result
	confint.summary_nmar_result
	el_engine
	engine_config
	engine_name
	exptilt_engine
	exptilt_nonparam_engine
	fitted.nmar_result
	format.nmar_engine
	formula.nmar_result
	glance.nmar_result
	nmar
	nmar_engine_helpers
	polish_households
	print.nmar_engine
	print.nmar_result
	print.nmar_result_el
	print.nmar_result_exptilt
	print.summary_nmar_result
	riddles_case1
	riddles_case2
	riddles_case3
	riddles_case4
	se
	summary.nmar_result
	summary.nmar_result_el
	summary.nmar_result_exptilt
	tidy.nmar_result
	vcov.nmar_result
	voting
	weights.nmar_result
	Index

