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Abstract

This introduction to the R package OPSR is a (slightly) modified version of a submis-
sion to the Journal of Statistical Software. Selection bias may arise if unobserved factors
simultaneously influence the selection process for who gets treated (or not), and the out-
come of (not) receiving the treatment. Different methods exist to correct for this bias
depending on whether longitudinal or cross-sectional data is available. A possible cure in
the latter case (where the counterfactual treatment outcome is never observed) is to ex-
plicitly account for the arising error correlation and estimate the covariance matrix of the
selection and outcome processes. This is known as endogenous switching regression. The
R package OPSR introduced in this article provides an easy-to-use, fast and memory effi-
cient interface to ordered probit switching regression, accounting for self-selection into an
ordinal treatment. It handles log-transformed outcomes which need special consideration
when computing conditional expectations and thus treatment effects. Besides the usual
R modeling methods (update(), summary(), predict(), etc.) post-estimation routines
to compute and visualize (weighted) treatment effects are available.

Keywords: ordered probit switching regression, endogenous switching regression, Heckman
selection, selection bias, treatment effect, R.

1. Introduction

The goal of the program evaluation literature is to estimate the effect of a treatment program
(e.g., a new policy, technology, medical treatment, or agricultural practice) on an outcome. To
evaluate such a program, the “treated” are compared to the “untreated”. In an experimental
setting, the treatment can be (randomly) assigned by the researcher. However, in an obser-
vational setting, the treatment is not always exogenously prescribed but rather self-selected.
This gives rise to a selection bias when factors (either observed or unobserved) influencing the
treatment adoption also influence the outcome (also known as selection on observables and
unobservables). Simple group comparison no longer yield an unbiased estimate of the treat-
ment effect. In more technical terms, the counterfactual outcome of the treated (“if they had
not been treated”) does not necessarily correspond to the factual outcome of the untreated.
For example, cyclists riding without a helmet (the “untreated”) might be young and have a
risk-seeking tendency. We therefore potentially overestimate the benefit of wearing a helmet
if we compare the accident rate and/or crash severity rate between those who wear and do
not wear helmets directly. Even if we may control age for the comparison, variables such as
risk-seeking are not readily measured, and it may still be part of the error in applied research
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and thus leading cause of a selection bias.

To properly account for the selection bias, various techniques exist, both for longitudinal
and cross-sectional data. In the first case, difference in differences is a widely adopted
measure. In the latter case, instrumental variables, matching propensity scores, regression-
discontinuity design, and the endogenous switching regression model have been applied (Wang
and Mokhtarian 2024). The endogenous switching regression model, an extension of Heck-
man’s classic sample selection model, is particularly well-suited to correct for both selection
on observables and unobservables (unlike other methods which only address and correct for
selection on observables).

The seminal work by Heckman (1979) proposed a two-part model to address the selection
bias that often occurs when modelling a continuous outcome which is only observable for a
subpopulation. A very nice exposition of this model is given in Cameron and Trivedi (2005,
Chapter 16). The classical Heckman model consists of a probit equation and continuous
outcome equation. A natural extension is then switching regression, where the population
is partitioned into different groups (regimes) and separate parameters are estimated for the
continuous outcome process of each group. This model is originally known as the Roy model
(Cameron and Trivedi 2005) or Tobit-5 model (Amemiya 1985). These classical models (the
Tobit models for truncated, censored or interval data and their extensions) are implemented in
various environments for statistical computing and in R’s (R Core Team 2017) sampleSelection

package (Toomet and Henningsen 2008).

Many different variants can then be derived by either placing different distributional assump-
tions on the errors and/or how the latent process manifests into observed outcomes (i.e., the
dependent variables can be of various types, such as binary, ordinal, censored, or continuous)
more generally known as conditional mixed-process (CMP) models. CMP models comprise
a broad family involving two or more equations featuring a joint error distribution assumed
to be multivariate normal. The Stata (StataCorp 2023) command cmp (Roodman 2011) can
fit such models. The variant at the heart of this paper is an ordered probit switching re-
gression (OPSR) model, with ordered treatments and continuous outcome. Throughout the
text we use the convention that OPSR refers to the general methodology, while OPSR refers
specifically to the package.

OPSR is available as a Stata command, oheckman (Chiburis and Lokshin 2007), which how-
ever, does not allow distinct specifications for the continuous outcome processes (i.e., the same
explanatory variables must be used for all treatment groups). The relatively new R package
switchSelection (Potanin 2024) allows to estimate multivariate and multinomial sample se-
lection and endogenous switching models with multiple outcomes. These models are systems
of ordinal, continuous and multinomial equations and thus nest OPSR as a special case.

OPSR is tailored to one particular method, easy to use (understand, extend and maintain),
fast and memory efficient. Unlike the implementations mentioned, this approach accommo-
dates log-transformed continuous outcomes. Log transformation is a widely used technique in
real-world applications to enhance data normality and meet model assumptions. In multi-layer
models like OPSR, special consideration is required for computing conditional expectations
on the original scale (i.e., back-transform from the log scale) to ensure meaningful real-world
interpretations. OPSR obeys to R’s implicit modeling conventions (by providing a formula
interface to a fitter function and by extending the established generics such as summary(),
predict(), update(), anova(), plot() among others) and produces production-grade out-
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put tables. Meanwhile, it is easy to compute and visualize treatment effects. This work
generalizes the learnings from Wang and Mokhtarian (2024) and makes the OPSR method-
ology readily available. The mathematical notation presented here translates to code almost
verbatim which hopefully serves a pedagogical purpose for the curious reader.

The accommodation of log-transformed outcomes in addition to distinct specifications for
the continuous outcome processes make OPSR more powerful than Stata’s oheckman com-
mand. Compared to switchSelection, OPSR is tailored to one form of switching selection
and supports the extended Formula syntax. Its methods provide more detailed insights for
this particular model (inspired by oheckman) and provide tailored post-estimation routines
such as the computation and visualization of factual estimates under the observed treatment
status, counterfactual estimates under hypothetical treatment status and treatment effects.
We therefore believe that OPSR is the most powerful and easiest to use implementation if
modelers specifically wish to account for selection bias and calculate treatment effects for
interventions with an ordinal nature.

The remainder of this paper is organized as follows: Section 2 outlines the ordered probit
switching regression model, lists all the key formulas underlying the software implementation
and details OPSR’s architecture. In Section 3 the key functionality is demonstrated both on
simulated data and the data from Wang and Mokhtarian (2024) which we use to reproduce
their core model. Further, it is shown, that OPSR can be used to estimate the well-known
Tobit-5 model and yields the same parameters as the implementation in sampleSelection. The
case study in Section 4 leverages tracking data from the TimeUse+ study (Winkler, Meister,
and Axhausen 2024) investigating telework treatment effects on weekly distance traveled.
There, we also compare the OPSR model to a model not accounting for error correlation and
discuss the implications for treatment effects. The summary in Section 5 concludes.

2. Model and software

In the following, we outline the ordered probit switching regression model as well as list all the
key formulas underlying the software implementation. OPSR follows the R-typical formula
interface to a workhorse fitter function. Its architecture is detailed after the mathematical
part.

As alluded, OPSR contains two layers: One process governs the ordinal outcome and separate
processes (for each ordinal outcome) govern the continuous outcomes. The ordinal outcome
can also be thought of as a regime or treatment. In the subsequent exposition, we will refer
to the two processes as selection and outcome process.

