SSLR: Semi-Supervised Classification, Regression and Clustering Methods

Providing a collection of techniques for semi-supervised classification, regression and clustering. In semi-supervised problem, both labeled and unlabeled data are used to train a classifier. The package includes a collection of semi-supervised learning techniques: self-training, co-training, democratic, decision tree, random forest, 'S3VM' ... etc, with a fairly intuitive interface that is easy to use.

Version: 0.9.3.3
Depends: R (≥ 2.10)
Imports: stats, parsnip, plyr, dplyr (≥ 0.8.0.1), magrittr, purrr, rlang (≥ 0.3.1), proxy, methods, generics, utils, RANN, foreach, RSSL, conclust
LinkingTo: Rcpp, RcppArmadillo
Suggests: caret, tidymodels, e1071, C50, kernlab, testthat, doParallel, tidyverse, factoextra, survival, covr, kknn, randomForest, ranger, MASS, nlme, knitr, rmarkdown
Published: 2021-07-22
DOI: 10.32614/CRAN.package.SSLR
Author: Francisco Jesús Palomares Alabarce ORCID iD [aut, cre], José Manuel Benítez ORCID iD [ctb], Isaac Triguero ORCID iD [ctb], Christoph Bergmeir ORCID iD [ctb], Mabel González ORCID iD [ctb]
Maintainer: Francisco Jesús Palomares Alabarce <fpalomares at correo.ugr.es>
License: GPL-3
URL: https://dicits.ugr.es/software/SSLR/
NeedsCompilation: yes
Materials: NEWS
CRAN checks: SSLR results

Documentation:

Reference manual: SSLR.pdf
Vignettes: classification
clustering
fit
introduction
models
regression

Downloads:

Package source: SSLR_0.9.3.3.tar.gz
Windows binaries: r-devel: SSLR_0.9.3.3.zip, r-release: SSLR_0.9.3.3.zip, r-oldrel: SSLR_0.9.3.3.zip
macOS binaries: r-release (arm64): SSLR_0.9.3.3.tgz, r-oldrel (arm64): SSLR_0.9.3.3.tgz, r-release (x86_64): SSLR_0.9.3.3.tgz, r-oldrel (x86_64): SSLR_0.9.3.3.tgz
Old sources: SSLR archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=SSLR to link to this page.