Package ‘bioLeak’

February 6, 2026

Type Package
Title Leakage-Safe Modeling and Auditing for Genomic and Clinical Data
Version 0.1.0

Description Prevents and detects information leakage in biomedical machine learning.
Provides leakage-resistant split policies (subject-grouped, batch-blocked, study leave-out, time-
ordered),
guarded preprocessing (train-only imputation, normalization, filtering, feature selection),
cross-validated fitting with common learners, permutation-
gap auditing, batch and fold association tests,
and duplicate detection.

License MIT + file LICENSE
URL https://github.com/selcukorkmaz/bioleak

BugReports https://github.com/selcukorkmaz/biolLeak/issues
Encoding UTF-8
Depends R (>=4.3)

Imports digest, methods, stats, utils, SummarizedExperiment, graphics,
hardhat, parsnip

Suggests BiocParallel, cli, dials, FNN, future, future.apply, ggplot2,
glmnet, mice, missForest, pkgload, ranger, randomForest,
recipes, RANN, rsample, tune, VIM, workflows, xgboost,
yardstick, pROC, PRROC, survival, knitr, rmarkdown, testthat
(>=3.0.0)

biocViews Software, Classification, Regression, Survival,
Reproducibility, QualityControl, GeneExpression, Workflow

VignetteBuilder knitr
Config/testthat/edition 3
RoxygenNote 7.3.3
NeedsCompilation no

Author Selcuk Korkmaz [aut, cre] (ORCID:
<https://orcid.org/0000-0003-4632-6850>)

1

https://github.com/selcukorkmaz/bioLeak
https://github.com/selcukorkmaz/bioLeak/issues
https://orcid.org/0000-0003-4632-6850

.guard_fit

Maintainer Selcuk Korkmaz <selcukorkmaz@gmail.com>
Repository CRAN
Date/Publication 2026-02-06 19:50:14 UTC

Contents
guard_fit L. e e 2
as_rsample L e e e e e e 4
audit_leakage L. 5
audit_leakage_by_learner oL 10
audit_report L e e e e e e e e e 12
calibration_summary e e e e e e e 14
confounder_sensitivity 15
fitresample 17
impute_guarded L L e e 20
LeakSplits-class o e 21
make_split_plan 22
plot_calibration 24
plot_confounder_sensitivity e 25
plot_fold_balance 27
plot_overlap_checks L 28
plot_perm_distribution L 29
plot_time_acf e e 30
predict_guard L. 31
show,LeakSplits-method 33
simulate_leakage_suite 33
summary.LeakAudit. L 36
summary.LeakFit o 38
summary.LeakTune 0oL 39
tune_resample e 40

Index 43

.guard_fit Fit leakage-safe preprocessing pipeline
Description

Builds and fits a guarded preprocessing pipeline on training data, then constructs a transformer for
consistent application to new data.

.guard_fit

Usage
.guard_fit(
X,
y = NULL,
steps = list(),
task = c("binomial”, "multiclass”, "gaussian”, "survival")
)
Arguments
X matrix/data.frame of predictors (training).
y Optional outcome for supervised feature selection.
steps List of configuration options (see Details).
task "binomial", "multiclass"”, "gaussian", or "survival".
Details

The pipeline applies, in order:

* Winsorization (optional) to limit outliers.
* Imputation learned on training data only.
¢ Normalization (z-score or robust).

Variance/IQR filtering.

Feature selection (optional; t-test, lasso, PCA).

All statistics are estimated on the training data and re-used for new data.

Value

An object of class "GuardFit" with elements ‘transform‘, ‘state‘, ‘p_out‘, and ‘steps‘.

See Also

[predict_guard()]

Examples

x <- data.frame(a = c(1, 2, NA), b = c(3, 4, 5))

fit <- .guard_fit(x, y = c(1, 2, 3),
steps = list(impute = list(method = "median")),
task = "gaussian")

fit$transform(x)

4 as_rsample

as_rsample Convert LeakSplits to an rsample resample set

Description

Convert LeakSplits to an rsample resample set

Usage
as_rsample(x, data = NULL, ...)
Arguments
X LeakSplits object created by [make_split_plan()].
data Optional data.frame used to populate rsample splits. When NULL, the stored
‘coldata‘ from ‘x‘ is used (if available).
Additional arguments passed to methods (unused).
Value

An rsample rset object compatible with tidymodels workflows. The returned object is a tibble with
class rset containing:

splits List-column of rsplit objects, each with analysis (training indices) and assessment
(test indices).

id Character column with fold identifiers (e.g., "Fold1").

id2 Character column with repeat identifiers (e.g., "Repeatl") when multiple repeats are present;

otherwise absent.

The object also carries attributes for group, batch, study, time (when available from the original
LeakSplits), and biolLeak_mode indicating the original splitting mode. This allows the splits to
be used with tune: :tune_grid(), rsample::fit_resamples(), and other tidymodels functions.

Examples

if (requireNamespace("rsample”, quietly = TRUE)) {
df <- data.frame(
subject = rep(1:10, each = 2),
outcome = rbinom(20, 1, 0.5),
x1 = rnorm(20),
X2 = rnorm(20)
)
splits <- make_split_plan(df, outcome = "outcome”,
mode = "subject_grouped”, group = "subject”, v = 5)
rset <- as_rsample(splits, data = df)

audit_leakage 5

audit_leakage Audit leakage and confounding

Description

Computes a post-hoc leakage audit for a resampled model fit. The audit (1) compares observed
cross-validated performance to a label-permutation null (by default refitting when data are available;
otherwise using fixed predictions), (2) tests whether fold assignments are associated with batch or
study metadata (confounding by design), (3) scans features for unusually strong outcome proxies,
and (4) flags duplicate or near-duplicate samples in a reference feature matrix.

The returned [LeakAudit] summarizes these diagnostics. It relies on the stored predictions, splits,
and optional metadata; it does not refit models unless ‘perm_refit = TRUE® (or ‘perm_refit = "auto"
with a valid ‘perm_refit_spec®). Results are conditional on the chosen metric and supplied meta-
data/features and should be interpreted as diagnostics, not proof of leakage or its absence.

Usage
audit_leakage(
fit,
metric = c¢("auc”, "pr_auc”, "accuracy”, "macro_f1", "log_loss”, "rmse", "cindex"),
B = 200,
perm_stratify = FALSE,
perm_refit = "auto”,

perm_refit_auto_max = 200,
perm_refit_spec = NULL,

perm_mode = NULL,

time_block = c("circular”, "stationary"),
block_len = NULL,

include_z = TRUE,

ci_method = c("if", "bootstrap"),

boot_B = 400,
parallel = FALSE,
seed = 1,

return_perm = TRUE,

batch_cols = NULL,

coldata = NULL,

X_ref = NULL,

target_scan = TRUE,
target_scan_multivariate = TRUE,
target_scan_multivariate_B = 100,
target_scan_multivariate_components = 10,
target_scan_multivariate_interactions = TRUE,
target_threshold = 0.9,

feature_space = c("raw”", "rank"),
sim_method = c("cosine", "pearson"),
sim_threshold = 0.995,

audit_leakage

nn_k = 50,
max_pairs = 5000,
duplicate_scope = c("train_test”, "all"),
learner = NULL
)
Arguments
fit A [LeakFit] object from [fit_resample()] containing cross-validated predictions
and split metadata. If predictions include learner IDs for multiple models, you
must supply ‘learner® to select one; if learner IDs are absent, the audit uses all
predictions and may mix learners.
metric Character scalar. One of “"auc"‘, *"pr_auc"*, ‘“"accuracy"‘, ‘"macro_f1"*, “"log_loss"*,
“'rmse"*, or “"cindex"‘. Defaults to ‘"auc"‘. This controls the observed perfor-
mance statistic, the permutation null, and the sign of the reported gap.
B Integer scalar. Number of permutations used to build the null distribution (de-

perm_stratify

perm_refit

fault 200). Larger values reduce Monte Carlo error but increase runtime.

Logical scalar or ‘"auto"‘. If TRUE (default), permutations are stratified within
each fold (factor levels; numeric outcomes are binned into quantiles when enough
non-missing values are available). If FALSE, no stratification is used. Stratifi-
cation only applies when ‘coldata‘ supplies the outcome; otherwise labels are
shuffled within each fold.

ne

Logical scalar or ‘"auto"‘. If FALSE, permutations keep predictions fixed and
shuffle labels (association test). If TRUE, each permutation refits the model
on permuted outcomes using ‘perm_refit_spec‘. Refit-based permutations are
slower but better approximate a full null distribution. The default is ‘"auto"‘,
which refits only when ‘perm_refit_spec® is provided and ‘B° is less than or
equal to ‘perm_refit_auto_max*; otherwise it falls back to fixed-prediction per-

mutations.

perm_refit_auto_max

perm_refit_spec

perm_mode

time_block

block_len

ne

Integer scalar. Maximum ‘B* allowed for ‘perm_refit = "auto
ting. Defaults to 200.

to trigger refit-

List of inputs used when ‘perm_refit = TRUE®. Required elements: ‘x‘ (data

used for fitting) and ‘learner* (parsnip model_spec, workflow, or legacy learner).
Optional elements: ‘outcome’ (defaults to ‘fit@outcome*), ‘preprocess‘, ‘learner_args®,
‘custom_learners‘, ‘class_weights®, ‘positive_class‘, and ‘parallel‘. Survival
outcomes are not supported for refit-based permutations.

