Epidemic final size calculations are sensitive to input data such as the \(R_0\) of the infection. Such values can often be uncertain in the early stages of an outbreak. This uncertainty can be included in final size calculations by running final_size()
for values drawn from a distribution, and summarising the outcomes.
New to finalsize? It may help to read the “Get started”, “Modelling heterogeneous contacts”, or “Modelling heterogeneous susceptibility” vignettes first!
The infection parameter (\(R_0\)) is uncertain. We want to know how much variation this could cause in the estimated final size of the epidemic.
This example uses social contact data from the POLYMOD project (Mossong et al. 2008) to estimate the final size of an epidemic in the U.K. These data are provided with the socialmixr
package.
These data are handled just as in the “Get started” vignette. This example also considers an infection with an \(R_0\) of 1.5.
# get UK polymod data from socialmixr
polymod <- socialmixr::polymod
contact_data <- socialmixr::contact_matrix(
polymod,
countries = "United Kingdom",
age.limits = c(0, 5, 18, 40, 65),
symmetric = TRUE
)
# get the contact matrix and demography data
contact_matrix <- t(contact_data$matrix)
demography_vector <- contact_data$demography$population
# scale the contact matrix so the largest eigenvalue is 1.0
contact_matrix <- contact_matrix / max(Re(eigen(contact_matrix)$values))
# divide each row of the contact matrix by the corresponding demography
contact_matrix <- contact_matrix / demography_vector
n_demo_grps <- length(demography_vector)
For simplicity, this example considers a scenario in which susceptibility to infection does not vary.
final_size
over \(R_0\) samplesThe basic reproduction number \(R_0\) of an infection might be uncertain in the early stages of an epidemic. This uncertainty can be modelled by running final_size()
multiple times for the same contact, demography, and susceptibility data, while sampling \(R_0\) values from a distribution.
This example assumes that the \(R_0\) estimate, and the uncertainty around that estimate, is provided as the mean and standard deviation of a normal distribution.
This example considers a normal distribution \(N(\mu = 1.5, \sigma = 0.1)\), for an \(R_0\) of 1.5. We can draw 1,000 \(R_0\) samples from this distribution and run final_size()
on the contact data and demography data for each sample.
This is quick, as finalsize
is an Rcpp package with a C++ backend.
# run final size on each sample with the same data
final_size_data <- Map(
r0_samples, seq_along(r0_samples),
f = function(r0, i) {
# the i-th final size estimate
fs <- final_size(
r0 = r0,
contact_matrix = contact_matrix,
demography_vector = demography_vector,
susceptibility = susc_uniform,
p_susceptibility = p_susc_uniform
)
fs$replicate <- i
fs$r0_estimate <- r0
fs
}
)
# combine data
final_size_data <- Reduce(x = final_size_data, f = rbind)
# order age groups
final_size_data$demo_grp <- factor(
final_size_data$demo_grp,
levels = contact_data$demography$age.group
)
# examine some replicates in the data
head(final_size_data, 15)
#> demo_grp susc_grp susceptibility p_infected replicate r0_estimate
#> 1 [0,5) susc_grp_1 1 0.2828070 1 1.305846
#> 2 [5,18) susc_grp_1 1 0.5289646 1 1.305846
#> 3 [18,40) susc_grp_1 1 0.3789743 1 1.305846
#> 4 [40,65) susc_grp_1 1 0.3173551 1 1.305846
#> 5 65+ susc_grp_1 1 0.1972185 1 1.305846
#> 6 [0,5) susc_grp_1 1 0.4321346 2 1.526937
#> 7 [5,18) susc_grp_1 1 0.7054231 2 1.526937
#> 8 [18,40) susc_grp_1 1 0.5561065 2 1.526937
#> 9 [40,65) susc_grp_1 1 0.4813572 2 1.526937
#> 10 65+ susc_grp_1 1 0.3178570 2 1.526937
#> 11 [0,5) susc_grp_1 1 0.3671955 3 1.423220
#> 12 [5,18) susc_grp_1 1 0.6350977 3 1.423220
#> 13 [18,40) susc_grp_1 1 0.4813138 3 1.423220
#> 14 [40,65) susc_grp_1 1 0.4106077 3 1.423220
#> 15 65+ susc_grp_1 1 0.2638501 3 1.423220
library(tibble)
library(dplyr)
library(tidyr)
library(purrr)
library(forcats)
final_size_data <-
# create a dataframe with values from a vector
tibble(r0 = r0_samples) %>%
rownames_to_column() %>%
# map the function final_size() to all the r0 values
# with the same set of arguments
# with {purrr}
mutate(
temp = map(
.x = r0,
.f = final_size,
contact_matrix = contact_matrix,
demography_vector = demography_vector,
susceptibility = susc_uniform,
p_susceptibility = p_susc_uniform
)
) %>%
# unnest all the dataframe outputs in temp
unnest(temp) %>%
# relevel the factor variable
mutate(
demo_grp = fct_relevel(
demo_grp,
contact_data %>%
pluck("demography") %>%
pluck("age.group")
)
)
head(final_size_data, 15)
#> # A tibble: 15 × 6
#> rowname r0 demo_grp susc_grp susceptibility p_infected
#> <chr> <dbl> <fct> <chr> <dbl> <dbl>
#> 1 1 1.31 [0,5) susc_grp_1 1 0.283
#> 2 1 1.31 [5,18) susc_grp_1 1 0.529
#> 3 1 1.31 [18,40) susc_grp_1 1 0.379
#> 4 1 1.31 [40,65) susc_grp_1 1 0.317
#> 5 1 1.31 65+ susc_grp_1 1 0.197
#> 6 2 1.53 [0,5) susc_grp_1 1 0.432
#> 7 2 1.53 [5,18) susc_grp_1 1 0.705
#> 8 2 1.53 [18,40) susc_grp_1 1 0.556
#> 9 2 1.53 [40,65) susc_grp_1 1 0.481
#> 10 2 1.53 65+ susc_grp_1 1 0.318
#> 11 3 1.42 [0,5) susc_grp_1 1 0.367
#> 12 3 1.42 [5,18) susc_grp_1 1 0.635
#> 13 3 1.42 [18,40) susc_grp_1 1 0.481
#> 14 3 1.42 [40,65) susc_grp_1 1 0.411
#> 15 3 1.42 65+ susc_grp_1 1 0.264
ggplot(final_size_data) +
stat_summary(
aes(
demo_grp, p_infected
),
fun = mean,
fun.min = function(x) {
quantile(x, 0.05)
},
fun.max = function(x) {
quantile(x, 0.95)
}
) +
scale_y_continuous(
labels = scales::percent,
limits = c(0.25, 1)
) +
theme_classic() +
theme(
legend.position = "top",
legend.key.height = unit(2, "mm"),
legend.title = ggtext::element_markdown(
vjust = 1
)
) +
coord_cartesian(
expand = TRUE
) +
labs(
x = "Age group",
y = "% Infected"
)