We borrow the notation from Wang and Mokhtarian (2024) where also all the derivations are
detailed. For a similar exhibition, Chiburis and Lokshin (2007) can be consulted. Individual
subscripts are suppressed throughout, for simplicity.

Let Z be a latent propensity governing the selection outcome

Z = W γ + ϵ, (1)

where W represents the vector of attributes of an individual, γ is the corresponding vector
of parameters and ϵ ∼ N (0, 1) a normally distributed error term.

As Z increases and passes some unknown but estimable thresholds, we move up from one
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ordinal treatment to the next higher level

Z = j if κj−1 < Z ≤ κj , (2)

where Z is the observed ordinal selection variable, j = 1, . . . , J indexes the ordinal levels of
Z, and κj are the thresholds (with κ0 = −∞ and κJ = ∞). Hence, there are J − 1 thresholds
to be estimated. The probability that an individual self-selects into treatment group j is

P[Z = j] = P[κj−1 < Z ≤ κj ]

= P[κj−1 − W γ < ϵ ≤ κj − W γ]

= Φ(κj − W γ) − Φ(κj−1 − W γ).

(3)

where Φ(·) is the cumulative distribution function of the standard normal distribution.

The outcome model for the jth treatment group is expressed as

yj = Xjβj + ηj , (4)

where yj is the observed continuous outcome, Xj the vector of observed explanatory variables
associated with the jth outcome model, βj is the vector of associated parameters, and ηj ∼
N (0, σ2

j ) is a normally distributed error term. At this point it should be noted that Xj and
W may share some explanatory variables but not all, due to identification problems otherwise
(Chiburis and Lokshin 2007).

The key assumption of OPSR is now that the errors of the selection and outcome models are
jointly multivariate normally distributed
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, (5)

where ρj represents the correlation between the errors of the selection model (ϵ) and the
jth outcome model (ηj). If the covariance matrix should be diagonal (i.e., no error correlation),
no selection-bias exists and the selection and outcome models can be estimated separately.

As shown in Wang and Mokhtarian (2024), the log-likelihood of observing all individuals
self-selecting into treatment j and choosing continuous outcome yj can be expressed as
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(6)

where
∑

¶j♢ means the summation of all the cases belonging to the jth selection outcome,
ϕ(·) and Φ(·) are the density and cumulative distribution function of the standard normal
distribution.
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The conditional expectation can be expressed as

E[yj ♣ Z = j] = Xjβj + E[ηj ♣ κj−1 − W γ < ϵ ≤ κj − W γ]

= Xjβj − ρjσj

ϕ(κj − W γ) − ϕ(κj−1 − W γ)

Φ(κj − W γ) − Φ(κj−1 − W γ)
,

(7)

where the negative fraction (−
ϕ(κj−W γ)−ϕ(κj−1−W γ)
Φ(κj−W γ)−Φ(κj−1−W γ)) is the ordered probit switching regres-

sion model counterpart to the inverse Mills ratio (IMR) term of a binary switching regression
model (because of its resemblance, we will also refer to this fraction as inverse Mills ratio in
the OPSR case). We immediately see, that regressing Xj on yj leads to an omitted variable
bias if ρj ̸= 0 which is the root cause of the selection bias. However, the IMR can be pre-
computed based on an ordered probit model and then included in the second stage regression,
which describes the Heckman correction (Heckman 1979). It should be warned, that since the
Heckman two-step procedure includes an estimate in the second step regression, the result-
ing OLS standard errors and heteroskedasticity-robust standard errors are incorrect (Greene
2002).

To obtain unbiased treatment effects, we must further evaluate the “counterfactual outcome”,
which reflects the expected outcome under a counterfactual treatment (i.e., for j′ ̸= j)

E[yj′ ♣ Z = j] = Xj′βj′ + E[ηj′ ♣ κj−1 − W γ < ϵ ≤ κj − W γ]

= Xj′βj′ − ρj′σj′

ϕ(κj − W γ) − ϕ(κj−1 − W γ)

Φ(κj − W γ) − Φ(κj−1 − W γ)
.

(8)

Let’s assume that yj = ln(Yj + δ) in the previous equations. I.e., the continuous outcome was
log-transformed as is usual in regression analysis. We have to note, that in such cases the
Equations 7-8 provide the conditional expectation of the log-transformed outcome. Therefore
we need to back-transform Yj = exp(yj) − δ which yields

E[Yj ♣ Z = j] = exp

(

Xjβj +
σ2

j

2

)[

Φ(κj − W γ − ρjσj) − Φ(κj−1 − W γ − ρjσj)

Φ(κj − W γ) − Φ(κj−1 − W γ)

]

− δ (9)

for the factual case, and

E[Yj′ ♣ Z = j] = exp

(

Xj′βj′ +
σ2

j′

2

)[

Φ(κj − W γ − ρj′σj′) − Φ(κj−1 − W γ − ρj′σj′)

Φ(κj − W γ) − Φ(κj−1 − W γ)

]

− δ

(10)
for the counterfactual case (Wang and Mokhtarian 2024).

This concludes the mathematical treatment and we briefly outline OPSR’s architecture which
can be conceptualized as follows:

• We provide the usual formula interface to specify a model. To allow for multiple parts
and multiple responses, we rely on the Formula package (Zeileis and Croissant 2010).

• After parsing the formula object, checking the user inputs and computing the model
matrices, the Heckman two-step estimator is called in opsr_2step() to generate rea-
sonable starting values.
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• These are then passed together with the data to the basic computation engine opsr.fit().
The main estimates are retrieved using maximum likelihood estimation by passing the
log-likelihood function loglik_cpp() (Equation 6) to maxLik() from the maxLik pack-
age (Henningsen and Toomet 2011).

• All the above calls are nested in the main interface opsr() which returns an object of
class ‘opsr’. Several methods then exist to post-process this object as illustrated below.

The likelihood function loglik_cpp() is implemented in C++ using Rcpp (Eddelbuettel and
Balamuta 2018) and relying on the data types provided by RcppArmadillo (Eddelbuettel and
Sanderson 2014). Parallelization is available using OpenMP. This makes OPSR both fast and
memory efficient (as data matrices are passed by reference).

3. Illustrations

We first illustrate how to specify a model using Formula’s extended syntax and simulated data.
Then the main functionality of the package is demonstrated. We conclude this section by
demonstrating some nuances, reproducing the core model of Wang and Mokhtarian (2024).
Finally, we show that OPSR can also estimate the classic Tobit-5 model and matches the
results obtained with the implementation from sampleSelection.

3.1. OPSR core

Let us simulate date from an OPSR process with three ordinal outcomes and distinct design
matrices W and X (where X = Xj ∀j) by

R> sim_dat <- opsr_simulate()

R> dat <- sim_dat$data

R> head(dat)

ys yo xs1 xs2 xo1 xo2

1 2 -1.26 0.44435 -0.538 1.263 -0.2869

2 2 3.80 0.01193 0.497 -0.326 1.8411

3 1 3.95 -0.00928 -1.442 1.330 -0.1568

4 2 -1.68 -0.30238 -1.113 1.272 -1.3898

5 1 1.50 0.49236 -1.015 0.415 -1.4731

6 2 2.20 -0.60272 0.567 -1.540 -0.0695

where ys is the selection dependent variable (or treatment group), yo the outcome dependent
variable and xs respectively xo the corresponding explanatory variables.