Optional character scalar to override the permutation mode used for restricted
shuffles. One of ‘"subject_grouped"‘, ‘"batch_blocked"*, *"study_loocv"*, or
“"time_series" ‘. Defaults to the split metadata when available (including rsample-
derived modes).

ne

ne

o

Character scalar, “"circular"* or “"stationary"‘. Controls block permutation for
‘time_series‘ splits; ignored for other split modes. Default is ‘"

"ne

circular"‘.

Integer scalar or NULL. Block length for time-series permutations. NULL se-
lects ‘max(5, floor(0.1 * fold_size))‘. Larger values preserve more temporal
structure and yield a more conservative null.

audit_leakage

include_z

ci_method

boot_B

parallel

seed

return_perm

batch_cols

coldata

X_ref

target_scan

Logical scalar. If TRUE (default), include the z-score for the permutation gap
when a standard error is available; if FALSE, ‘z* is NA.

Character scalar, “"if"* or ‘"bootstrap"‘. Controls how the standard error and
confidence interval for the permutation gap are estimated. Defaultis “"if"*. “"if"
uses an influence-function estimate when available; ‘"bootstrap" resamples per-
mutation values ‘boot_B* times. Failed estimates yield NA.

Integer scalar. Number of bootstrap resamples when ‘ci_method = "bootstrap"*
(default 400). Larger values are more stable but slower.

Logical scalar. If TRUE and ‘future.apply‘ is available, permutations run in
parallel. Results should match sequential execution. Default is FALSE.

Integer scalar. Random seed used for permutations and bootstrap resampling;
changing it changes the randomization but not the observed metric. Default is 1.

Logical scalar. If TRUE (default), stores the permutation distribution in ‘au-
dit@perm_values‘. Set FALSE to reduce memory use.

Character vector. Names of ‘coldata‘ columns to test for association with fold
assignment. If NULL, defaults to any of ‘"batch"‘, ‘"plate"*, ‘"center"*, ‘"site"*,
“"study"‘ found in ‘coldata‘. Changing this controls which batch tests appear in

‘batch_assoc®.

ne

Optional data.frame of sample-level metadata. Rows must align to prediction ids
via row names, a ‘row_id‘ column, or row order. Used to build restricted per-
mutations (when the outcome column is present), compute batch associations,
and supply outcomes for target scans. If NULL, uses ‘fit@splits@info$coldata‘
when available. If alignment fails, restricted permutations are disabled with a
warning.

Optional numeric matrix/data.frame (samples x features). Used for duplicate
detection and the target leakage scan. If NULL, uses ‘fit@info$X_ref* when
available. Rows must align to sample ids (split order) via row names, a ‘row_id*
column, or row order; misalignment disables these checks.

Logical scalar. If TRUE (default), computes per-feature outcome associations
on ‘X_ref and flags proxy features; if FALSE, or if ‘X_ref‘/outcomes are un-
available, ‘target_assoc‘ is empty. Not available for survival outcomes.

target_scan_multivariate

Logical scalar. If TRUE (default), fits a simple multivariate/interaction model
on ‘X_ref* using the stored splits and reports a permutation-based score/p-value.
This is slower and only implemented for binomial and gaussian tasks.

target_scan_multivariate_B

Integer scalar. Number of permutations for the multivariate scan (default 100).
Larger values stabilize the p-value.

target_scan_multivariate_components

Integer scalar. Maximum number of principal components used in the multivari-
ate scan (default 10).

target_scan_multivariate_interactions

Logical scalar. If TRUE (default), adds pairwise interactions among the top
components in the multivariate scan.

8 audit_leakage

target_threshold
Numeric scalar in (0,1). Threshold applied to the association score used to flag
proxy features. Higher values are stricter. Default is 0.9.

feature_space Character scalar, ‘"raw"‘ or ‘"rank"‘. If “"rank"‘, each row of ‘X_ref* is rank-
transformed before similarity calculations. This affects duplicate detection only.
Default is ‘"raw"*.

sim_method Character scalar, ‘"cosine"‘ or ‘"pearson”‘. Similarity metric for duplicate de-
tection. ‘"pearson"‘ row-centers before cosine. Default is

o "ne

cosine"‘.

sim_threshold Numeric scalar in (0,1). Similarity cutoff for reporting duplicate pairs (default
0.995). Higher values yield fewer pairs.

nn_k Integer scalar. For large datasets (‘n > 3000°) with ‘RANN" installed, checks
only the nearest ‘nn_k* neighbors per row. Larger values increase sensitivity but
slow the search. Ignored when full comparisons are used. Default is 50.

max_pairs Integer scalar. Maximum number of duplicate pairs returned. If more pairs are
found, only the most similar are kept. This does not affect permutation results.
Default is 5000.

duplicate_scope
Character scalar. One of ‘"train_test"‘ (default) or “"all"‘. ‘"train_test"* retains

only near-duplicate pairs that appear in train vs test in at least one repeat; “"all"*

reports all near-duplicate pairs in “X_ref* regardless of fold assignment.

learner Optional character scalar. When predictions include multiple learner IDs, selects
the learner to audit. If NULL and multiple learners are present, the function
errors; if predictions lack learner IDs, this argument is ignored with a warning.
Default is NULL.

Details

The ‘permutation_gap* slot reports ‘metric_obs‘, ‘perm_mean‘, ‘perm_sd‘, ‘gap‘, ‘z‘, ‘p_value‘,
and ‘n_perm‘. The gap is defined as ‘metric_obs - perm_mean‘ for metrics where higher is better
(AUC, PR-AUC, accuracy, macro-F1, C-index) and ‘perm_mean - metric_obs‘ for RMSE/log-loss.
By default, ‘perm_refit = "auto"‘ refits models when refit data are available and ‘B° is not too large;
otherwise it keeps predictions fixed and shuffles labels. Fixed-prediction permutations quantify
prediction-label association rather than a full refit null. Set ‘perm_refit = FALSE* to force fixed
predictions, or ‘perm_refit = TRUE* (with ‘perm_refit_spec®) to always refit.

‘batch_assoc* contains chi-square tests between fold assignment and each ‘batch_cols® variable
(‘stat’, ‘df*, ‘pval, ‘cramer_v*). ‘target_assoc" reports feature-wise outcome associations on ‘X_ref*;
numeric features use AUC (binomial), ‘eta_sq‘ (multiclass), or correlation (gaussian), while cate-
gorical features use Cramer’s V (binomial/multiclass) or ‘eta_sq‘ from a one-way ANOVA (gaus-
sian). The ‘score‘ column is the scaled effect size used for flagging (‘flag = score >= target_threshold*).
The univariate target leakage scan can miss multivariate proxies, interaction leakage, or features not
included in ‘X_ref*. The multivariate scan (enabled by default for supported tasks) adds a model-
based proxy check but still only covers features present in ‘X_ref*.

Duplicate detection compares rows of ‘X_ref* using the chosen ‘sim_method‘ (cosine on L2-normalized
rows, or Pearson via row-centering), optionally after rank transformation (‘feature_space = "rank"*).
By default, ‘duplicate_scope = "train_test"* filters to pairs that appear in train vs test in at least one
repeat; set ‘duplicate_scope = "all"* to include within-fold duplicates. The ‘duplicates® slot returns

audit_leakage 9

index pairs and similarity values for near-duplicate samples. Only duplicates present in ‘X_ref* can
be detected, and checks are skipped if inputs cannot be aligned to splits.

Value
A LeakAudit S4 object containing:

fit The LeakFit object that was audited.

permutation_gap One-row data.frame with columns: metric_obs (observed cross-validated met-
ric), perm_mean (mean of permuted metrics), perm_sd (standard deviation), gap (observed
minus permuted mean, or vice versa for loss metrics), z (standardized gap), p_value (permu-
tation p-value), and n_perm (number of permutations). A large positive gap and small p-value
suggest the model captures signal beyond random label assignment.

perm_values Numeric vector of length B containing the metric value from each permutation. Use-
ful for plotting the null distribution. Empty if return_perm = FALSE.

batch_assoc Data.frame of chi-square association tests between fold assignment and batch/study
metadata, with columns: variable, stat (chi-square statistic), df (degrees of freedom), pval,
and cramer_v (effect size). Small p-values indicate potential confounding by design.

target_assoc Data.frame of per-feature outcome associations with columns: feature, type ("numeric”
or "categorical”), metric (AUC, correlation, eta_sq, or Cramer’s V depending on task),
value, score (scaled effect size), p_value, n, and flag (TRUE if score >= target_threshold).
Flagged features may indicate target leakage.

duplicates Data.frame of near-duplicate sample pairs with columns: i, j (row indices in X_ref),
sim (similarity value), and in_train_test (whether the pair appears in train vs test). Dupli-
cates in train and test can inflate performance.

trail Listcapturing audit parameters and intermediate results for reproducibility, including metric,
B, seed, perm_stratify, perm_refit, and timing info.

info List with additional metadata including multivariate scan results when target_scan_multivariate
= TRUE.

Use summary () to print a human-readable report, or access slots directly with @.

