This short tutorial covers the very basic use cases to get you started with markets. More usage details can be found in the documentation of the package.
Load the required libraries.
library(markets)
library(Formula)
Prepare the data. Normally this step is long and depends on the nature of the data and the considered market. For this example, we will use simulated data. Although we could simulate data independently from the package, we will use the top-level simulation functionality of markets to simplify the process. See the documentation of simulate_data
for more information on the simulation functionality. Here, we simulate data using a data generating process for a market in disequilibrium with stochastic price dynamics.
1000
nobs <- 5
tobs <-
-1.3
alpha_d <- 24.8
beta_d0 <- c(2.3, -1.02)
beta_d <- c(2.6, -1.1)
eta_d <-
0.6
alpha_s <- 16.1
beta_s0 <- c(2.9)
beta_s <- c(-1.5, 3.2)
eta_s <-
1.2
gamma <- 0.9
beta_p0 <- c(-0.1)
beta_p <-
1
sigma_d <- 1
sigma_s <- 1
sigma_p <- 0.0
rho_ds <- 0.0
rho_dp <- 0.0
rho_sp <-
4430
seed <-
simulate_data(
stochastic_adjustment_data <-"diseq_stochastic_adjustment", nobs, tobs,
alpha_d, beta_d0, beta_d, eta_d,
alpha_s, beta_s0, beta_s, eta_s,
gamma, beta_p0, beta_p,sigma_d = sigma_d, sigma_s = sigma_s, sigma_p = sigma_p,
rho_ds = rho_ds, rho_dp = rho_dp, rho_sp = rho_sp,
seed = seed
)
Prepare the basic parameters for model initialization. The simulate_data
call uses Q
for the simulated traded quantity, P
for the simulated prices, id
for subject identification, and date
for time identification. It automatically creates the demand-specific variables Xd1
and Xd2
, the supply-specific variable Xs1
, the common (i.e., both demand and supply) variables X1
and X2
, and the price dynamics’ variable Xp1
.
Q | P | id | date ~ P + Xd1 + Xd2 + X1 + X2 | P + Xs1 + X1 + X2 market_spec <-
The market specification has to be modified in two cases. For the diseq_directional
, the price variable is removed from the supply equation because the separation rule of the model can only be used for markets with exclusively either inelastic demand or supply. For the diseq_stochastic_adjustment
, the right-hand side of the price dynamics equation is appended in the market specification.
By default, the models are estimated by allowing the demand, supply, and price equations to have correlated error shocks. The default verbosity behavior is to display errors and warnings that might occur when estimating the models.
By default, all models are estimated using full information maximum likelihood based on the "BFGS"
optimization algorithm. The first equilibrium_model
call modifies the estimation behavior and estimates the model using two stage least squares. The diseq_basic
call modifies the default optimization behavior and estimates the model using the "Nelder-Mead"
optimization methods.
Standard errors are by default assumed to be homoscedastic. The second equilibrium_model
and diseq_deterministic_adjustment
calls modify this behavior by calculating clustered standard errors based on the subject identifier, while the diseq_basic
and diseq_directional
calls modify it by calculating heteroscedastic standard errors via the sandwich estimator.
equilibrium_model(
eq_reg <-
market_spec, stochastic_adjustment_data,estimation_options = list(method = "2SLS")
) equilibrium_model(
eq_fit <-
market_spec, stochastic_adjustment_data,estimation_options = list(standard_errors = c("id"))
) diseq_basic(
bs_fit <-
market_spec, stochastic_adjustment_data,estimation_options = list(
method = "Nelder-Mead", control = list(maxit = 1e+5),
standard_errors = "heteroscedastic"
)
) diseq_directional(
dr_fit <-formula(update(Formula(market_spec), . ~ . | . - P)),
stochastic_adjustment_data,estimation_options = list(standard_errors = "heteroscedastic")
) diseq_deterministic_adjustment(
da_fit <-
market_spec, stochastic_adjustment_data,estimation_options = list(standard_errors = c("id"))
) diseq_stochastic_adjustment(
sa_fit <-formula(update(Formula(market_spec), . ~ . | . | Xp1)),
stochastic_adjustment_data,estimation_options = list(control = list(maxit = 1e+5))
)
All the model estimates support the summary
function. The eq_2sls
also provides the first-stage estimation, but it is not included in the summary and has to be explicitly asked.