Models are specified symbolically. A typical model has the form ys | yo ~ terms_s |

terms_o1 | terms_o2 | ... where the | separates the two responses and process spec-
ifications. If the user wants to specify the same process for all continuous outcomes, two
processes are enough (ys | yo ~ terms_s | terms_o). Hence the minimal opsr() inter-
face call reads

R> fit <- opsr(ys | yo ~ xs1 + xs2 | xo1 + xo2, data = dat,

+ printLevel = 0)
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where printLevel = 0 omits working information during maximum likelihood iterations.

As usual, the fitter function does the bare minimum model estimation while inference is
performed in a separate call to

R> summary(fit)

Call:

opsr(formula = ys | yo ~ xs1 + xs2 | xo1 + xo2, data = dat, printLevel = 0)

BFGS maximization, 102 iterations

Return code 0: successful convergence

Runtime: 0.423 secs

Number of regimes: 3

Number of observations: 1000 (152, 507, 341)

Estimated parameters: 19

Log-Likelihood: -2016

AIC: 4071

BIC: 4164

Pseudo R-squared (EL): 0.506

Pseudo R-squared (MS): 0.456

Multiple R-squared: 0.815 (0.836, 0.762, 0.847)

Estimates:

Estimate Std. error t value Pr(> t)

kappa1 -1.9618 0.0932 -21.05 < 2e-16 ***

kappa2 0.8826 0.0615 14.36 < 2e-16 ***

s_xs1 0.9373 0.0570 16.44 < 2e-16 ***

s_xs2 1.4964 0.0712 21.01 < 2e-16 ***

o1_(Intercept) 0.9877 0.1440 6.86 7e-12 ***

o1_xo1 2.0512 0.0930 22.06 < 2e-16 ***

o1_xo2 1.0133 0.0712 14.23 < 2e-16 ***

o2_(Intercept) 0.9574 0.0463 20.67 < 2e-16 ***

o2_xo1 -0.9884 0.0435 -22.70 < 2e-16 ***

o2_xo2 1.5545 0.0412 37.73 < 2e-16 ***

o3_(Intercept) 1.0028 0.0909 11.03 < 2e-16 ***

o3_xo1 1.5766 0.0560 28.15 < 2e-16 ***

o3_xo2 -1.9227 0.0528 -36.44 < 2e-16 ***

sigma1 1.0442 0.0534 19.55 < 2e-16 ***

sigma2 1.0478 0.0316 33.12 < 2e-16 ***

sigma3 1.1717 0.0430 27.27 < 2e-16 ***

rho1 0.1696 0.1361 1.25 0.21279

rho2 0.3482 0.0639 5.45 5e-08 ***

rho3 0.3699 0.1077 3.44 0.00059 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Wald chi2 (null): 5071 on 8 DF, p-value: < 0

Wald chi2 (rho): 42.7 on 3 DF, p-value: < 0

The presentation of the model results is fairly standard and should not warrant further ex-
planation with the following exceptions

1. The number of regimes along absolute counts are reported.

2. Pseudo R-squared (EL) is determined by comparing the log-likelihood of the specified
model to that of the “equally likely” model, while Pseudo R-squared (MS) is obtained
by comparing the log-likelihood of the specified model to that of the “market-share”
model. These indicators reflect the goodness of fit for the selection process. The mul-
tiple R-squared is reported for all continuous outcomes collectively and for the regimes
separately in brackets (i.e., only considering the continuous observations belonging to
the respective treatment regime). These indicators reflect the goodness of fit for the
outcome processes.

3. Coefficient names are based on the variable names as passed to the formula specification,
except that "s_" is prepended to the selection coefficients, "o[0-9]_" to the outcome
coefficients and the structural components "kappa", "sigma", "rho" (aligning with
the letters used in Equation 6) are hard-coded (but can be over-written).

4. The coefficients table reports robust standard errors based on the sandwich covariance
matrix as computed with help of the sandwich package (Zeileis 2006). rob = FALSE

reports conventional standard errors.

5. Two Wald-tests are conducted. One, testing the null that all coefficients of explanatory
variables are zero and two, testing the null that all error correlation coefficients (rho)
are zero. The latter being rejected indicates that selection bias is an issue.

A useful benchmark is always the null model with structural parameters only. The null model
can be derived from an ‘opsr’ model fit as follows

R> fit_null <- opsr_null_model(fit, printLevel = 0)

A model can be updated as usual

R> fit_intercept <- update(fit, . ~ . | 1)

where we have removed all the explanatory variables from the outcome processes.

Several models can be compared with a likelihood-ratio test using

R> anova(fit_null, fit_intercept, fit)

Likelihood Ratio Test

Model 1: ~Nullmodel

Model 2: ys | yo ~ xs1 + xs2 | 1

Model 3: ys | yo ~ xs1 + xs2 | xo1 + xo2
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logLik Df Test Restrictions Pr(>Chi)

1 -3293 8

2 -2835 13 917 5 <2e-16 ***

3 -2016 19 1636 6 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

If only a single object is passed, then the model is compared to the null model. If more than
one object is specified a likelihood ratio test is conducted for each pair of neighboring models.
As expected, both tests reject the null hypothesis.

Models can be compared side-by-side using the texreg package (Leifeld 2013), which also
allows the user to build production-grade tables as illustrated later.

R> texreg::screenreg(list(fit_null, fit_intercept, fit),

+ include.pseudoR2 = TRUE, include.R2 = TRUE, single.row = TRUE)

==============================================================================

Model 1 Model 2 Model 3

------------------------------------------------------------------------------

kappa1 -1.03 (0.05) *** -1.96 (0.09) *** -1.96 (0.09) ***

kappa2 0.41 (0.04) *** 0.88 (0.06) *** 0.88 (0.06) ***

sigma1 2.56 (0.13) *** 2.56 (0.13) *** 1.04 (0.05) ***

sigma2 2.07 (0.06) *** 2.08 (0.06) *** 1.05 (0.03) ***

sigma3 2.91 (0.11) *** 2.91 (0.11) *** 1.17 (0.04) ***

rho1 0.03 (0.14) 0.17 (0.14)

rho2 0.17 (0.07) * 0.35 (0.06) ***

rho3 0.15 (0.11) 0.37 (0.11) ***

s_xs1 0.94 (0.06) *** 0.94 (0.06) ***

s_xs2 1.49 (0.07) *** 1.50 (0.07) ***

o1_(Intercept) 0.78 (0.21) *** 0.85 (0.38) * 0.99 (0.14) ***

o1_xo1 2.05 (0.09) ***

o1_xo2 1.01 (0.07) ***

o2_(Intercept) 0.82 (0.09) *** 0.85 (0.09) *** 0.96 (0.05) ***

o2_xo1 -0.99 (0.04) ***

o2_xo2 1.55 (0.04) ***

o3_(Intercept) 1.16 (0.16) *** 0.94 (0.22) *** 1.00 (0.09) ***

o3_xo1 1.58 (0.06) ***

o3_xo2 -1.92 (0.05) ***

------------------------------------------------------------------------------

AIC 6601.95 5695.26 4070.83

BIC 6641.21 5759.06 4164.08

Log Likelihood -3292.97 -2834.63 -2016.41

Pseudo R^2 (EL) 0.09 0.51 0.51

Pseudo R^2 (MS) -0.00 0.46 0.46

R^2 (total) 0.00 0.01 0.82

R^2 (1) -0.00 0.00 0.84

R^2 (2) -0.00 0.01 0.76
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R^2 (3) -0.00 0.01 0.85

Num. obs. 1000 1000 1000

==============================================================================

*** p < 0.001; ** p < 0.01; * p < 0.05

Finally, the key interest of an OPSR study almost certainly is the estimation of treatment
effects which relies on (counterfactual) conditional expectations as already noted in the math-
ematical exposition.