Examples

set.seed(1)

df <- data.frame(
subject = rep(1:6, each = 2),
outcome = rbinom(12, 1, 0.5),
x1 = rnorm(12),
x2 = rnorm(12)

)

splits <- make_split_plan(df, outcome = "outcome”,
mode = "subject_grouped”, group = "subject”, v = 3,
progress = FALSE)

custom <- list(
glm = list(
fit = function(x, y, task, weights, ...) {

10 audit_leakage_by_learner

stats::glm(y ~ ., data = as.data.frame(x),
family = stats::binomial(), weights = weights)
}7
predict = function(object, newdata, task, ...) {

as.numeric(stats: :predict(object,
newdata = as.data.frame(newdata),
type = "response”))

}
)
)
fit <- fit_resample(df, outcome = "outcome", splits = splits,
learner = "glm", custom_learners = custom,
metrics = "auc"”, refit = FALSE, seed = 1)

audit <- audit_leakage(fit, metric = "auc”, B = 10,
X_ref = df[, c("x1", "x2")1)

audit_leakage_by_learner
Audit leakage per learner

Description

Runs [audit_leakage()] separately for each learner recorded in a [LeakFit] and returns a named list
of [LeakAudit] objects. Use this when a single fit contains predictions for multiple models and you
want model-specific audits. If predictions do not include learner IDs, only a single audit can be run
and requesting multiple learners is an error.

Usage
audit_leakage_by_learner(
fit,
metric = c("auc”, "pr_auc”, "accuracy”, "macro_f1", "log_loss"”, "rmse"”, "cindex"),

learners = NULL,
parallel_learners = FALSE,
mc.cores = NULL,

)
Arguments
fit A [LeakFit] object produced by [fit_resample()]. It must contain predictions
and split metadata. Learner IDs must be present in predictions to audit multiple
models.
metric Character scalar. One of “"auc"‘, “"pr_auc"*, “"accuracy"‘, ‘"macro_f1"*, ‘"log_loss"*,

3l ne il

rmse"‘, or ‘"cindex

ne

. Controls which metric is audited for each learner.

audit_leakage_by_learner 11

learners Character vector or NULL. If NULL (default), audits all learners found in pre-
dictions. If provided, must match learner IDs stored in the predictions. Supply-
ing more than one learner requires learner IDs.

parallel_learners
Logical scalar. If TRUE, runs per-learner audits in parallel using ‘future.apply*
(if installed). This changes runtime but not the audit results.

mc.cores Integer scalar or NULL. Number of workers used when ‘parallel_learners =
TRUE". Defaults to the minimum of available cores and the number of learners.

Additional named arguments forwarded to [audit_leakage()] for each learner.
These control the audit itself. Common options include: ‘B‘ (integer permuta-
tions), ‘perm_stratify* (logical or ‘"auto"*), ‘perm_refit‘ (logical), ‘perm_refit_spec*
(list), ‘time_block* (character), ‘block_len‘ (integer or NULL), ‘include_z* (log-
ical), ‘ci_method* (character), ‘boot_B°* (integer), ‘parallel‘ (logical), ‘seed* (in-
teger), ‘return_perm°* (logical), ‘batch_cols* (character vector), ‘coldata‘ (data.frame),
‘X_ref‘ (matrix/data.frame), ‘target_scan‘ (logical), ‘target_threshold‘ (numeric),
‘feature_space‘ (character), ‘sim_method‘ (character), ‘sim_threshold* (numeric),
‘nn_k* (integer), ‘max_pairs* (integer), and ‘duplicate_scope‘ (character). See
[audit_leakage()] for full definitions; changing these values changes each learner’s
audit.

ne

Value

A named list of LeakAudit objects, where each element is keyed by the learner ID (character
string). Each LeakAudit object contains the same slots as described in audit_leakage: fit,
permutation_gap, perm_values, batch_assoc, target_assoc, duplicates, trail, and info.

Use names () toretrieve learner IDs, and access individual audits with [[1earner_id]] or $learner_id.
Each audit reflects the performance and diagnostics for that specific learner’s predictions.

Examples

set.seed(1)
df <- data.frame(
subject = rep(1:6, each = 2),
outcome = factor(rep(c(@, 1), 6)),
x1 = rnorm(12),
x2 = rnorm(12)
)
splits <- make_split_plan(df, outcome = "outcome”,
mode = "subject_grouped”, group = "subject”,
v = 3, progress = FALSE)
custom <- list(

glm = list(
fit = function(x, y, task, weights, ...) {
stats::glm(y ~ ., data = data.frame(y =y, x),
family = stats::binomial(), weights = weights)
}’
predict = function(object, newdata, task, ...) {

as.numeric(stats: :predict(object,
newdata = as.data.frame(newdata),
type = "response”))

12 audit_report

}
)

)

custom$glm2 <- custom$glm

fit <- fit_resample(df, outcome = "outcome", splits = splits,
learner = c("glm”, "glm2"), custom_learners = custom,
metrics = "auc”, refit = FALSE, seed = 1)

audits <- audit_leakage_by_learner(fit, metric = "auc”, B = 10,

perm_stratify = FALSE)
names (audits)
audit_report Render an HTML audit report
Description

Creates an HTML report that summarizes a leakage audit for a resampled model. The report is built
from a [LeakAudit] (or created from a [LeakFit]) and presents: cross-validated metric summaries,
a label-permutation association test of the chosen performance metric (auto-refit when refit data
are available; otherwise fixed predictions), batch or study association tests between metadata and
predictions, confounder sensitivity plots, calibration checks for binomial tasks, a target leakage scan
based on feature-outcome similarity (with multivariate scan enabled by default for supported tasks),
and duplicate detection across training and test folds. The output is a self-contained HTML file with
tables and plots for these checks plus the audit parameters used.

Usage

audit_report(
audit,
output_file = "biolLeak_audit_report.html”,
output_dir = tempdir(),

quiet = TRUE,
open = FALSE,
)
Arguments
audit A [LeakAudit] object from [audit_leakage()] or a [LeakFit] object from [fit_resample()].

If a [LeakAudit] is supplied, the report uses its stored results verbatim. If
a [LeakFit] is supplied, ‘audit_report()‘ first computes a new audit via [au-
dit_leakage(...)]; the fit must contain predictions and split metadata. When mul-
tiple learners were fit, pass a ‘learner argument via °...° to select a single model.

output_file Character scalar. File name for the HTML report. Defaults to ‘"bioLeak_audit_report.html"*.
If a relative name is provided, it is created inside ‘output_dir‘. Changing this
value only changes the file name, not the audit content.

audit_report 13

output_dir Character scalar. Directory path where the report is written. Defaults to [tem-
pdir()]. The directory must exist or be creatable by ‘rmarkdown::render()‘.
Changing this value only changes the output location.

quiet Logical scalar passed to ‘rmarkdown::render()‘. Defaults to ‘TRUE‘. When
‘FALSE’, knitting output and warnings are printed to the console. This does not
change audit results.

open Logical scalar. Defaults to ‘FALSE‘. When ‘TRUE’, opens the generated report
in a browser via [utils::browseURL()]. This does not change the report contents.

Additional named arguments forwarded to [audit_leakage()] only when ‘au-

dit* is a [LeakFit]. These control how the audit is computed and therefore
change the report. Typical examples include ‘metric‘ (character), ‘B* (integer),
‘perm_stratify* (logical), ‘batch_cols® (character vector), ‘X_ref* (matrix/data.frame),
‘sim_method* (character), and ‘duplicate_scope‘ (character). When omitted,
[audit_leakage()] defaults are used. Ignored when ‘audit* is already a [LeakAu-

dit].

Details

The report does not refit models or reprocess data unless ‘perm_refit* triggers refitting (“TRUE* or
“"auto"* with a valid ‘perm_refit_spec‘); it otherwise inspects the predictions and metadata stored
in the input. Results are conditional on the provided splits, selected metric, and any feature matrix
supplied to [audit_leakage()]. The univariate target leakage scan can miss multivariate proxies,
interaction leakage, or features not included in ‘X_ref*; the multivariate scan (enabled by default for
supported tasks) adds a model-based check but still only uses features in “X_ref‘. A non-significant
result does not prove the absence of leakage, especially with small ‘B* or incomplete metadata.
Rendering requires the ‘rmarkdown‘ package and ‘ggplot2° for plots.

"ne

Value

Character string containing the absolute file path to the generated HTML report. The report is a
self-contained HTML file that can be opened in any web browser. It includes sections for: cross-
validated metric summaries, label-permutation test results (gap, p-value), batch/study association
tests, confounder sensitivity analysis, calibration diagnostics (for binomial tasks), target leakage
scan results, and duplicate detection findings. The path can be used with browseURL to open the
report programmatically.

Examples

set.seed(1)

df <- data.frame(
subject = rep(1:6, each = 2),
outcome = factor(rep(c(o, 1), 6)),
x1 = rnorm(12),
x2 = rnorm(12)

)

splits <- make_split_plan(df, outcome = "outcome”,
mode = "subject_grouped”, group = "subject”,
v = 3, progress = FALSE)

14 calibration_summary

custom <- list(

glm = list(
fit = function(x, y, task, weights, ...) {
stats::glm(y ~ ., data = data.frame(y =y, x),
family = stats::binomial(), weights = weights)
}’
predict = function(object, newdata, task, ...) {

as.numeric(stats::predict(object,
newdata = as.data.frame(newdata),
type = "response”))

}
)
)
fit <- fit_resample(df, outcome = "outcome", splits = splits,
learner = "glm", custom_learners = custom,
metrics = "auc”, refit = FALSE, seed = 1)

audit <- audit_leakage(fit, metric = "auc”, B = 5, perm_stratify = FALSE)

if (requireNamespace("rmarkdown”, quietly = TRUE) &&
requireNamespace("ggplot2", quietly = TRUE)) {
out_file <- audit_report(audit, output_dir = tempdir(), quiet = TRUE)
out_file

}

calibration_summary Calibration diagnostics for binomial predictions

Description

Computes reliability curve summaries and calibration metrics for a binomial [LeakFit] using out-
of-fold predictions.

