## Registered S3 methods overwritten by 'evd':
## method from
## print.bvpot POT
## plot.bvpot POT
timeStamps=data$time
dt = difftime(timeStamps[2],timeStamps[1],units="days")
dt= as.numeric(dt)
percentile=95
names(data)=c("date","Qs")
if (haz=="drought"){
#seasonality divide: frost vs non frost
if (!exists("trans")){trans="rev"}
print(paste0(trans," transformation used for low flows"))
#compute 7days moving average
data$Q7=tsEvaNanRunningMean(data$Qs,7/dt)
timeAndSeries=data.frame(data$date,data$Q7)
}else if (haz=="flood"){
percentile=95
timeAndSeries <- max_daily_value(timeAndSeries)
}
## [1] "rev transformation used for low flows"
names(timeAndSeries)=c("timestamp","dis")
dt1=min(diff(timeAndSeries$timestamp),na.rm=T)
dt=as.numeric(dt1)
tdim=attributes(dt1)$units
if (tdim=="hours") dt=dt/24
if (dt==1){
timeDays=timeAndSeries$timestamp
}else{
timeDays=unique(as.Date(timeAndSeries$timestamp))
}
names(timeAndSeries)=c("timestamp","data")
trendtypes=c("trend","trendPeaks","trendCIPercentile")
Choose which transformation to use, here we choose the “trendPeaks” transformation
Nonstat<-TsEvaNs(timeAndSeries, timeWindow, transfType=trendtypes[2],
ciPercentile= 90, minPeakDistanceInDays = minPeakDistanceInDays, tail=tail, lowdt=lowdt,trans=trans)
##
## evaluating long term variations of the peaks
## no change point
##
## computing the trend on extremes...
## trend threshold= 0.75
##
## Executing stationary eva
##
## max threshold is: 95%
##
## average number of events per year = 1
## Fitted GPD
##
## Transforming to non stationary eva ...
nonStationaryEvaParams=Nonstat[[1]]
stationaryTransformData=Nonstat[[2]]
ExRange= c(min(nonStationaryEvaParams$potObj$parameters$peaks),max(nonStationaryEvaParams$potObj$parameters$peaks))
if (haz=="flood") wr2 <- c(seq(min(ExRange),max(ExRange),length.out=700))
if (haz=="drought") wr2 <- c(seq(1.1*min(ExRange),0.1*max(ExRange),length.out=700))
Plot1= tsEvaPlotGPDImageScFromAnalysisObj(wr2, nonStationaryEvaParams, stationaryTransformData, minYear = '1950',trans=trans)
Plot1