R> p1 <- predict(fit, group = 1, type = "response")

R> p2 <- predict(fit, group = 1, counterfact = 2, type = "response")

where p1 is the result of applying Equation 7 and p2 is the counterfactual outcome resulting
from Equation 8. The following type arguments are available

• type = "response": Predicts the continuous outcome according to the Equations ref-
erenced above.

• type = "unlog-response": Predicts the back-transformed response according to Equa-
tions 9-10 if the continuous outcome was log-transformed (either in the formula or dur-
ing data pre-processing). The smoothing constant used during the continuity correction
(i.e., the δ in yj = ln(Yj + δ)) can be specified via the delta argument and defaults to
1.

• type = "prob": Returns the probability vector of belonging to group.

• type = "mills": Returns the “inverse Mills ratio”.

• type = "correction": Returns ρjσjIMR respectively ρj′σj′IMR (if counterfact =

j’ was specified) from Equation 7 or 8.

• type = "Xb": Returns Xjβj respectively Xj′βj′ (if counterfact = j’ was specified)
from Equation 7 or 8.

Elements are NA_real_ if the group does not correspond to the observed regime. This ensures
consistent output length.

The function opsr_te() wraps the required predict() calls and prepares the inputs for
treatment effect computations returning an object of class ‘opsr.te’. A subsequent call to
summary() actually computes the treatment effects (TE) and average treatment effects (ATE).
An associated print() method presents the final computations. print.opsr.te() internally
calls summary() and therefore the explicit call to summary() can be omitted, if the analyst
does not require the underlying computed objects

R> print(opsr_te(fit, type = "response"))

Treatment Effects

TE
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G1 G2 G3

T1->T2 0.00112 -0.23522 . 0.36207 *

T1->T3 -0.32352 0.04925 0.35061 *

T2->T3 -0.32464 0.28447 -0.01146

ATE

T1->T2 T1->T3 T2->T3

1 0.00438 0.09535 0.09097

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

where (weighted) pairwise t tests indicate, whether the treatment effects are significantly dif-
ferent from zero (not accounting for uncertainty in the treatment effect estimates themselves).
For TE, the columns reflect the factual regime or group, whereas the rows reflect all possible
pairs of treatment combinations. For ATE, the columns reflect the treatment combinations.

Last, there is a plot() method for model fits of class ‘opsr’. The method internally calls
opsr_te() and then pairs.opsr.te() which visualizes the treatment effects in a matrix of
scatterplots. The plot method is demonstrated later in Section 4, Figure 3.

Now that the user understands the basic workflow, we illustrate some nuances by repro-
ducing a key output of Wang and Mokhtarian (2024) where they investigate the treatment
effect of telework (TW) on weekly vehicle miles driven. The data is attached, documented
(?telework_data) and can be loaded by

R> data("telework_data", package = "OPSR")

The final model specification reads

R> f <-

+ twing_status | vmd_ln ~

+ edu_2 + edu_3 + hhincome_2 + hhincome_3 + flex_work + work_fulltime +

+ twing_feasibility + att_proactivemode + att_procarowning + att_wif +

+ att_proteamwork + att_tw_effective_teamwork + att_tw_enthusiasm +

+ att_tw_location_flex |

+ female + age_mean + age_mean_sq + race_black + race_other + vehicle +

+ suburban + smalltown + rural + work_fulltime + att_prolargehouse +

+ att_procarowning + region_waa |

+ edu_2 + edu_3 + suburban + smalltown + rural + work_fulltime +

+ att_prolargehouse + att_proactivemode + att_procarowning |

+ female + hhincome_2 + hhincome_3 + child + suburban + smalltown +

+ rural + att_procarowning + region_waa

and the model can be estimated by

R> start_default <- opsr(f, telework_data, .get2step = TRUE)

R> fit <- opsr(f, telework_data, start = start, method = "NM", iterlim = 50e3,

+ printLevel = 0)
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where we demonstrate that

1. Default starting values as computed by the Heckman two-step procedure can be re-
trieved (.get2step = TRUE).

2. start values can be overridden (we have hidden the start vector here for brevity).
If the user wishes to pass start values manually, some minimal conventions have to be
followed as documented in ?opsr_check_start.

3. Alternative maximization methods (here “Nelder-Mead”; method = "NM") can be used
(as in the original paper).

With help of the texreg package, production-grade tables (in various output formats) can be
generated with ease.

R> texreg::texreg(

+ fit, beside = TRUE, include.R2 = TRUE, include.pseudoR2 = TRUE,

+ custom.model.names = custom.model.names, custom.coef.names = custom.coef.names,

+ groups = groups, scalebox = 0.76, booktabs = TRUE, dcolumn = TRUE,

+ no.margin = TRUE, use.packages = FALSE, float.pos = "htbp", single.row = TRUE,

+ caption = "Replica of \\citet{Wang+Mokhtarian:2024}, Table 3.",

+ label = "tab:wang-replica",

+ custom.note = custom.note

+ )

Dot arguments (...) passed to texreg() (or similar functions) are forwarded to a S4 method
extract() which extracts the variables of interest from a model fit (see also ?extract.opsr).
We demonstrate here that

1. The model components can be printed side-by-side (beside = TRUE).

2. Additional goodness-of-fit indicators can be included (include.R2 = TRUE and include.pseudoR2

= TRUE).

3. The output formatting can be controlled flexibly, by reordering, renaming and grouping
coefficients (the fiddly but trivial details are hidden here for brevity).

Weighted treatment effects in the original (log-backtransformed scale) can be obtained as
follows

R> te <- opsr_te(fit, type = "unlog-response", weights = telework_data$weight)

R> print(te)

Treatment Effects

TE

G1 G2 G3

T1->T2 -32.74 *** -7.54 25.42 ***
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Structural Selection NTWer (535) NUTWer (322) UTWer (727)

Kappa 1 1.23 (0.17)∗∗∗

Kappa 2 2.46 (0.18)∗∗∗

Sigma 1 1.18 (0.05)∗∗∗

Sigma 2 1.23 (0.07)∗∗∗

Sigma 3 1.43 (0.04)∗∗∗

Rho 1 0.05 (0.10)
Rho 2 0.13 (0.07)
Rho 3 0.30 (0.07)∗∗∗

Education (ref: high school or less)
Some college 0.32 (0.14)∗ 0.15 (0.33)
Bachelor’s degree or higher 0.47 (0.13)∗∗∗ 0.62 (0.32)∗

Household income (ref: less than $50,000)
$50,000 to $99,999 0.06 (0.12) 0.47 (0.23)∗