Usage

calibration_summary(fit, bins = 10, min_bin_n = 5, learner = NULL)

Arguments
fit A [LeakFit] object from [fit_resample()].
bins Integer number of probability bins for the calibration curve.
min_bin_n Minimum samples per bin used in plotting; bins smaller than this are retained in
the output but can be filtered by the caller.
learner Optional character scalar. When predictions include multiple learners, selects

the learner to summarize.

confounder._sensitivity 15

Value

A list with a ‘curve‘ data.frame and a one-row ‘metrics‘ data.frame containing ECE, MCE, and
Brier score.

Examples

set.seed(42)
df <- data.frame(
subject = rep(1:15, each = 2),
outcome = factor(rep(c(o, 1), 15)),
x1 = rnorm(30),
x2 = rnorm(30)
)
splits <- make_split_plan(df, outcome = "outcome”,
mode = "subject_grouped”, group = "subject”,
v = 3, progress = FALSE)
custom <- list(
glm = list(
fit = function(x, y, task, weights, ...) {
stats::glm(y ~ ., data = as.data.frame(x),
family = stats::binomial(), weights = weights)
3,
predict = function(object, newdata, task, ...) {
as.numeric(stats::predict(object, newdata = as.data.frame(newdata),
type = "response”))

3
)

)

fit <- fit_resample(df, outcome = "outcome", splits = splits,
learner = "glm", custom_learners = custom,
metrics = "auc"”, refit = FALSE, seed = 1)

cal <- calibration_summary(fit, bins = 5)

cal$metrics

confounder_sensitivity
Confounder sensitivity summaries

Description

Computes performance metrics within confounder strata to surface potential confounding. Requires
aligned metadata in ‘coldata‘.

Usage
confounder_sensitivity(
fit,
confounders = NULL,

16

confounder._sensitivity

metric = NULL,
min_n = 10,
coldata = NULL,
numeric_bins = 4,
learner = NULL

)
Arguments

fit A [LeakFit] object from [fit_resample()].

confounders Character vector of columns in ‘coldata‘ to evaluate. Defaults to common batch/study
identifiers when available.

metric Metric name to compute within each stratum. Defaults to the first metric used
in the fit (or task defaults if unavailable).

min_n Minimum samples per stratum; smaller strata return NA metrics.

coldata Optional data.frame of sample metadata. Defaults to ‘fit@splits@info$coldata‘

when available.

numeric_bins Integer number of quantile bins for numeric confounders with many unique val-

ues.

learner Optional character scalar. When predictions include multiple learners, selects

Value

the learner to summarize.

A data.frame with per-confounder, per-level metrics and counts.

Examples

set.seed(42)
df <- data.frame(

subject = rep(1:15, each = 2),
outcome = factor(rep(c(@, 1), 15)),
batch = factor(rep(c("A", "B", "C"), 10)),
x1 = rnorm(30),
x2 = rnorm(30)
)
splits <- make_split_plan(df, outcome = "outcome”,

mode = "subject_grouped”, group = "subject”,
v = 3, progress = FALSE)

custom <- list(

gl

m = list(
fit = function(x, y, task, weights, ...) {
stats::glm(y ~ ., data = as.data.frame(x),
family = stats::binomial(), weights = weights)
}’
predict = function(object, newdata, task, ...) {

as.numeric(stats::predict(object, newdata = as.data.frame(newdata),
type = "response”))

fit_resample 17

)
)
fit <- fit_resample(df, outcome = "outcome", splits = splits,
learner = "glm", custom_learners = custom,
metrics = "auc"”, refit = FALSE, seed = 1)
confounder_sensitivity(fit, confounders = "batch”, coldata = df)

"

fit_resample Fit and evaluate with leakage guards over predefined splits

Description

Performs cross-validated model training and evaluation using leakage-protected preprocessing (.guard_fit)
and user-specified learners.

Usage
fit_resample(
X}
outcome,
splits,
preprocess = list(impute = list(method = "median”), normalize = list(method =
"zscore"), filter = list(var_thresh = @, igr_thresh = @), fs = list(method = "none")),
learner = c("glmnet”, "ranger"),

learner_args = list(),

custom_learners = list(),

metrics = c("auc”, "pr_auc”, "accuracy"),
class_weights = NULL,

positive_class = NULL,

parallel = FALSE,

refit = TRUE,
seed = 1,
split_cols = "auto”,
store_refit_data = TRUE
)
Arguments
X SummarizedExperiment or matrix/data.frame
outcome outcome column name (if x is SE or data.frame), or a length-2 character vector
of time/event column names for survival outcomes.
splits LeakSplits object from make_split_plan(), or an ‘rsample rset/rsplit.
preprocess list(impute, normalize, filter=list(...), fs) or a ‘recipes::recipe‘ object. When a

recipe is supplied, the guarded preprocessing pipeline is bypassed and the recipe
is prepped on training data only.

18 fit_resample

learner parsnip model_spec (or list of model_spec objects) describing the model(s) to
fit, or a ‘workflows::workflow‘. For legacy use, a character vector of learner

non

names (e.g., "glmnet", "ranger") or custom learner IDs is still supported.

learner_args list of additional arguments passed to legacy learners (ignored when ‘learner® is
a parsnip model_spec).

custom_learners
named list of custom learner definitions used only with legacy character learners.
Each entry must contain fit and predict functions. The fit function should
accept x, y, task, and weights, and return a model object. The predict func-
tion should accept object, newdata, and task. For binomial/regression/survival
tasks it should return a numeric vector; for multiclass tasks it should return either
class labels or a matrix/data.frame of class probabilities.

metrics named list of metric functions, vector of metric names, or a ‘yardstick::metric_set".
When a yardstick metric set (or list of yardstick metric functions) is supplied,
metrics are computed using yardstick with the positive class set to the second
factor level.

class_weights optional named numeric vector of weights for binomial or multiclass outcomes

positive_class optional value indicating the positive class for binomial outcomes. When set, the
outcome levels are reordered so that positive_class is treated as the positive
class (level 2). If NULL, the second factor level is used.

parallel logical, use future.apply for multicore execution

refit logical, if TRUE retrain final model on full data

seed integer, for reproducibility

split_cols Optional named list/character vector or ‘"auto"* (default) overriding group/batch/study/time

column names when ‘splits is an rsample object and its attributes are missing.
“"auto"* falls back to common metadata column names (e.g., ‘group‘, ‘subject’,
‘batch’, ‘study, ‘time‘). Supported names are ‘group‘, ‘batch‘, ‘study‘, and
‘time*.

store_refit_data
Logical; when TRUE (default), stores the original data and learner configuration
inside the fit to enable refit-based permutation tests without manual ‘perm_refit_spec*
setup.

ne

Details

Preprocessing is fit on the training fold and applied to the test fold, preventing leakage from global
imputation, scaling, or feature selection. When a ‘recipes::recipe‘ or ‘workflows::workflow* is sup-
plied, the recipe is prepped on the training fold and baked on the test fold. For data.frame or matrix
inputs, columns used to define splits (outcome, group, batch, study, time) are excluded from the pre-
dictor matrix. Use learner_args to pass model-specific arguments, either as a named list keyed
by learner or a single list applied to all learners. For custom learners, learner_args[[name]] may
be a list with fit and predict sublists to pass distinct arguments to each stage. For binomial tasks,
predictions and metrics assume the positive class is the second factor level; use positive_class to
control this. Parsnip learners must support probability predictions for binomial metrics (AUC/PR-
AUC/accuracy) and multiclass log-loss when requested.

fit_resample 19

Value
A LeakFit S4 object containing:

splits The LeakSplits object used for resampling.

metrics Data.frame of per-fold, per-learner performance metrics with columns fold, learner,
and one column per requested metric.

metric_summary Data.frame summarizing metrics across folds for each learner with columns
learner, and <metric>_mean and <metric>_sd for each requested metric.

audit Data.frame with per-fold audit information including fold, n_train, n_test, learner, and
features_final (number of features after preprocessing).

predictions List of data.frames containing out-of-fold predictions with columns id (sample iden-
tifier), truth (true outcome), pred (predicted value or probability), fold, and learner.
For classification tasks, includes pred_class. For multiclass, includes per-class probability
columns.

preprocess List of preprocessing state objects from each fold, storing imputation parameters,
normalization statistics, and feature selection results.

learners List of fitted model objects from each fold.

outcome Character string naming the outcome variable.

non

task Character string indicating the task type ("binomial”, "multiclass”, "gaussian”, or "survival”).
feature_names Character vector of feature names after preprocessing.

info List of additional metadata including hash, metrics_used, class_weights, positive_class,
sample_ids, refit, final_model (refitted model if refit = TRUE), final_preprocess, learner_names,
and perm_refit_spec (for permutation-based audits).

Use summary () to print a formatted report, or access slots directly with @.

