TOC: Total Operating Characteristic Curve and ROC Curve
Construction of the Total Operating Characteristic (TOC) Curve and the Receiver (aka Relative) Operating Characteristic (ROC) Curve for spatial and non-spatial data. The TOC method is a modification of the ROC method which measures the ability of an index variable to diagnose either presence or absence of a characteristic. The diagnosis depends on whether the value of an index variable is above a threshold. Each threshold generates a two-by-two contingency table, which contains four entries: hits (H), misses (M), false alarms (FA), and correct rejections (CR). While ROC shows for each threshold only two ratios, H/(H + M) and FA/(FA + CR), TOC reveals the size of every entry in the contingency table for each threshold (Pontius Jr., R.G., Si, K. 2014. <doi:10.1080/13658816.2013.862623>).
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=TOC
to link to this page.