$100,000 or more 0.25 (0.11)∗ 0.31 (0.23)
Flexible work schedule 0.31 (0.10)∗∗

Full time worker 0.33 (0.10)∗∗ 0.45 (0.13)∗∗∗ 0.69 (0.17)∗∗∗

Teleworking feasibility 0.13 (0.01)∗∗∗

Attitudes
Pro-active-mode 0.08 (0.04)∗ −0.18 (0.08)∗

Pro-car-owning −0.08 (0.04)∗ 0.14 (0.07)∗ 0.16 (0.09) 0.25 (0.06)∗∗∗

Work interferes with family 0.11 (0.04)∗∗

Pro-teamwork 0.09 (0.04)∗

TW effective teamwork 0.32 (0.04)∗∗∗

TW enthusiasm 0.09 (0.04)∗

TW location flexibility 0.08 (0.04)∗

Intercept 3.64 (0.27)∗∗∗ 2.49 (0.37)∗∗∗ 2.38 (0.26)∗∗∗

Female −0.21 (0.10)∗ −0.36 (0.11)∗∗∗

Age 0.01 (0.00)∗

Age squared −0.00 (0.00)
Race (ref: white)

Black −0.40 (0.24)
Other races −0.06 (0.18)

Number of vehicles 0.12 (0.05)∗

Residential location (ref: urban)
Suburban 0.07 (0.15) 0.45 (0.17)∗∗ 0.28 (0.14)∗

Small town 0.47 (0.18)∗∗ 0.19 (0.29) 0.29 (0.28)
Rural 0.60 (0.23)∗∗ 0.81 (0.31)∗∗ 0.88 (0.34)∗∗

Pro-large-house 0.18 (0.05)∗∗∗ 0.18 (0.08)∗

Region indicator (WAA) −0.25 (0.11)∗ −0.27 (0.11)∗

Number of children 0.18 (0.06)∗∗

AIC 7191.35
BIC 7491.94
Log Likelihood −3539.67
Pseudo R2 (EL) 0.49
Pseudo R2 (MS) 0.46
R2 (total) 0.24
R2 (1) 0.18
R2 (2) 0.18
R2 (3) 0.12
Num. obs. 1584
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05. We used robust standard errors in this replica, which may result in slight differences from the original standard errors.

Table 1: Replica of Wang and Mokhtarian (2024), Table 3.
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T1->T3 -111.38 *** -96.13 *** -92.87 ***

T2->T3 -78.64 *** -88.60 *** -118.29 ***

ATE

T1->T2 T1->T3 T2->T3

1 -12.4 *** -103.8 *** -91.4 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

where all ATEs are negative. Only G3 (the current UTWers) would increase weekly VMD
when switching from NTWing to NUTWing (25.416 miles). All treatment effects are signifi-
cantly different from zero, except G2 T1->T2, e.g., the NUTWers switching from NTWing to
NUTWing.

3.2. Tobit-5 model and comparison to sampleSelection

As noted in Section 1, the Tobit-5 model can be seen as a form of OPSR with only two
selection outcomes and can be fitted with the R-package sampleSelection. In this section, we
illustrate that OPSR can estimate Tobit-5 models (as all the other examples involve three
regimes) and that the results match the ones obtained with sampleSelection. The example,
using simulated data, is directly taken from the vignette Toomet and Henningsen (2020,
Section 4.2) vignette("selection", package = "sampleSelection").

We create the following switching regression problem

R> set.seed(0)

R> vc <- diag(3)

R> vc[lower.tri(vc)] <- c(0.9, 0.5, 0.1)

R> vc[upper.tri(vc)] <- vc[lower.tri(vc)]

R> eps <- rmvnorm(500, c(0, 0, 0), vc)

R> xs <- runif(500)

R> ys <- xs + eps[, 1] > 0

R> xo1 <- runif(500)

R> yo1 <- xo1 + eps[, 2]

R> xo2 <- runif(500)

R> yo2 <- xo2 + eps[, 3]

R> yo <- ifelse(ys, yo2, yo1)

R> ys <- as.numeric(ys) + 1

R> dat <- data.frame(ys, yo, yo1, yo2, xs, xo1, xo2)

R> head(dat)

ys yo yo1 yo2 xs xo1 xo2

1 2 2.34301 0.99101 2.3430 0.531 0.5724 0.6716

2 2 -0.89646 1.75863 -0.8965 0.802 0.5999 0.1878

3 1 0.00931 0.00931 0.2238 0.479 0.7945 0.5048

4 2 -0.01742 2.57710 -0.0174 0.177 0.5046 0.0273
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5 1 -0.35597 -0.35597 -0.1317 0.397 0.5402 0.4963

6 2 -0.03943 0.02728 -0.0394 0.814 0.0241 0.9474

Using sampleSelection, the estimation call reads

R> tobit5_s <- selection(ys ~ xs, list(yo1 ~ xo1, yo2 ~ xo2), data = dat)

R> summary(tobit5_s)

--------------------------------------------

Tobit 5 model (switching regression model)

Maximum Likelihood estimation

Newton-Raphson maximisation, 11 iterations

Return code 1: gradient close to zero (gradtol)

Log-Likelihood: -896

500 observations: 172 selection 1 (1) and 328 selection 2 (2)

10 free parameters (df = 490)

Probit selection equation:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.155 0.105 -1.47 0.14

xs 1.141 0.179 6.39 3.9e-10 ***

Outcome equation 1:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0271 0.1640 0.17 0.87

xo1 0.8396 0.1497 5.61 3.4e-08 ***

Outcome equation 2:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.158 0.188 0.84 0.4

xo2 0.838 0.171 4.91 1.3e-06 ***

Error terms:

Estimate Std. Error t value Pr(>|t|)

sigma1 0.9319 0.0921 10.12 <2e-16 ***

sigma2 0.9070 0.0443 20.45 <2e-16 ***

rho1 0.8899 0.0535 16.62 <2e-16 ***

rho2 0.1770 0.3314 0.53 0.59

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

--------------------------------------------

which is equivalent to OPSR

R> tobit5_o <- opsr(ys | yo ~ xs | xo1 | xo2, data = dat, printLevel = 0)

R> summary(tobit5_o)

Call:

opsr(formula = ys | yo ~ xs | xo1 | xo2, data = dat, printLevel = 0)

BFGS maximization, 67 iterations
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Return code 0: successful convergence

Runtime: 0.0505 secs

Number of regimes: 2

Number of observations: 500 (172, 328)

Estimated parameters: 10

Log-Likelihood: -896

AIC: 1812

BIC: 1854

Pseudo R-squared (EL): 0.122

Pseudo R-squared (MS): 0.054

Multiple R-squared: 0.336 (0.247, 0.069)

Estimates:

Estimate Std. error t value Pr(> t)

kappa1 0.1550 0.1047 1.48 0.14

s_xs 1.1408 0.1792 6.37 1.9e-10 ***

o1_(Intercept) 0.0271 0.1692 0.16 0.87

o1_xo1 0.8396 0.1453 5.78 7.6e-09 ***

o2_(Intercept) 0.1583 0.2129 0.74 0.46

o2_xo2 0.8375 0.1669 5.02 5.2e-07 ***

sigma1 0.9319 0.0949 9.82 < 2e-16 ***

sigma2 0.9070 0.0472 19.20 < 2e-16 ***

rho1 0.8899 0.0515 17.27 < 2e-16 ***

rho2 0.1768 0.3848 0.46 0.65

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Wald chi2 (null): 100 on 3 DF, p-value: < 0

Wald chi2 (rho): 298 on 2 DF, p-value: < 0

4. Case study

Now, that the reader is familiar with the main functionality of OPSR, this section demon-
strates how to employ it in a real-world example. The emphasis, therefore, lies not on what
each function does but on guiding the reader through the modeling and post-estimation
steps. We investigate telework treatment effects on weekly distance traveled (aggregated over
all modes of transport). This contrasts Wang and Mokhtarian (2024) who used vehicle miles
driven (i.e., car only).

