The 'binomialRF' is a new feature selection technique for decision trees that aims at providing an alternative approach to identify significant feature subsets using binomial distributional assumptions (Rachid Zaim, S., et al. (2019)) <doi:10.1101/681973>. Treating each splitting variable selection as a set of exchangeable correlated Bernoulli trials, 'binomialRF' then tests whether a feature is selected more often than by random chance.
Version: | 0.1.0 |
Imports: | randomForest, data.table, stats, rlist |
Suggests: | foreach, knitr, rmarkdown, correlbinom |
Published: | 2020-03-26 |
DOI: | 10.32614/CRAN.package.binomialRF |
Author: | Samir Rachid Zaim [aut, cre] |
Maintainer: | Samir Rachid Zaim <samirrachidzaim at math.arizona.edu> |
License: | GPL-2 |
URL: | https://www.biorxiv.org/content/10.1101/681973v1.abstract |
NeedsCompilation: | no |
Materials: | README NEWS |
CRAN checks: | binomialRF results |
Reference manual: | binomialRF.pdf |
Vignettes: |
"binomialRF Feature Selection Vignette" |
Package source: | binomialRF_0.1.0.tar.gz |
Windows binaries: | r-devel: binomialRF_0.1.0.zip, r-release: binomialRF_0.1.0.zip, r-oldrel: binomialRF_0.1.0.zip |
macOS binaries: | r-release (arm64): binomialRF_0.1.0.tgz, r-oldrel (arm64): binomialRF_0.1.0.tgz, r-release (x86_64): binomialRF_0.1.0.tgz, r-oldrel (x86_64): binomialRF_0.1.0.tgz |
Old sources: | binomialRF archive |
Please use the canonical form https://CRAN.R-project.org/package=binomialRF to link to this page.