easy.glmnet: Functions to Simplify the Use of 'glmnet' for Machine Learning

Provides several functions to simplify using the 'glmnet' package: converting data frames into matrices ready for 'glmnet'; b) imputing missing variables multiple times; c) fitting and applying prediction models straightforwardly; d) assigning observations to folds in a balanced way; e) cross-validate the models; f) selecting the most representative model across imputations and folds; and g) getting the relevance of the model regressors; as described in several publications: Solanes et al. (2022) <doi:10.1038/s41537-022-00309-w>, Palau et al. (2023) <doi:10.1016/j.rpsm.2023.01.001>, Sobregrau et al. (2024) <doi:10.1016/j.jpsychores.2024.111656>.

Version: 1.0
Imports: doParallel, foreach, glmnet, parallel, survival
Suggests: pROC
Published: 2024-09-11
DOI: 10.32614/CRAN.package.easy.glmnet
Author: Joaquim Radua ORCID iD [aut, cre]
Maintainer: Joaquim Radua <quimradua at gmail.com>
License: GPL-3
NeedsCompilation: no
CRAN checks: easy.glmnet results

Documentation:

Reference manual: easy.glmnet.pdf

Downloads:

Package source: easy.glmnet_1.0.tar.gz
Windows binaries: r-devel: easy.glmnet_1.0.zip, r-release: easy.glmnet_1.0.zip, r-oldrel: easy.glmnet_1.0.zip
macOS binaries: r-release (arm64): easy.glmnet_1.0.tgz, r-oldrel (arm64): easy.glmnet_1.0.tgz, r-release (x86_64): easy.glmnet_1.0.tgz, r-oldrel (x86_64): easy.glmnet_1.0.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=easy.glmnet to link to this page.