aPEAR
is designed to help you notice the most important
biological themes in your enrichment analysis results. It analyses the
gene lists of the pathways and detects clusters of redundant overlapping
gene sets.
Let’s begin by performing a simple gene set enrichment analysis with
clusterProfiler
:
# Load all the packages:
library(data.table)
library(ggplot2)
library(dplyr)
library(stringr)
library(clusterProfiler)
library(DOSE)
library(org.Hs.eg.db)
library(aPEAR)
data(geneList)
# Perform enrichment using clusterProfiler
set.seed(42)
<- gseGO(geneList, OrgDb = org.Hs.eg.db, ont = 'CC') enrich
enrichmentNetwork()
enrichmentNetwork
is the most important function
exported by aPEAR
. It detects clusters of similar pathways
and generates a ggplot2
visualization. The only thing it
asks you to provide is your enrichment result:
set.seed(654824)
enrichmentNetwork(enrich@result)
Internally, enrichmentNetwork
calls two functions,
findPathClusters
and plotPathClusters
, which
are described in more detail below.
clusterProfiler
?aPEAR
currently recognizes input from
clusterProfiler
and gProfileR
. However, if you
have custom enrichment input, do not worry!
aPEAR
accepts any kind of enrichment input as long as it
is formatted correctly, the only requirement is that the gene list of
each pathway is known. You should format your data so that:
data.frame
.colorBy
.nodeSize
.For example, you might format your data like this:
1:5 ]
enrichmentData[ #> Description pathwayGenes NES Size
#> 1: chromosome, centromeric region 55143/1062/10403/... 2.646268 188
#> 2: kinetochore 1062/10403/55355/... 2.630240 130
#> 3: condensed chromosome, centromeric region 1062/10403/55355/... 2.625070 138
#> 4: nuclear chromosome 8318/55388/7153/2... 2.582163 175
#> 5: chromosomal region 55143/1062/10403/... 2.544742 305
Then, tell the enrichmentNetwork
what to do:
<- enrichmentNetwork(enrichmentData, colorBy = 'NES', nodeSize = 'Size', verbose = TRUE)
p #> Validating parameters...
#> Validating enrichment data...
#> Detected enrichment type custom
#> Calculating pathway similarity using method jaccard
#> Using Markov Cluster Algorithm to detect pathway clusters...
#> Clustering done
#> Using Pagerank algorithm to assign cluster titles...
#> Pagerank scores calculated
#> Creating the enrichment network visualization...
#> Validating theme parameters...
#> Preparing enrichment data for plotting...
#> Detected enrichment type custom
#> Creating the enrichment graph...
Good news: you can use the p-values to color the nodes! Just specify
the colorBy
column and colorType = 'pval'
:
set.seed(348934)
enrichmentNetwork(enrich@result, colorBy = 'pvalue', colorType = 'pval', pCutoff = -5)
findPathClusters()
If your goal is only to obtain the clusters of redundant pathways,
the function findPathClusters
is the way to go. It accepts
a data.frame
with the enrichment results and returns a list
of the pathway clusters and the similarity matrix:
<- findPathClusters(enrich@result, cluster = 'hier', minClusterSize = 6)
clusters
$clusters[ 1:5 ]
clusters#> Pathway Cluster
#> 1: mitotic spindle microtubule
#> 2: spindle microtubule
#> 3: midbody microtubule
#> 4: centrosome microtubule
#> 5: microtubule microtubule
<- clusters$clusters[ 1:5, Pathway ]
pathways $similarity[ pathways, pathways ]
clusters#> mitotic spindle spindle midbody centrosome microtubule
#> mitotic spindle 1.0000000 0.4090909 0.3142857 0.1940299 0.2857143
#> spindle 0.4090909 1.0000000 0.2686567 0.2659574 0.3793103
#> midbody 0.3142857 0.2686567 1.0000000 0.1428571 0.2586207
#> centrosome 0.1940299 0.2659574 0.1428571 1.0000000 0.1630435
#> microtubule 0.2857143 0.3793103 0.2586207 0.1630435 1.0000000
For more information about available similarity metrics, clustering
methods, cluster naming conventions, and other available parameters, see
?aPEAR.theme
.
plotPathClusters()
To visualize clustering results obtained with
findPathClusters
, use the function
plotPathClusters
:
set.seed(238923)
plotPathClusters(
enrichment = enrich@result,
sim = clusters$similarity,
clusters = clusters$clusters,
fontSize = 4,
outerCutoff = 0.01, # Decrease cutoff between clusters and show some connections
drawEllipses = TRUE
)
For more parameter options, see ?aPEAR.theme
.