Examples

set.seed(1)
df <- data.frame(
subject = rep(1:10, each = 2),
outcome = rbinom(20, 1, 0.5),
x1 = rnorm(20),
X2 = rnorm(20)
)
splits <- make_split_plan(df, outcome = "outcome”,
mode = "subject_grouped”, group = "subject”, v = 5)

glmnet learner (requires glmnet package)

fit <- fit_resample(df, outcome = "outcome”, splits = splits,
learner = "glmnet"”, metrics = "auc")

summary (fit)

Custom learner (logistic regression) - no extra packages needed
custom <- list(
glm = list(
fit = function(x, y, task, weights, ...) {

20

impute_guarded

stats::glm(y ~ ., data = as.data.frame(x),
family = stats::binomial(), weights = weights)
}7
predict = function(object, newdata, task, ...) {

as.numeric(stats::predict(object, newdata = as.data.frame(newdata), type = "response"”))

3

)

)

fit2 <- fit_resample(df, outcome = "outcome”, splits = splits,
learner = "glm", custom_learners = custom,
metrics = "accuracy")

summary (fit2)

impute_guarded Leakage-safe data imputation via guarded preprocessing
Description

Fits imputation parameters on the training data only, then applies the same guarded transforma-
tion to the test data. This function is a thin wrapper around the guarded preprocessing used by
fit_resample(). Output is the transformed feature matrix used by the guarded pipeline (categori-
cal variables are one-hot encoded).

Usage

impute_guarded(
train,
test,
method = c("median”, "knn", "missForest”, "none"),
constant_value = 0,
k =5,
seed = 123,

winsor = TRUE,
winsor_thresh = 3,
parallel = FALSE,
return_outliers = FALSE,

vars = NULL
)
Arguments
train data frame (training set)
test data frame (test set)
method one of "median", "knn", "missForest", or "none"

constant_value unused; retained for backward compatibility

k number of neighbors for kNN imputation (if method = "knn")

LeakSplits-class 21

seed unused; retained for backward compatibility. Set seed before calling this func-
tion if reproducibility is needed.

winsor logical; apply MAD-based winsorization before imputation
winsor_thresh numeric; MAD cutoff (default = 3)

parallel logical; unused (kept for compatibility)
return_outliers
logical; unused (outlier flags not returned)

vars optional character vector; impute only selected variables
Value

A LeakImpute object with imputed data and guard state.

See Also

[fit_resample()], [predict_guard()]

Examples

train <- data.frame(x = c(1, 2, NA, 4), y = c(NA, 1, 1, 0))
test <- data.frame(x = c(NA, 5), y = c(1, NA))

imp <- impute_guarded(train, test, method = "median”, winsor = FALSE)
imp$train
imp$test
LeakSplits-class S4 Classes for bioLeak Pipeline
Description

These classes capture splits, model fits, and audit diagnostics produced by make_split_plan(),
fit_resample(), and audit_leakage().

Value

An S4 object of the respective class.

Slots

mode Splitting mode (e.g., "grouped_cv", "batch_blocked")

indices List of resampling descriptors (train/test indices when available)
info Metadata associated with split or fit

splits A [‘LeakSplits‘] object used for resampling

metrics Model performance metrics per resample

metric_summary Summary of metrics across resamples

22 make_split_plan

audit Audit information per resample

predictions List of prediction objects

preprocess Preprocessing steps used during fitting
learners Learner definitions used in the pipeline

outcome Outcome variable name

task Modeling task name

feature_names Feature names included in the model

info Additional metadata about the fit

fit A [‘LeakFit‘] object used to generate the audit
permutation_gap Data frame summarising permutation gaps
perm_values Numeric vector of permutation-based scores
batch_assoc Data frame of batch associations
target_assoc Data frame of feature-wise outcome associations
duplicates Data frame detailing duplicate records

trail List capturing audit trail information

See Also

[make_split_plan()], [fit_resample()], [audit_leakage()]
[fit_resample()]
[audit_leakage()], [audit_report()]

make_split_plan Create leakage-resistant splits

Description

Generates leakage-safe cross-validation splits for common biomedical setups: subject-grouped,
batch-blocked, study leave-one-out, and time-series rolling-origin. Supports repeats, optional strat-
ification, nested inner CV, and an optional prediction horizon for time series. Note that splits store
explicit indices, which can be memory-intensive for large n and many repeats.

Usage

make_split_plan(
X7
outcome = NULL,
mode = c("subject_grouped”, "batch_blocked”, "study_loocv", "time_series"),
group = NULL,
batch = NULL,
study = NULL,

time = NULL,

make_split_plan

23
v = 5,
repeats = 1,
stratify = FALSE,
nested = FALSE,
seed = 1

horizon = 0,
progress = TRUE,
compact = FALSE,
strict = TRUE

Arguments

X

outcome
mode

group

batch
study
time

v
repeats

stratify

nested
seed
horizon
progress

compact

strict

Value

SummarizedExperiment or data.frame/matrix (samples x features). If Summa-
rizedExperiment, metadata are taken from colData(x). If data.frame, metadata
are taken from x (columns referenced by group, batch, study, time, outcome).
character, outcome column name (used for stratification).

one of "subject_grouped","batch_blocked","study_loocv","time_series".

subject/group id column (for subject_grouped). Required when mode is ‘sub-
ject_grouped*; use ‘group = "row_id"‘ to explicitly request sample-wise CV.

batch/plate/center column (for batch_blocked).

study id column (for study_loocv).

time column (numeric or POSIXct) for time_series.
integer, number of folds (k) or rolling partitions.

integer, number of repeats (>=1) for non-LOOCV modes.

logical, keep outcome proportions similar across folds. For grouped modes,
stratification is applied at the group level (by majority class per group) if outcome
is provided; otherwise ignored.

logical, whether to attach inner CV splits (per outer fold) using the same mode
on the outer training set (with v folds, 1 repeat).

integer seed.

numeric (>=0), minimal time gap for time_series so that the training set only
contains samples with time < min(test_time) when horizon = 0, and time <=
min(test_time) - horizon otherwise.

logical, print progress for large jobs.

logical; store fold assignments instead of explicit train/test indices to reduce
memory usage for large datasets. Not supported when nested = TRUE.

logical; deprecated and ignored. ‘subject_grouped* always requires a non-NULL
‘group‘.

A LeakSplits S4 object containing:

24 plot_calibration

mode Character string indicating the splitting mode ("subject_grouped”, "batch_blocked”, "study_loocv”,
or "time_series").

indices List of fold descriptors, each containing train (integer vector of training indices), test
(integer vector of test indices), fold (fold number), and repeat_id (repeat identifier). When
compact = TRUE, indices are stored as fold assignments instead.

info List of metadata including outcome, v, repeats, seed, grouping columns (group, batch,
study, time), stratify, nested, horizon, summary (data.frame of fold sizes), hash (re-
producibility checksum), inner (nested inner splits if nested = TRUE), and coldata (sample
metadata).

Use the show method to print a summary, or access slots directly with @.

Examples

set.seed(1)

df <- data.frame(
subject = rep(1:10, each = 2),
outcome = rbinom(20, 1, 0.5),
x1 = rnorm(20),
X2 = rnorm(20)

)
splits <- make_split_plan(df, outcome = "outcome”,
mode = "subject_grouped”, group = "subject”, v = 5)
plot_calibration Plot calibration curve for binomial predictions
Description

Visualizes observed outcome rates versus predicted probabilities across bins to diagnose calibration
(binomial tasks only). Requires ggplot2.

Usage

plot_calibration(fit, bins = 10, min_bin_n = 5, learner = NULL)

Arguments
fit LeakFit.
bins Number of probability bins to use.
min_bin_n Minimum samples per bin shown in the plot.
learner Optional character scalar. When predictions include multiple learners, selects
the learner to summarize.
Value

A list containing the calibration curve, metrics, and a ggplot object.

plot_confounder_sensitivity

Examples

if (requireNamespace("ggplot2”, quietly = TRUE)) {
set.seed(42)
df <- data.frame(
subject = rep(1:15, each = 2),
outcome = factor(rep(c(@, 1), 15)),
x1 = rnorm(30),
X2 = rnorm(30)
)
splits <- make_split_plan(df, outcome = "outcome”,
mode = "subject_grouped”, group = "subject”,
v = 3, progress = FALSE)
custom <- list(

glm = list(
fit = function(x, y, task, weights, ...) {
stats::glm(y ~ ., data = as.data.frame(x),
family = stats::binomial(), weights = weights)
h
predict = function(object, newdata, task, ...) {
as.numeric(stats::predict(object, newdata = as.data.frame(newdata),
type = "response”))
3
)
)
fit <- fit_resample(df, outcome = "outcome”, splits = splits,
learner = "glm", custom_learners = custom,
metrics = "auc”, refit = FALSE, seed = 1)
plot_calibration(fit, bins = 5)
3

25

plot_confounder_sensitivity
Plot confounder sensitivity

Description

Shows performance metrics across confounder strata to assess sensitivity to batch/study effects.

Requires ggplot?2.

Usage

plot_confounder_sensitivity(
fit,
confounders = NULL,
metric = NULL,
min_n = 10,
coldata = NULL,
numeric_bins = 4,

26 plot_confounder_sensitivity

learner = NULL

)
Arguments
fit LeakFit.
confounders Character vector of columns in ‘coldata‘ to evaluate.
metric Metric name to compute within each stratum.
min_n Minimum samples per stratum to display.
coldata Optional data.frame of sample metadata.

numeric_bins Number of quantile bins for numeric confounders.

learner Optional character scalar. When predictions include multiple learners, selects
the learner to summarize.

Value

A list containing the sensitivity table and a ggplot object.

