Learning bipartite and k-component bipartite graphs from financial datasets. This package contains implementations of the algorithms described in the paper: Cardoso JVM, Ying J, and Palomar DP (2022). <https://openreview.net/pdf?id=WNSyF9qZaMd> "Learning bipartite graphs: heavy tails and multiple components, Advances in Neural Informations Processing Systems" (NeurIPS).
Version: | 0.1.0 |
Depends: | spectralGraphTopology, quadprog |
Imports: | MASS, stats, progress, mvtnorm, CVXR |
Suggests: | testthat, igraph |
Published: | 2023-02-22 |
DOI: | 10.32614/CRAN.package.finbipartite |
Author: | Ze Vinicius [cre, aut] |
Maintainer: | Ze Vinicius <jvmirca at gmail.com> |
BugReports: | https://github.com/convexfi/bipartite/issues |
License: | GPL-3 |
URL: | https://github.com/convexfi/bipartite/ |
NeedsCompilation: | no |
Materials: | README |
CRAN checks: | finbipartite results |
Reference manual: | finbipartite.pdf |
Package source: | finbipartite_0.1.0.tar.gz |
Windows binaries: | r-devel: finbipartite_0.1.0.zip, r-release: finbipartite_0.1.0.zip, r-oldrel: finbipartite_0.1.0.zip |
macOS binaries: | r-release (arm64): finbipartite_0.1.0.tgz, r-oldrel (arm64): finbipartite_0.1.0.tgz, r-release (x86_64): finbipartite_0.1.0.tgz, r-oldrel (x86_64): finbipartite_0.1.0.tgz |
Please use the canonical form https://CRAN.R-project.org/package=finbipartite to link to this page.