We first discuss the model building strategy to arrive at an appropriately specified OPSR
model. The OPSR model is then compared to a model not accounting for error correlation and
implications for treatment effects are shown. The case study concludes with a discussion on
unit treatment effects investigating to what degree teleworking influence total travel demand
across all modes.

We use the TimeUse+ dataset (Winkler et al. 2024), a smartphone-based diary, recording
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Figure 1: Log weekly distance traveled and log one-way commute distance for different
telework statuses.

travel, time use, and expenditure data. Our analytical sample comprises employed individ-
uals and is based on what Winkler and Axhausen (2024) identified as valid days. A valid
day has at least 20 hours of information where 70% of the events were validated by the
user. Users who did not have at least 14 valid days were excluded. For the remaining
824 participants mobility indicators for a typical week were constructed. The telework sta-
tus is based on tracked (and labelled) work activities and three regimes are differentiated:
Non-teleworkers (NTWers), Non-usual teleworkers (NUTWers; <3 days/week) and Usual
teleworkers (UTWers; 3+ days/week).

The data, underlying this analysis, is attached, documented (?timeuse_data) and can be
loaded by

R> data("timeuse_data", package = "OPSR")

A basic boxplot of the response variable against the three telework statuses is displayed in
Figure 1. By simply looking at the data descriptively, we might prematurely conclude that
telework does not impact weekly distance traveled. However, the whole value proposition
of OPSR (and switching regression models in general) lies in estimating treatment effects
by generating conterfactuals that are otherwise unobservable in cross-sectional datasets. If
the teleworkers self-select, the counterfactual is not simply the group average of the non-
teleworkers. More prosaically, if UTWers stopped teleworking, they might travel more or less
than the actual NTWers. And as discussed, this might stem from both observable as well
as unobservable factors. Meanwhile, UTWers have the highest average commute distance,
followed by NUTWers and NTWers.

As mentioned in Section 2, the analyst needs to think of an identification restriction: In
our application, we reserve the international standard classification of occupations (ISCO-
08) variables for the selection process. To simplify model specification, we first estimate the
ordered probit model separately, using polr() from the MASS package (Venables and Ripley
2002). It should be noted here, that the resulting parameter estimates of the selection process
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are unbiased.

R> drop <- c("id", "weekly_km", "log_weekly_km", "commute_km", "log_commute_km",

+ "wfh_days")

R> dat_polr <- subset(timeuse_data, select = !(names(timeuse_data) %in% drop))

R> dat_polr$wfh <- factor(dat_polr$wfh)

R> fit_polr <- MASS::polr(wfh ~ ., dat_polr, method = "probit")

The stepAIC() function chooses a selection model specification by AIC in a stepwise algo-
rithm.

R> fit_step <- MASS::stepAIC(fit_polr, trace = FALSE)

R> fit_step$anova

Stepwise Model Path

Analysis of Deviance Table

Initial Model:

wfh ~ start_tracking + age + car_access + dogs + driverlicense +

educ_higher + fixed_workplace + grocery_shopper + hh_income +

hh_size + isco_clerical + isco_craft + isco_elementary +

isco_managers + isco_plant + isco_professionals + isco_service +

isco_agri + isco_tech + married + n_children + freq_onl_order +

parking_home + parking_work + permanent_employed + rents_home +

res_loc + sex_male + shift_work + swiss + vacation + workload +

young_kids

Final Model:

wfh ~ age + car_access + educ_higher + fixed_workplace + grocery_shopper +

hh_income + isco_clerical + isco_craft + isco_elementary +

isco_tech + freq_onl_order + parking_home + permanent_employed +

shift_work + workload + young_kids

Step Df Deviance Resid. Df Resid. Dev AIC

1 778 1429 1521

2 - start_tracking 6 2.0260 784 1431 1511

3 - res_loc 3 2.8697 787 1434 1508

4 - isco_managers 1 0.0133 788 1434 1506

5 - isco_agri 1 0.0415 789 1434 1504

6 - vacation 1 0.1212 790 1434 1502

7 - driverlicense 1 0.2959 791 1434 1500

8 - sex_male 1 0.5118 792 1435 1499

9 - n_children 1 0.4769 793 1435 1497

10 - hh_size 1 0.4137 794 1436 1496

11 - married 1 0.3909 795 1436 1494

12 - isco_service 1 0.4773 796 1437 1493
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13 - isco_plant 1 0.6176 797 1437 1491

14 - rents_home 1 1.2327 798 1438 1490

15 - parking_work 1 1.1424 799 1440 1490

16 - swiss 1 1.5091 800 1441 1489

17 - dogs 1 1.8158 801 1443 1489

18 - isco_professionals 1 1.8728 802 1445 1489

The resulting selection process specification can then be passed to opsr(), along with a
common (or separate) process specification for the outcome processes. OPSR recognizes
potential identification problems (e.g., colinear variables or missing factor levels in one of the
groups), raises a warning if such problems arise and fixes the causing coefficients at 0. Through
this process, we have identified two singularity issues for the UTWers: First, shift_work is
a constant and second, parking_home is colinear with car_access.

We then follow the conventional (somewhat heuristic) model building strategy to specify the
full identified model and then exclude all variables that do not produce significant estimates
(at the 10% level). The function opsr_step() can help in this iterative process, as it ex-
cludes all coefficients from the model specification with p values below some threshold (see
?opsr_step for further details). The formula specification of the full model is hidden here
for brevity.

R> fit_full <- opsr(f_full, timeuse_data, printLevel = 0)

R> f_red <- wfh | log_weekly_km ~

+ age + educ_higher + hh_income + young_kids + workload + fixed_workplace +

+ shift_work + permanent_employed + isco_craft + isco_tech + isco_clerical +

+ isco_elementary + car_access + parking_home + freq_onl_order +

+ grocery_shopper |

+ sex_male + res_loc + workload + permanent_employed + parking_work |

+ swiss + res_loc + young_kids + workload + parking_work |

+ sex_male + swiss + fixed_workplace + permanent_employed + parking_work

R> fit_red <- opsr(f_red, timeuse_data, printLevel = 0)

R> print(anova(fit_red, fit_full), print.formula = FALSE)

Likelihood Ratio Test

logLik Df Test Restrictions Pr(>Chi)

1 -1337.0 50.0

2 -1316.8 99.0 40.4 49 0.8

R> summary(fit_red)

Call:

opsr(formula = f_red, data = timeuse_data, printLevel = 0)

BFGS maximization, 234 iterations

Return code 0: successful convergence

Runtime: 1.34 secs
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Number of regimes: 3

Number of observations: 824 (424, 265, 135)

Estimated parameters: 50

Log-Likelihood: -1337

AIC: 2774

BIC: 3010

Pseudo R-squared (EL): 0.202

Pseudo R-squared (MS): 0.126

Multiple R-squared: 0.214 (0.201, 0.189, 0.289)

