Accelerate Bayesian analytics workflows in 'R' through interactive modelling,
visualization, and inference. Define probabilistic graphical models using directed
acyclic graphs (DAGs) as a unifying language for business stakeholders, statisticians,
and programmers. This package relies on interfacing with the 'numpyro' python package.
Version: |
0.5.5 |
Depends: |
R (≥ 4.1.0) |
Imports: |
DiagrammeR (≥ 1.0.9), dplyr (≥ 1.0.8), magrittr (≥ 1.5), ggplot2 (≥ 3.4.0), rlang (≥ 1.0.2), purrr (≥ 1.0.0), tidyr (≥ 1.1.4), igraph (≥ 1.2.7), stringr (≥ 1.4.1), cowplot (≥
1.1.0), forcats (≥ 0.5.0), rstudioapi (≥ 0.11), lifecycle (≥
1.0.2), reticulate (≥ 1.30) |
Suggests: |
knitr, covr, testthat (≥ 3.0.0), rmarkdown, extraDistr, mvtnorm |
Published: |
2024-04-24 |
DOI: |
10.32614/CRAN.package.causact |
Author: |
Adam Fleischhacker [aut, cre, cph],
Daniela Dapena [ctb],
Rose Nguyen [ctb],
Jared Sharpe [ctb] |
Maintainer: |
Adam Fleischhacker <ajf at udel.edu> |
BugReports: |
https://github.com/flyaflya/causact/issues |
License: |
MIT + file LICENSE |
URL: |
https://github.com/flyaflya/causact, https://www.causact.com/ |
NeedsCompilation: |
no |
SystemRequirements: |
Python and numpyro are needed for Bayesian
inference computations; python (>= 3.8) with header files and
shared library; numpyro (= v0.12.1;
https://https://num.pyro.ai/en/latest/index.html); arviz (=
v0.15.1; https://https://python.arviz.org/en/stable/) |
Citation: |
causact citation info |
Materials: |
README NEWS |
In views: |
Bayesian |
CRAN checks: |
causact results |