summary(eq_reg)
#> Equilibrium Model for Markets in Equilibrium:
#> Demand RHS : D_P + D_Xd1 + D_Xd2 + D_X1 + D_X2
#> Supply RHS : S_P + S_Xs1 + S_X1 + S_X2
#> Market Clearing : Q = D_Q = S_Q
#> Shocks : Correlated
#> Nobs : 5000
#> Sample Separation : Not Separated
#> Quantity Var : Q
#> Price Var : P
#> Key Var(s) : id, date
#> Time Var : date
#>
#> Least squares estimation:
#> Method : 2SLS
#>
#> Shocks:
#> D_VARIANCE : 5.66427
#> S_VARIANCE : 5.70121
#> RHO : -0.396832
#>
#> First Stage:
#>
#> Call:
#> lm(formula = first_stage_formula, data = object@data)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -3.9385 -0.9419 -0.0076 0.8862 4.5895
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 4.49078 0.01802 249.14 <2e-16 ***
#> Xd1 0.72818 0.01799 40.48 <2e-16 ***
#> Xd2 -0.33706 0.01797 -18.75 <2e-16 ***
#> X1 1.31269 0.01791 73.29 <2e-16 ***
#> X2 -1.36787 0.01829 -74.78 <2e-16 ***
#> Xs1 -0.93267 0.01792 -52.05 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 1.274 on 4994 degrees of freedom
#> Multiple R-squared: 0.7616, Adjusted R-squared: 0.7614
#> F-statistic: 3191 on 5 and 4994 DF, p-value: < 2.2e-16
#>
#>
#> Demand Equation:
#>
#> Call:
#> lm(formula = demand_formula, data = object@data)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -7.3458 -0.8461 0.1607 0.9935 3.9047
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 26.05365 0.09618 270.89 <2e-16 ***
#> P_FITTED -1.92560 0.02095 -91.90 <2e-16 ***
#> Xd1 2.29771 0.02498 92.00 <2e-16 ***
#> Xd2 -1.01303 0.02077 -48.78 <2e-16 ***
#> X1 2.59564 0.03410 76.11 <2e-16 ***
#> X2 -1.07589 0.03494 -30.79 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 1.39 on 4994 degrees of freedom
#> Multiple R-squared: 0.7722, Adjusted R-squared: 0.772
#> F-statistic: 3386 on 5 and 4994 DF, p-value: < 2.2e-16
#>
#>
#> Supply Equation:
#>
#> Call:
#> lm(formula = supply_formula, data = object@data)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -7.3439 -0.8408 0.1576 0.9897 3.8530
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 12.00283 0.11136 107.78 <2e-16 ***
#> P_FITTED 1.20302 0.02439 49.33 <2e-16 ***
#> Xs1 2.91737 0.03006 97.04 <2e-16 ***
#> X1 -1.51101 0.03777 -40.00 <2e-16 ***
#> X2 3.20439 0.03895 82.27 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 1.39 on 4995 degrees of freedom
#> Multiple R-squared: 0.772, Adjusted R-squared: 0.7718
#> F-statistic: 4227 on 4 and 4995 DF, p-value: < 2.2e-16
summary(eq_fit)
#> Equilibrium Model for Markets in Equilibrium:
#> Demand RHS : D_P + D_Xd1 + D_Xd2 + D_X1 + D_X2
#> Supply RHS : S_P + S_Xs1 + S_X1 + S_X2
#> Market Clearing : Q = D_Q = S_Q
#> Shocks : Correlated
#> Nobs : 5000
#> Sample Separation : Not Separated
#> Quantity Var : Q
#> Price Var : P
#> Key Var(s) : id, date
#> Time Var : date
#>
#> Maximum likelihood estimation:
#> Method : BFGS
#> Convergence Status : success
#> Starting Values :
#> D_P D_CONST D_Xd1 D_Xd2 D_X1 D_X2 S_P
#> -1.9256 26.0536 2.2977 -1.0130 2.5956 -1.0759 1.2030
#> S_CONST S_Xs1 S_X1 S_X2 D_VARIANCE S_VARIANCE RHO
#> 12.0028 2.9174 -1.5110 3.2044 5.6643 5.7012 -0.3968
#>
#> Coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> D_P -1.9256975 0.03725261 -51.69296 0.000000e+00 ***
#> D_CONST 26.0542576 0.16556392 157.36676 0.000000e+00 ***
#> D_Xd1 2.3055160 0.04361180 52.86451 0.000000e+00 ***
#> D_Xd2 -0.9963758 0.03348349 -29.75723 1.398342e-194 ***
#> D_X1 2.5956115 0.05978398 43.41651 0.000000e+00 ***
#> D_X2 -1.0762772 0.06019306 -17.88042 1.675703e-71 ***
#> S_P 1.2032908 0.04260645 28.24199 1.785188e-175 ***
#> S_CONST 12.0015431 0.19885727 60.35255 0.000000e+00 ***
#> S_Xs1 2.9177581 0.05258619 55.48525 0.000000e+00 ***
#> S_X1 -1.5113726 0.06625113 -22.81278 3.423737e-115 ***
#> S_X2 3.2047666 0.06723523 47.66499 0.000000e+00 ***