Examples

if (requireNamespace("ggplot2"”, quietly = TRUE)) {
set.seed(42)
df <- data.frame(
subject = rep(1:15, each = 2),
outcome = factor(rep(c(0, 1), 15)),
batch = factor(rep(c("A"”, "B", "C"), 10)),
x1 = rnorm(30),
x2 = rnorm(30)

)

splits <- make_split_plan(df, outcome = "outcome”,
mode = "subject_grouped”, group = "subject”,
v = 3, progress = FALSE)

custom <- list(

glm = list(
fit = function(x, y, task, weights, ...) {
stats::glm(y ~ ., data = as.data.frame(x),
family = stats::binomial(), weights = weights)
h
predict = function(object, newdata, task, ...) {
as.numeric(stats::predict(object, newdata = as.data.frame(newdata),
type = "response”))
}
)
)
fit <- fit_resample(df, outcome = "outcome"”, splits = splits,
learner = "glm", custom_learners = custom,
metrics = "auc”, refit = FALSE, seed = 1)
plot_confounder_sensitivity(fit, confounders = "batch”, coldata = df)

}

plot_fold_balance 27

plot_fold_balance Plot fold balance of class counts per fold

Description

Displays a bar chart of class counts per fold. For binomial tasks, it also overlays the positive propor-
tion to diagnose stratification issues. The positive class is taken from fit@info$positive_class
when available; otherwise the second factor level is used. For multiclass tasks, the plot shows
per-class counts without a proportion line. Only available for classification tasks. Requires ggplot2.

Usage
plot_fold_balance(fit)

Arguments

fit LeakFit.

Value

A list containing the fold summary, positive class (if binomial), and a ggplot object.

Examples

if (requireNamespace("ggplot2"”, quietly = TRUE)) {
set.seed(42)
df <- data.frame(
subject = rep(1:15, each = 2),
outcome = factor(rep(c(@, 1), 15)),
x1 = rnorm(30),
x2 = rnorm(30)
)
splits <- make_split_plan(df, outcome = "outcome”,
mode = "subject_grouped”, group = "subject”,
v = 3, progress = FALSE)
custom <- list(

glm = list(
fit = function(x, y, task, weights, ...) {
stats::glm(y ~ ., data = as.data.frame(x),
family = stats::binomial(), weights = weights)
3,
predict = function(object, newdata, task, ...) {

as.numeric(stats::predict(object, newdata = as.data.frame(newdata),
type = "response”))
}
)
)
fit <- fit_resample(df, outcome = "outcome”, splits = splits,
learner = "glm", custom_learners = custom,

28 plot_overlap_checks

metrics = "auc”, refit = FALSE, seed = 1)
plot_fold_balance(fit)
3

plot_overlap_checks Plot overlap diagnostics between train/test groups

Description

Checks whether the same group identifiers appear in both the training and test partitions within each
resample. This is designed to detect leakage from grouped or repeated-measures data (for example,
the same subject, batch, plate, or study appearing on both sides of a fold) when group-wise splitting
is expected.

Usage
plot_overlap_checks(fit, column = NULL)

Arguments
fit A ‘LeakFit* object produced by [fit_resample()]. It must contain the split indices
and the associated metadata in ‘fit@splits@info$coldata‘. The metadata rows
must align with the data used to create the splits.
column Character scalar naming the metadata column to check (for example ‘"subject"*
or ‘"batch"‘). The function compares unique values of this column between
train and test within each resample. There is no default: ‘NULL‘ or an unknown
column triggers an error. Changing ‘column‘ changes which kind of leakage
(subject-level, batch-level, etc.) is tested and therefore the overlap counts.
Details

For each resample in ‘fit@splits@indices®, the function counts the number of unique values of
‘column* in the train and test sets and the size of their intersection. Any non-zero overlap indicates
that at least one group appears in both train and test for that resample. The check is metadata-based
only: it relies on exact matches of the supplied column and does not inspect features or outcomes.
It only checks train vs test within each resample, so it will not detect overlaps across different
resamples or other leakage mechanisms. Inconsistent IDs or missing values in the metadata can
hide or inflate overlaps. ‘NA°‘ values are treated as regular identifiers and will count toward overlap
if they appear in both partitions. Requires ggplot2.

Value

A list returned invisibly with:

* ‘overlap_counts‘: data.frame with one row per resample and columns ‘fold‘ (resample index
in ‘fit@splits@indices®), ‘overlap® (unique IDs shared by train and test), ‘train‘ (unique IDs
in train), and ‘test® (unique IDs in test).

plot_perm_distribution 29

e ‘column‘: the metadata column name used for the check.

* ‘plot‘: the ggplot object showing the three count series across folds.

The plot is also printed. When any overlap is detected, the plot adds a warning annotation.

Examples

set.seed(1)
df <- data.frame(

subject = rep(1:6, each = 2),

outcome = rbinom(12, 1, 0.5),

x1 = rnorm(12),

x2 = rnorm(12)
)
splits <- make_split_plan(df, outcome = "outcome”,

mode = "subject_grouped”, group = "subject”, v = 3)

custom <- list(

glm = list(

fit = function(x, y, task, weights, ...) {

stats::glm(y ~ ., data = as.data.frame(x),
family = stats::binomial(), weights = weights)
3,
predict = function(object, newdata, task, ...) {
as.numeric(stats::predict(object, newdata = as.data.frame(newdata),
type = "response”))
3
)
)
fit <- fit_resample(df, outcome = "outcome", splits = splits,
learner = "glm", custom_learners = custom,
metrics = "accuracy”, refit = FALSE)
if (requireNamespace("ggplot2"”, quietly = TRUE)) {
out <- plot_overlap_checks(fit, column = "subject")
out$overlap_counts

}

plot_perm_distribution
Plot permutation distribution for a LeakAudit object

Description

Visualizes the label-permutation metric distribution and marks the observed and permuted-mean
values to help assess leakage signals. Requires ggplot2.

Usage

plot_perm_distribution(audit)

30 plot_time_acf

Arguments

audit LeakAudit.

Value

A list containing the observed value, permuted mean, permutation values, and a ggplot object.

Examples

if (requireNamespace("ggplot2"”, quietly = TRUE)) {
set.seed(42)
df <- data.frame(
subject = rep(1:15, each = 2),
outcome = factor(rep(c(@, 1), 15)),
x1 = rnorm(30),
X2 = rnorm(30)
)
splits <- make_split_plan(df, outcome = "outcome"”,
mode = "subject_grouped”, group = "subject”,
v = 3, progress = FALSE)
custom <- list(

glm = list(
fit = function(x, y, task, weights, ...) {
stats::glm(y ~ ., data = as.data.frame(x),
family = stats::binomial(), weights = weights)
3,
predict = function(object, newdata, task, ...) {
as.numeric(stats::predict(object, newdata = as.data.frame(newdata),
type = "response”))
3
)
)
fit <- fit_resample(df, outcome = "outcome”, splits = splits,
learner = "glm", custom_learners = custom,

metrics = "auc”, refit = FALSE, seed = 1)
audit <- audit_leakage(fit, metric = "auc"”, B = 20)
plot_perm_distribution(audit)

plot_time_acf Plot ACF of test predictions for time-series leakage checks

Description

Uses the autocorrelation function of out-of-fold predictions to detect temporal dependence that may
indicate leakage. Predictions are ordered by the split time column before computing the ACF.
Requires numeric predictions (regression or survival). Requires ggplot2.

predict_guard 31

Usage

plot_time_acf(fit, lag.max = 20)

Arguments

fit LeakFit.

lag.max maximum lag to show.
Value

A list with the autocorrelation results, 1lag.max, and a ggplot object.

Examples

if (requireNamespace("ggplot2"”, quietly = TRUE)) {
set.seed(42)
df <- data.frame(
id = 1:30,
time = seq.Date(as.Date("2020-01-01"), by = "day"”, length.out = 30),
y = rnorm(30),
x1 = rnorm(30),

x2 = rnorm(30)
)
splits <- make_split_plan(df, outcome = "y", mode = "time_series”,
time = "time"”, v = 3, progress = FALSE)
custom <- list(
Im = list(
fit = function(x, y, task, weights, ...) {
stats::1Im(y ~ ., data = data.frame(y =y, x))
3,
predict = function(object, newdata, task, ...) {
as.numeric(stats::predict(object, newdata = as.data.frame(newdata)))
3
)
)
fit <- fit_resample(df, outcome = "y", splits = splits,
learner = "Im", custom_learners = custom,
metrics = "rmse”, refit = FALSE, seed = 1)
plot_time_acf(fit, lag.max = 10)
3

predict_guard Apply a fitted GuardFit transformer to new data

32 predict_guard

Description

Applies the preprocessing steps stored in a GuardFit object to new data without refitting any statis-
tics. This is designed to prevent validation leakage that would occur if imputation, scaling, filtering,
or feature selection were recomputed on evaluation data. It enforces the training schema by align-
ing columns and factor levels, and it errors when a numeric-only training fit receives non-numeric
predictors. It does not detect label leakage, duplicate samples, or train/test contamination.

Usage

predict_guard(fit, newdata)

Arguments

fit A GuardFit object created by [.guard_fit()]. This required argument (no de-
fault) contains the training-time preprocessing settings and statistics. Chang-
ing fit (for example, a different imputation method or feature selection step)
changes the output columns and values.

newdata A matrix or data.frame of predictors with one row per sample. This required
argument (no default) is transformed using the training-time parameters in fit
only. Missing columns are added and filled, extra columns are dropped, and
factor levels are aligned to the training levels; if the training fit was numeric-
only, non-numeric columns in newdata trigger an error.

Value

A data.frame of transformed predictors with the same number of rows as newdata. Column order
and content match the training pipeline and may include derived features (one-hot encodings, miss-
ingness indicators, or PCA components). This output is not a prediction; it is intended as input to a
downstream model and assumes the training-time preprocessing is valid for the new data.

