A sparse Partial Least Squares implementation which uses soft-threshold estimation of the covariance matrices and therein introduces sparsity. Number of components and regularization coefficients are automatically set.
Version: | 1.2.1 |
Depends: | foreach, R (≥ 2.10) |
Imports: | Rcpp (≥ 1.0.5), doParallel, shiny, RColorBrewer |
LinkingTo: | Rcpp, RcppEigen |
Suggests: | knitr, rmarkdown, MASS |
Published: | 2024-01-30 |
DOI: | 10.32614/CRAN.package.ddsPLS |
Author: | Hadrien Lorenzo |
Maintainer: | Hadrien Lorenzo <hadrien.lorenzo.2015 at gmail.com> |
License: | MIT + file LICENSE |
NeedsCompilation: | yes |
Citation: | ddsPLS citation info |
Materials: | README |
CRAN checks: | ddsPLS results |
Reference manual: | ddsPLS.pdf |
Vignettes: |
Data-Driven Sparse PLS (ddsPLS) |
Package source: | ddsPLS_1.2.1.tar.gz |
Windows binaries: | r-devel: ddsPLS_1.2.1.zip, r-release: ddsPLS_1.2.1.zip, r-oldrel: ddsPLS_1.2.1.zip |
macOS binaries: | r-release (arm64): ddsPLS_1.2.1.tgz, r-oldrel (arm64): ddsPLS_1.2.1.tgz, r-release (x86_64): ddsPLS_1.2.1.tgz, r-oldrel (x86_64): ddsPLS_1.2.1.tgz |
Old sources: | ddsPLS archive |
Please use the canonical form https://CRAN.R-project.org/package=ddsPLS to link to this page.