Estimates:

Estimate Std. error t value Pr(> t)

kappa1 0.13345 0.40919 0.33 0.74433

kappa2 1.25047 0.40781 3.07 0.00217 **

s_age 0.00725 0.00403 1.80 0.07219 .

s_educ_higher 0.44929 0.09295 4.83 1.3e-06 ***

s_hh_income4001_8000 -1.06428 0.25627 -4.15 3.3e-05 ***

s_hh_income8001_12000 -0.89366 0.25137 -3.56 0.00038 ***

s_hh_income12001_16000 -0.72192 0.26184 -2.76 0.00583 **

s_hh_income16001+ -0.69387 0.28776 -2.41 0.01590 *

s_hh_incomeNA -0.63145 0.34501 -1.83 0.06722 .

s_young_kids 0.29617 0.10095 2.93 0.00335 **

s_workload 0.05353 0.02404 2.23 0.02598 *

s_fixed_workplace -0.55419 0.14298 -3.88 0.00011 ***

s_shift_work -0.82518 0.16677 -4.95 7.5e-07 ***

s_permanent_employed 0.33270 0.18560 1.79 0.07305 .

s_isco_craft -0.67913 0.22364 -3.04 0.00239 **

s_isco_tech 0.21921 0.13246 1.65 0.09794 .

s_isco_clerical 0.55330 0.09817 5.64 1.7e-08 ***

s_isco_elementary -4.46545 1.29525 -3.45 0.00057 ***

s_car_access -0.71446 0.26447 -2.70 0.00690 **

s_parking_home 0.64134 0.25170 2.55 0.01083 *

s_freq_onl_order 0.20944 0.08812 2.38 0.01747 *

s_grocery_shopper -0.13267 0.08788 -1.51 0.13116

o1_(Intercept) 3.90114 0.17240 22.63 < 2e-16 ***

o1_sex_male 0.09334 0.05623 1.66 0.09691 .

o1_res_locrural 0.21702 0.09467 2.29 0.02188 *

o1_res_locsuburban 0.10923 0.09818 1.11 0.26593

o1_res_locurban -0.01088 0.10899 -0.10 0.92049

o1_workload 0.06058 0.01314 4.61 4.0e-06 ***

o1_permanent_employed 0.29905 0.11690 2.56 0.01052 *

o1_parking_work 0.23222 0.05204 4.46 8.1e-06 ***

o2_(Intercept) 3.88702 0.21570 18.02 < 2e-16 ***

o2_swiss 0.18517 0.10900 1.70 0.08935 .

o2_res_locrural 0.43405 0.14799 2.93 0.00336 **

o2_res_locsuburban 0.22649 0.14363 1.58 0.11482
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o2_res_locurban 0.17387 0.16409 1.06 0.28933

o2_young_kids -0.15630 0.06958 -2.25 0.02469 *

o2_workload 0.07455 0.01515 4.92 8.7e-07 ***

o2_parking_work 0.16130 0.07033 2.29 0.02182 *

o3_(Intercept) 3.85223 0.33710 11.43 < 2e-16 ***

o3_sex_male 0.23879 0.08908 2.68 0.00735 **

o3_swiss 0.39109 0.12054 3.24 0.00118 **

o3_fixed_workplace -0.36832 0.12432 -2.96 0.00305 **

o3_permanent_employed 0.54238 0.25706 2.11 0.03487 *

o3_parking_work 0.28905 0.09202 3.14 0.00168 **

sigma1 0.51246 0.02225 23.04 < 2e-16 ***

sigma2 0.54030 0.02954 18.29 < 2e-16 ***

sigma3 0.54263 0.05799 9.36 < 2e-16 ***

rho1 0.28712 0.19141 1.50 0.13360

rho2 -0.18889 0.14349 -1.32 0.18804

rho3 0.46193 0.22531 2.05 0.04034 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Wald chi2 (null): 2584 on 39 DF, p-value: < 0

Wald chi2 (rho): 8.93 on 3 DF, p-value: < 0.03

The reduced model specification (fit_red) is not rejected in the likelihood ratio test. Further,
there is significant error correlation between the selection process and the outcome process
for the UTWers (rho3). The Wald-test suggests that the null hypothesis (rho1 = rho2 =
rho3 = 0) can be rejected at the 5% level, suggesting that OPSR is beneficial given our model
assumptions.

We first define a helper function (wrapping opsr_te()), that provides more intuitive labels
for the treatment effects, simplifying the discussion that follows. Unless otherwise mentioned,
we use the fit_red model in the remainder.

R> te <- function(fit) {

+ te <- summary(opsr_te(fit, type = "unlog-response"))$te

+ colnames(te) <- c("NTWers", "NUTWers", "UTWers")

+ rownames(te) <- c("NTWing->NUTWing", "NTWing->UTWing", "NUTWing->UTWing")

+ te

+ }

R> te(fit_red)

NTWers NUTWers UTWers

NTWing->NUTWing 37.7 *** -10.6 *** -54.2 ***

NTWing->UTWing -54.7 *** -47.0 *** -44.3 ***

NUTWing->UTWing -92.4 *** -36.4 *** 9.9 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Telework reduces weekly kilometers traveled across all groups, with the exception of NTWers
who would be more mobile when switching from NTWing to NUTWing (37.74 km; column
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Figure 2: Treatment effects.

NTWer, row NTWing -> NUTWing) and UTWers who would travel more when further adopting
telework from NUTWing (9.9 km). The treatment effects when switching from NTWing
to NUTWing are strongest for UTWers (-54.22 km) compared to NTWers (37.74 km) and
NUTWers (-10.58 km). Treatment effects for NTWing to UTWing are similar across all three
groups, slightly stronger for NTWers (-54.7 km). Interestingly, NTWers show a non-linear
pattern, first increasing weekly kilometers when adopting some telework (37.74 km; NTWing
to NUTWing) but then substantially decreasing weekly kilometers with more telework (-
92.44 km; NUTWing to UTWing). An explanation could be, that these individuals (living
closer to their workplace) do initially not adjust activity chains and location choices when
only occasionally teleworking. For example, an individual might stay subscribed to the gym
close to the workplace and visit that facility even on a home office day. On the other hand,
UTWers show exactly an inverse pattern, first (NTWing to NUTWing) strongly reducing
weekly kilometers (-54.22 km) but upon further telework adoption (NUTWing to UTWing)
only minimally adjusting weekly kilometers (9.9 km). A similar argument could be made, that
these individuals (living further from their workplace) already from the start adjust activity
chains and location choices. One can therefore conclude, that the treatment effect over the
full range (NTWing to UTWing) is similar across all groups but the main travel reduction
happens at different treatment intensities. Figure 2 visualizes these treatment effects and
shows the linear pattern for NUTWers and the (mirrored) hockey stick pattern for NTWers
and UTWers.

While the discussion above was based on averaged group-level treatment effects, Figure 3
shows the distributions of predicted weekly distance traveled by teleworker group and treat-
ment regime. Following matrix terminology, each figure on the diagonal depicts predicted
outcome distributions (i.e., weekly kilometers traveled here) for a given state (NTWing,
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R> plot(fit_red, type = "unlog-response", col = c(1, 3, 4),

+ labels.diag = c("NTWing", "NUTWing", "UTWing"),

+ labels.reg = c("NTWers", "NUTWers", "UTWers"),

+ xlim = c(0, 400), ylim = c(0, 400), cex = 1.5)
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Figure 3: Pairs plot for model fits of class ‘opsr’.