Examples

x_train <- data.frame(a = c(1, 2, NA, 4), b = c(10, 11, 12, 13))
fit <- .guard_fit(

x_train,

y = c(0.1, 0.2, 0.3, 0.4),

steps = list(impute = list(method = "median")),
task = "gaussian”

)

x_new <- data.frame(a = c(NA, 5), b = c(9, 14))

out <- predict_guard(fit, x_new)
out

show,LeakSplits-method 33

show, LeakSplits-method
Display summary for LeakSplits objects

Description

Prints fold counts, sizes, and hash metadata for quick inspection.

Usage

S4 method for signature 'LeakSplits'
show(object)

Arguments

object LeakSplits object.

Value

No return value, called for side effects (prints a summary to the console showing mode, fold count,
repeats, outcome, stratification status, nested status, per-fold train/test sizes, and the reproducibility
hash).

Examples

df <- data.frame(
subject = rep(1:10, each = 2),
outcome = rbinom(20, 1, 0.5),
x1 = rnorm(20),
X2 = rnorm(20)

)
splits <- make_split_plan(df, outcome = "outcome”,

mode = "subject_grouped”, group = "subject”, v = 5)
show(splits)

simulate_leakage_suite
Simulate leakage scenarios and audit results

34 simulate_leakage_suite

Description

Simulates synthetic binary classification datasets with optional leakage mechanisms, fits a model
using a leakage-aware cross-validation scheme, and summarizes the permutation-gap audit for each
Monte Carlo seed. The suite is designed to surface validation failures such as subject overlap
across folds, batch-confounded outcomes, global normalization/summary leakage, and time-series
look-ahead. The output is a per-seed summary of observed CV performance and its gap versus a
label-permutation null; it does not return fitted models or the full audit object. Results are limited
to the built-in data generator and leakage types implemented here, and should be interpreted as a
simulation-based sanity check rather than a comprehensive leakage detector for real data.

Usage

simulate_leakage_suite(
n = 500,
p = 29,
prevalence = 0.5,
mode = c("subject_grouped”, "batch_blocked”, "study_loocv", "time_series"),
learner = c("glmnet”, "ranger"),
leakage = c("none"”, "subject_overlap"”, "batch_confounded”, "peek_norm”, "lookahead"),
preprocess = NULL,

rho = 0,

K =5,
repeats = 1,
horizon = 0,
B = 1000,
seeds = 1:10,

parallel = FALSE,
signal_strength = 1,
verbose = FALSE

)
Arguments

n Integer scalar. Number of samples to simulate (default 500). Larger values
stabilize the Monte Carlo summary but increase runtime.

p Integer scalar. Number of baseline predictors before any leakage feature is added
(default 20). Increasing p changes the signal-to-noise ratio and increases fitting
time.

prevalence Numeric scalar in (0, 1). Target prevalence of class 1 in the simulated outcome
(default 0.5). Changing this alters class imbalance and can affect AUC and the
permutation gap.

mode Character scalar. Cross-validation scheme passed to make_split_plan(); one

n o n

of "subject_grouped”, "batch_blocked"”, "study_loocv", "time_series”.
Defaults to "subject_grouped”. This controls how samples are grouped into
folds (by subject, batch, study, or time) and therefore which leakage mechanisms
are realistically challenged.

simulate_leakage_suite 35

learner Character scalar. Base learner, "glmnet” (default) or "ranger”. Requires
the corresponding package in Suggests. Switching learners changes the fitted
model, runtime, and performance.

non

leakage Character scalar. Leakage mechanism to inject; one of "none", "subject_overlap”,
"batch_confounded”, "peek_norm”, "lookahead”. Leakage is added as an
extra predictor: "subject_overlap"” adds per-subject mean outcome, "batch_confounded”
adds per-batch mean outcome, "peek_norm” adds the globally normalized (z-
scored) outcome, and "lookahead” adds the next-time outcome. Changing this
controls whether and how leakage is present.

preprocess Optional preprocessing list or recipe passed to [fit_resample()]. When NULL
(default), the simulator uses the fit_resample defaults; for "peek_norm” leakage,
normalization is set to "none"” to avoid attenuating the constant leakage feature.

rho Numeric scalar in [-1, 1]. AR(1)-style autocorrelation applied to each predictor
across row order (default 0). Higher absolute values increase serial correlation
and make time-ordered leakage more pronounced.

K Integer scalar. Number of folds/partitions (default 5). Used as the fold count for
"subject_grouped” and "batch_blocked", and as the number of rolling parti-
tions for "time_series"”. Ignored for "study_loocv” (folds equal the number
of studies).

repeats Integer scalar >= 1. Number of repeated CV runs for "subject_grouped”
and "batch_blocked” (default 1). Increasing repeats increases the number
of folds and runtime. Ignored for "study_loocv” and "time_series".

horizon Numeric scalar >= 0. Minimum time gap enforced between train and test for
"time_series” splits (default 0). Larger values make the split more conserva-
tive and can reduce leakage from temporal proximity.

B Integer scalar >= 1. Number of permutations used by audit_leakage() to
compute the permutation gap and p-value (default 1000). Larger values yield
more stable p-values but increase runtime.

seeds Integer vector. Monte Carlo seeds (default 1:10). One row of output is produced
per seed; changing seeds changes the simulated datasets and splits.

parallel Logical scalar. If TRUE, evaluates seeds in parallel using future.apply (if in-
stalled). Results are identical to sequential execution; only runtime changes.
signal_strength
Numeric scalar. Scales the linear predictor before sampling outcomes (default
1). Larger values increase class separation and tend to increase AUC; smaller
values make the task harder.

verbose Logical scalar. If TRUE, prints progress messages for each seed. Does not affect
results.

Details

The generator draws p standard normal predictors, builds a linear predictor from the first min(5,
p) features, scales it by signal_strength, and samples a binary outcome to achieve the requested
prevalence. Outcomes are returned as a two-level factor, so the audited metric is AUC. Simu-
lated metadata include subject, batch, study, and time fields used by mode to create leakage-aware
splits. Leakage mechanisms are injected by adding a single extra predictor as described in leakage.
Parallel execution uses future.apply when installed and does not change results.

36 summary.LeakAudit

Value

A LeakSimResults data frame with one row per seed and columns:

 seed: seed used for data generation, splitting, and auditing.

* metric_obs: observed CV performance (AUC for this simulation).
* gap: permutation-gap statistic (observed minus permutation mean).
* p_value: permutation p-value for the gap.

* leakage: leakage scenario used.

* mode: CV mode used.

Only the permutation-gap summary is returned; fitted models, predictions, and other audit compo-
nents are not included.

Examples

if (requireNamespace("glmnet”, quietly = TRUE)) {
set.seed(1)
res <- simulate_leakage_suite(
n =120, p = 6, prevalence = 0.4,

mode = "subject_grouped”,
learner = "glmnet”,
leakage = "subject_overlap”,

K = 3, repeats =1,
B = 50, seeds =1,
parallel = FALSE

)
One row per seed with observed AUC, permutation gap, and p-value
res
3
summary.LeakAudit Summarize a leakage audit
Description

Prints a concise, human-readable report for a ‘LeakAudit‘ object produced by [audit_leakage()].
The summary surfaces four diagnostics when available: label-permutation gap (prediction-label as-
sociation by default), batch/study association tests (metadata aligned with fold splits), target leakage
scan (features strongly associated with the outcome), and near-duplicate detection (high similarity
in ‘X_ref*). The output reflects the stored audit results only; it does not recompute any tests.

Usage

S3 method for class 'LeakAudit'
summary(object, digits = 3, ...)

summary.LeakAudit 37

Arguments
object A ‘LeakAudit‘ object from [audit_leakage()]. The summary reads stored results
from ‘object* and prints them to the console.
digits Integer number of digits to show when formatting numeric statistics in the con-
sole output. Defaults to ‘3°. Increasing ‘digits‘ shows more precision; decreas-
ing it shortens the printout without changing the underlying values.
Unused. Included for S3 method compatibility; additional arguments are ig-
nored.
Details

The permutation test quantifies prediction-label association when using fixed predictions; refit-
based permutations require ‘perm_refit = TRUE® (or “"auto"‘ with refit data). It does not by itself
prove or rule out leakage. Batch association flags metadata that align with fold assignment; this may
reflect study design rather than leakage. Target leakage scan uses univariate feature-outcome asso-
ciations and can miss multivariate proxies, interaction leakage, or features not included in ‘X_ref*.
The multivariate scan (enabled by default for supported tasks) reports an additional model-based
score. Duplicate detection only considers the provided ‘X_ref* features and the similarity threshold
used during [audit_leakage()]. By default, ‘duplicate_scope = "train_test"* filters to pairs that cross
train/test; set ‘duplicate_scope = "all" to include within-fold duplicates. Sections are reported as
"not available" when the corresponding audit component was not computed.

Value

Invisibly returns ‘object® after printing the summary.

