ShapleyOutlier: Multivariate Outlier Explanations using Shapley Values and Mahalanobis Distances

Based on Shapley values to explain multivariate outlyingness and to detect and impute cellwise outliers. Includes implementations of methods described in Mayrhofer and Filzmoser (2023) <doi:10.1016/j.ecosta.2023.04.003>.

Version: 0.1.2
Depends: R (≥ 4.0.0)
Imports: dplyr, Rdpack, stats, tibble, tidyr, robustbase, forcats, egg, ggplot2, gridExtra, RColorBrewer, magrittr
Suggests: grDevices, cellWise, robustHD, knitr, MASS, rmarkdown
Published: 2024-10-17
DOI: 10.32614/CRAN.package.ShapleyOutlier
Author: Marcus Mayrhofer [aut, cre], Peter Filzmoser [aut]
Maintainer: Marcus Mayrhofer <marcus.mayrhofer at tuwien.ac.at>
License: GPL-3
NeedsCompilation: no
Citation: ShapleyOutlier citation info
CRAN checks: ShapleyOutlier results

Documentation:

Reference manual: ShapleyOutlier.pdf
Vignettes: ShapleyOutlier examples (source, R code)

Downloads:

Package source: ShapleyOutlier_0.1.2.tar.gz
Windows binaries: r-devel: ShapleyOutlier_0.1.2.zip, r-release: ShapleyOutlier_0.1.2.zip, r-oldrel: ShapleyOutlier_0.1.2.zip
macOS binaries: r-release (arm64): ShapleyOutlier_0.1.2.tgz, r-oldrel (arm64): ShapleyOutlier_0.1.2.tgz, r-release (x86_64): ShapleyOutlier_0.1.2.tgz, r-oldrel (x86_64): ShapleyOutlier_0.1.2.tgz
Old sources: ShapleyOutlier archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=ShapleyOutlier to link to this page.