NUTWing and UTWing) and separate by the current (factual) teleworker group (NTWers,
NUTWers and UTWers). The weighted mean predicted outcomes by state are shown as red
numbers. The lower triangular panels compare the model-implied (predicted) outcomes of
two treatment states (including NTWing) again separated by observed teleworker groups.
The red reference line marks the instances where weekly distance traveled is equal for both
of the paired (un)treated telework statuses. The two red numbers to the right of the current
teleworking status report the weighted mean predicted outcomes by state (and hence align
with the numbers shown in the figures on the diagonal). I.e., those are the coordinate val-
ues of the group averages, visualized as the red squares. The upper triangular panels show
average treatment effects.
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Model Parent Error
correlation

Description

fit_full • Full identified model, including all variables
as linear effects

fit_red fit_full • Excluding all variables not significant at the
10% level

fit_nocor fit_red ◦ Fixing the rho coefficients at 0

Table 2: Model overview. The model is based on Parent as elaborated under Description.

We now demonstrate, that not controlling for error correlation leads to different and most
likely wrong conclusions, since parameter estimates might be biased. We derive a model
(fit_nocor) without error correlation by setting the rho coefficients to 0. I.e., this is the
same as separately estimating an ordered probit model and three linear regression models.

R> start <- coef(fit_red)

R> fixed <- c("rho1", "rho2", "rho3")

R> start[fixed] <- 0

R> fit_nocor <- opsr(f_red, timeuse_data, start = start, fixed = fixed,

+ printLevel = 0)

The treatment effects are

R> te(fit_red)

NTWers NUTWers UTWers

NTWing->NUTWing 37.7 *** -10.6 *** -54.2 ***

NTWing->UTWing -54.7 *** -47.0 *** -44.3 ***

NUTWing->UTWing -92.4 *** -36.4 *** 9.9 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R> te(fit_nocor)

NTWers NUTWers UTWers

NTWing->NUTWing 17.72 *** 14.14 *** 14.55 ***

NTWing->UTWing 8.80 *** 12.31 *** 7.89 *

NUTWing->UTWing -8.93 *** -1.83 -6.66 .

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

As we see, fit_nocor yields completely different insights, in particular, that telework gener-
ally increases weekly distance traveled, consistent with previous cross-sectional studies that
did not account for self-selection bias (for studies indicating that telework increases travel
demand, see Zhu and Mason 2014; He and Hu 2015; Kim, Choo, and Mokhtarian 2015).

Lastly (using fit_red), we compute unit treatment effects and compare them to the aver-
age two-way commute distance for each group. The unit treatment effect is calculated by
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dividing the total treatment effect by the corresponding average teleworking frequency dif-
ference (twdiff1 to twdiff3 below). I.e., the treatment effect is standardized and therefore
also comparable for different regime switching (e.g., NTWing to NUTWing vs. NUTWing to
UTWing).

R> dat_ute <- subset(timeuse_data, select = c(commute_km, wfh, wfh_days))

R> dat_ute <- aggregate(cbind(wfh_days, 2 * commute_km) ~ wfh, data = dat_ute,

+ FUN = mean)

R> top <- t(dat_ute[2:3])

R> colnames(top) <- c("NTWers", "NUTWers", "UTWers")

R> rownames(top) <- c("WFH (days)", "2-way commute (km)")

R> i <- "WFH (days)"

R> twdiff1 <- top[i, "NUTWers"] - top[i, "NTWers"]

R> twdiff2 <- top[i, "UTWers"] - top[i, "NTWers"]

R> twdiff3 <- top[i, "UTWers"] - top[i, "NUTWers"]

R> twdiff <- matrix(c(rep(twdiff1, 3), rep(twdiff2, 3), rep(twdiff3, 3)), nrow = 3)

R> bottom <- te(fit_red) / twdiff

R> ute <- rbind(top, bottom)

R> ute

NTWers NUTWers UTWers

WFH (days) 0.0 1.35 3.93

2-way commute (km) 30.1 43.33 51.07

NTWing->NUTWing 28.0 -2.69 -20.97

NTWing->UTWing -40.6 -11.95 -17.14

NUTWing->UTWing -68.6 -9.26 3.83

Generally, telework reduces weekly distance traveled by less than the foregone commute dis-
tance, which indicates, that a rebound effect (compensating leisure travel) exists. For ex-
ample, the NUTWers could save 43.33 km in commute travel but only reduce -2.69 km per
marginal teleworking day when switching from NTWing to NUTWing. This compensating
travel exists for all TW groups except the NTWers (NTWing to UTWing and NUTWing
to UTWing), where we observe diminished travel activity beyond foregone commutes. The
insights from the previous discussion on treatment effects carry over: Adjustments in weekly
distance traveled are very different both across the three teleworker groups but also across
the regime switching.

5. Summary and discussion

In a real-world setting, the treatment is usually not exogenously prescribed but self-selected.
Various methods in various statistical environments exist to account for selection-bias which
arises if unobserved factors simultaneously influence both the selection and outcome process.
OPSR is introduced as a special case of endogenous switching regression to account selection
biases for ordinal treatments (where the well-known Tobit-5 model is a special case of OPSR,
i.e., with only two treatment regimes). The model frame for such Heckman-type models
as well as their implementation in the R system for statistical computing is reviewed. The
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here presented R implementation in package OPSR re-uses design and functionality of the
corresponding R software. Hence, the new function opsr() is straightforward to apply for
model fitting and diagnostics. Further, it is fast and memory efficient thanks to the C++

implementation of the log-likelihood function which can also be parallelized. OPSR han-
dles log-transformed outcomes which need special consideration when computing conditional
expectations and thus treatment effects. Post-estimation functions to compute and visualize
(weighted) treatment effects are included in the package. In the case study, the OPSR method
is applied to a tracking and activity diary dataset collected in Switzerland, investigating the
telework treatment effects on weekly distance traveled across all modes. We demonstrate,
first, how to specify an appropriate model and check for error correlation, and second, in how
far computed treatment effects differ if the error correlation is not accounted for. We find that,
overall, telework reduces travel. Non-teleworkers tend to have shorter commutes and adjust
mobility patterns mainly when switching from non-usual telework to usual telework. On the
other hand, weekly distance traveled slightly increases when initially adopting some telework.
Contrary, usual teleworkers (had they not been teleworking) adjust mobility patterns strongly
when adopting some telework but then only marginally adjust distance traveled when further
adopting telework. Comparing the unit treatment effects to the two-way commute distance
indicates that telework generally reduces weekly distance traveled and it does so by less than
the foregone commute. Therefore, some compensating travel (rebound effects) exists for most
of the teleworker groups.

Computational details

The results in this paper were obtained using R 4.4.0 with the packages OPSR 1.0.0, MASS 7.3.60,
texreg 1.39.4, sampleSelection 1.2.12, mvtnorm 1.3.3, gridExtra 2.3 and gridGraphics 0.5.1. R

itself and all packages used are available from the Comprehensive R Archive Network (CRAN)
at https://CRAN.R-project.org/.
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