See Also

[plot_perm_distribution()], [plot_fold_balance()], [plot_overlap_checks()]

Examples

set.seed(1)
df <- data.frame(

subject = rep(1:6, each = 2),
outcome = rbinom(12, 1, 0.5),
x1 = rnorm(12),
x2 = rnorm(12)
)
splits <- make_split_plan(df, outcome = "outcome”,
mode = "subject_grouped”, group = "subject”, v = 3)
custom <- list(
glm = list(
fit = function(x, y, task, weights, ...) {
stats::glm(y ~ ., data = as.data.frame(x),
family = stats::binomial(), weights = weights)
1
predict = function(object, newdata, task, ...) {

as.numeric(stats::predict(object, newdata = as.data.frame(newdata),
type = "response”))

38 summary.LeakFit

}
)
)
fit <- fit_resample(df, outcome = "outcome", splits = splits,
learner = "glm", custom_learners = custom,
metrics = "auc"”, refit = FALSE, seed = 1)
audit <- audit_leakage(fit, metric = "auc”, B = 5,

X_ref = df[, c("x1", "x2")], seed = 1)
summary(audit) # prints the audit report and returns “audit™ invisibly

summary.lLeakFit Summarize a LeakFit object

Description

Prints a compact console report for a [LeakFit] object created by [fit_resample()]. The report lists
task/outcome metadata, learners, total folds, and cross-validated metrics summarized as mean and
standard deviation across completed folds, plus a small audit table with per-fold train/test sizes and
retained feature counts.

Usage
S3 method for class 'LeakFit'
summary(object, digits = 3, ...)
Arguments
object A [LeakFit] object returned by [fit_resample()]. It should contain ‘metric_summary*

and ‘audit’ slots; missing entries result in empty sections in the printed report.

digits Integer scalar. Number of decimal places to print in numeric summary tables.
Defaults to 3; affects printed output only, not the returned data.

Unused. Included for S3 method compatibility; changing these values has no
effect.

Details

This summary is meant for quick sanity checks of the resampling setup and performance. It does
not run leakage diagnostics and will not detect target leakage, duplicate samples, or batch/study
confounding; use [audit_leakage()] or ‘summary()‘ on a [LeakAudit] object for those checks.

Value

Invisibly returns ‘object@metric_summary*, a data frame of per-learner metric means and standard
deviations computed across folds. This function does not recompute metrics.

summary.LeakTune 39

Examples

set.seed(1)
df <- data.frame(
subject = rep(1:6, each = 2),
outcome = factor(rep(c(@, 1), each = 6)),
x1 = rnorm(12),
x2 = rnorm(12)

)

splits <- make_split_plan(
df,
outcome = "outcome”,
mode = "subject_grouped”,
group = "subject”,
v = 3,

stratify = TRUE,
progress = FALSE

)
custom <- list(
glm = list(
fit = function(x, y, task, weights, ...) {
stats::glm(y ~ ., data = data.frame(y =y, x),
family = stats::binomial(), weights = weights)
b
predict = function(object, newdata, task, ...) {
as.numeric(stats: :predict(object,
newdata = as.data.frame(newdata),
type = "response”))
}
)
)
fit <- fit_resample(df, outcome = "outcome”, splits = splits,
learner = "glm", custom_learners = custom,
metrics = "auc”, seed = 1)
summary_df <- summary(fit)
summary_df
summary.LeakTune Summarize a nested tuning result
Description

Prints a concise report for a ‘LeakTune* object produced by [tune_resample()]. The report high-
lights the tuning strategy, selection metric, and cross-validated performance across outer folds, plus
a glimpse of the selected hyperparameters.

Usage

S3 method for class 'LeakTune'
summary(object, digits = 3, ...)

40 tune_resample

Arguments
object A [LeakTune] object returned by [tune_resample()].
digits Integer scalar. Number of decimal places to print in numeric summary tables.
Defaults to 3.
Unused. Included for S3 method compatibility.
Value

Invisibly returns ‘object$metric_summary®, the data frame of per-learner metric means and standard
deviations computed across outer folds.

tune_resample Leakage-aware nested tuning with tidymodels

Description

Runs nested cross-validation for hyperparameter tuning using leakage-aware splits. Inner resamples
are constructed from each outer training fold to avoid information leakage during tuning. Requires
tidymodels tuning packages and a workflow or recipe-based preprocessing. Survival tasks are not
yet supported.

Usage

tune_resample(
X)
outcome,
splits,
learner,
preprocess = NULL,
grid = 10,
metrics = NULL,
positive_class = NULL,
selection = c("best”, "one_std_err"),
selection_metric = NULL,
inner_v = NULL,
inner_repeats = 1,
inner_seed = NULL,
control = NULL,
parallel = FALSE,
seed = 1,
split_cols = "auto"

tune_resample 41

Arguments

X SummarizedExperiment or matrix/data.frame.

outcome Outcome column name (if x is SE or data.frame).

splits LeakSplits object defining the outer resamples. If the splits do not already in-
clude inner folds, they are created from each outer training fold using the same
split metadata. rsample splits must already include inner folds.

learner A parsnip model_spec with tunable parameters, or a workflows workflow. When
a model_spec is provided, a workflow is built using ‘preprocess* or a formula.

preprocess Optional ‘recipes::recipe‘. Required when you need preprocessing for tuning.
Ignored when ‘learner is already a workflow.

grid Tuning grid passed to ‘tune::tune_grid()‘. Can be a data.frame or an integer size.

metrics Character vector of metric names (‘auc’, ‘pr_auc*, ‘accuracy‘, ‘macro_f1°, ‘log_loss*,

‘rmse*) or a yardstick metric set/list. Metrics are computed with yardstick; un-
supported metrics are dropped with a warning. For binomial tasks, if any inner
assessment fold contains a single class, probability metrics (‘auc’, ‘roc_auc®,
‘pr_auc®) are dropped for tuning with a warning.

positive_class Optional value indicating the positive class for binomial outcomes. When set,
the outcome levels are reordered so the positive class is second.

selection Selection rule for tuning, either “"best"* or “"one_std_err"*.

selection_metric
Metric name used for selecting hyperparameters. Defaults to the first metric in
‘metrics‘. If the chosen metric yields no valid results, the first available metric
is used with a warning.

inner_v Optional number of folds for inner CV when inner splits are not precomputed.
Defaults to the outer ‘v°.

inner_repeats Optional number of repeats for inner CV when inner splits are not precomputed.
Defaults to 1.

inner_seed Optional seed for inner split generation when inner splits are not precomputed.
Defaults to the outer split seed.
control Optional ‘tune::control_grid()‘ settings for tuning.
parallel Logical; passed to [fit_resample()] when evaluating outer folds (single-fold, no
refit).
seed Integer seed for reproducibility.
split_cols Optional named list/character vector or ‘"auto"* (default) overriding group/batch/study/time

column names when ‘splits* is an rsample object and its attributes are missing.
“"auto" falls back to common metadata column names (e.g., ‘group‘, ‘subject’,
‘batch’, ‘study‘, ‘time‘). Supported names are ‘group‘, ‘batch‘, ‘study‘, and
‘time‘.

"e

Value
A list of class “"LeakTune"* with components:

metrics Outer-fold metrics.

42

tune_resample

metric_summary Mean/SD metrics across outer folds with columns learner, and <metric>_mean

and <metric>_sd for each metric.
best_params Best hyperparameters per outer fold.

inner_results List of inner tuning results.

outer_fits List of outer LeakFit objects.
info Metadata about the tuning run.
Examples

if (requireNamespace(”tune”, quietly = TRUE) &&
requireNamespace("recipes”, quietly = TRUE) &&
requireNamespace("glmnet”, quietly = TRUE) &&
requireNamespace("rsample”, quietly = TRUE) &&
requireNamespace("workflows”, quietly = TRUE) &&
requireNamespace("yardstick”, quietly = TRUE) &&
requireNamespace(”dials"”, quietly = TRUE)) {

df <- data.frame(

subject = rep(1:10, each = 2),
outcome = factor(rep(c(@, 1), each = 10)),

x1 = rnorm(20),
x2 = rnorm(20)
)
splits <- make_split_plan(df, outcome = "outcome”,

mode = "subject_grouped”, group = "subject”,
v = 3, nested = TRUE, stratify = TRUE)
spec <- parsnip::logistic_reg(penalty = tune::tune(), mixture = 1) [>
parsnip::set_engine("glmnet")
rec <- recipes::recipe(outcome ~ x1 + x2, data = df)
tuned <- tune_resample(df, outcome = "outcome”, splits = splits,
learner = spec, preprocess = rec, grid = 5)
tuned$metric_summary

Index

.guard_fit, 2

as_rsample, 4
audit_leakage, 5, 11
audit_leakage_by_learner, 10
audit_report, 12

browseURL, /3

calibration_summary, 14
confounder_sensitivity, 15

fit_resample, 17
impute_guarded, 20

LeakAudit, 9, 11

LeakAudit-class (LeakSplits-class), 21
LeakFit, /9

LeakFit-class (LeakSplits-class), 21
LeakSplits, 23

LeakSplits-class, 21

make_split_plan, 22

plot_calibration, 24
plot_confounder_sensitivity, 25
plot_fold_balance, 27
plot_overlap_checks, 28
plot_perm_distribution, 29
plot_time_acf, 30
predict_guard, 31

show, LeakSplits-method, 33
simulate_leakage_suite, 33
summary.LeakAudit, 36
summary.LeakFit, 38
summary.LeakTune, 39

tune_resample, 40

	.guard_fit
	as_rsample
	audit_leakage
	audit_leakage_by_learner
	audit_report
	calibration_summary
	confounder_sensitivity
	fit_resample
	impute_guarded
	LeakSplits-class
	make_split_plan
	plot_calibration
	plot_confounder_sensitivity
	plot_fold_balance
	plot_overlap_checks
	plot_perm_distribution
	plot_time_acf
	predict_guard
	show,LeakSplits-method
	simulate_leakage_suite
	summary.LeakAudit
	summary.LeakFit
	summary.LeakTune
	tune_resample
	Index

