This R package extends package arules with various visualization techniques for association rules and itemsets. The package also includes several interactive visualizations for rule exploration.
The following R packages use arulesViz
: arules, fdm2id, rattle, TELP
To cite package ‘arulesViz’ in publications use:
Hahsler M (2017). “arulesViz: Interactive Visualization of Association Rules with R.” R Journal, 9(2), 163-175. ISSN 2073-4859, doi:10.32614/RJ-2017-047 https://doi.org/10.32614/RJ-2017-047, https://journal.r-project.org/archive/2017/RJ-2017-047/RJ-2017-047.pdf.
@Article{,
title = {arules{V}iz: {I}nteractive Visualization of Association Rules with {R}},
author = {Michael Hahsler},
year = {2017},
journal = {R Journal},
volume = {9},
number = {2},
pages = {163--175},
url = {https://journal.r-project.org/archive/2017/RJ-2017-047/RJ-2017-047.pdf},
doi = {10.32614/RJ-2017-047},
month = {December},
issn = {2073-4859},
}
This might also require the development version of arules.
ggplot2
(default engine for most methods), grid
, base
(R base plots), htmlwidget
(powered by plotly
and visNetwork
).grid
, plotly
and visNetwork
.datatable
.ruleExplorer
.Available Visualizations
Stable CRAN version: Install from within R with
Current development version: Install from r-universe.
install.packages("arulesViz",
repos = c("https://mhahsler.r-universe.dev". "https://cloud.r-project.org/"))
Mine some rules.
library("arulesViz")
data("Groceries")
rules <- apriori(Groceries, parameter = list(support = 0.005, confidence = 0.5))
## Apriori
##
## Parameter specification:
## confidence minval smax arem aval originalSupport maxtime support minlen
## 0.5 0.1 1 none FALSE TRUE 5 0.005 1
## maxlen target ext
## 10 rules TRUE
##
## Algorithmic control:
## filter tree heap memopt load sort verbose
## 0.1 TRUE TRUE FALSE TRUE 2 TRUE
##
## Absolute minimum support count: 49
##
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[169 item(s), 9835 transaction(s)] done [0.00s].
## sorting and recoding items ... [120 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3 4 done [0.00s].
## writing ... [120 rule(s)] done [0.00s].
## creating S4 object ... done [0.00s].
Live examples for interactive visualizations can be seen in Chapter 5 of An R Companion for Introduction to Data Mining