#> D_VARIANCE 5.6639426 0.22577277 25.08692 6.909728e-139 ***
#> S_VARIANCE 5.7012019 0.25913008 22.00131 2.797632e-107 ***
#> RHO -0.3970413 0.01730149 -22.94838 1.529232e-116 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> -2 log L: 33488
summary(bs_fit)
#> Basic Model for Markets in Disequilibrium:
#> Demand RHS : D_P + D_Xd1 + D_Xd2 + D_X1 + D_X2
#> Supply RHS : S_P + S_Xs1 + S_X1 + S_X2
#> Short Side Rule : Q = min(D_Q, S_Q)
#> Shocks : Correlated
#> Nobs : 5000
#> Sample Separation : Not Separated
#> Quantity Var : Q
#> Price Var : P
#> Key Var(s) : id, date
#> Time Var : date
#>
#> Maximum likelihood estimation:
#> Method : Nelder-Mead
#> Max Iterations : 1e+05
#> Convergence Status : success
#> Starting Values :
#> D_P D_CONST D_Xd1 D_Xd2 D_X1 D_X2 S_P
#> -0.91370 21.50697 1.55130 -0.68159 1.24540 0.30929 0.08391
#> S_CONST S_Xs1 S_X1 S_X2 D_VARIANCE S_VARIANCE RHO
#> 17.03305 1.86928 -0.02750 1.66942 3.10289 2.85599 0.00000
#>
#> Coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> D_P -0.7791371 0.07931915 -9.822812 8.980307e-23 ***
#> D_CONST 22.6344592 0.29751814 76.077578 0.000000e+00 ***
#> D_Xd1 2.0117793 0.03523165 57.101478 0.000000e+00 ***
#> D_Xd2 -0.6992671 0.04193071 -16.676727 1.935355e-62 ***
#> D_X1 1.7158904 0.14576979 11.771234 5.491505e-32 ***
#> D_X2 -0.5892051 0.07792261 -7.561413 3.987139e-14 ***
#> S_P 0.3290079 0.04549028 7.232488 4.742255e-13 ***
#> S_CONST 17.5777710 0.23544440 74.657842 0.000000e+00 ***
#> S_Xs1 2.7156153 0.03555906 76.369148 0.000000e+00 ***
#> S_X1 -0.9950805 0.09697323 -10.261394 1.051774e-24 ***
#> S_X2 2.8737782 0.06496191 44.237895 0.000000e+00 ***
#> D_VARIANCE 2.5069085 0.57009934 4.397319 1.095963e-05 ***
#> S_VARIANCE 1.7364128 0.22626449 7.674261 1.663745e-14 ***
#> RHO -0.6685024 0.06631271 -10.081061 6.699890e-24 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> -2 log L: 14692.09
summary(da_fit)
#> Deterministic Adjustment Model for Markets in Disequilibrium:
#> Demand RHS : D_P + D_Xd1 + D_Xd2 + D_X1 + D_X2
#> Supply RHS : S_P + S_Xs1 + S_X1 + S_X2
#> Short Side Rule : Q = min(D_Q, S_Q)
#> Separation Rule : P_DIFF analogous to (D_Q - S_Q)
#> Shocks : Correlated
#> Nobs : 4000
#> Sample Separation : Demand Obs = 1758, Supply Obs = 2242
#> Quantity Var : Q
#> Price Var : P
#> Key Var(s) : id, date
#> Time Var : date
#>
#> Maximum likelihood estimation:
#> Method : BFGS
#> Convergence Status : success
#> Starting Values :
#> D_P D_CONST D_Xd1 D_Xd2 D_X1 D_X2 S_P
#> -1.00158 22.19624 1.67280 -0.73584 1.48376 0.04390 0.10972
#> S_CONST S_Xs1 S_X1 S_X2 P_DIFF D_VARIANCE S_VARIANCE
#> 16.83321 1.80322 0.05562 1.57367 0.92085 2.58729 2.98552
#> RHO
#> 0.00000
#>
#> Coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> D_P -1.3431249 0.01644569 -81.670328 0.000000e+00 ***
#> D_CONST 25.3875755 0.08826183 287.639344 0.000000e+00 ***
#> D_Xd1 2.3709604 0.02657810 89.207292 0.000000e+00 ***
#> D_Xd2 -1.0175771 0.02196629 -46.324492 0.000000e+00 ***
#> D_X1 2.7721752 0.03298164 84.052075 0.000000e+00 ***
#> D_X2 -1.3064350 0.03369226 -38.775526 0.000000e+00 ***
#> S_P 0.5271217 0.01507390 34.969158 6.624101e-268 ***
#> S_CONST 15.8320910 0.07487340 211.451463 0.000000e+00 ***
#> S_Xs1 2.6868156 0.02499791 107.481594 0.000000e+00 ***
#> S_X1 -1.1388234 0.02977150 -38.252129 0.000000e+00 ***
#> S_X2 2.8187413 0.02949716 95.559769 0.000000e+00 ***
#> P_DIFF 1.1021707 0.01308521 84.230261 0.000000e+00 ***
#> D_VARIANCE 1.7590874 0.04799147 36.654166 3.927494e-294 ***
#> S_VARIANCE 1.5970307 0.04168354 38.313223 0.000000e+00 ***
#> RHO 0.0600957 0.01783407 3.369713 7.524658e-04 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> -2 log L: 18105.45
summary(sa_fit)
#> Stochastic Adjustment Model for Markets in Disequilibrium:
#> Demand RHS : D_P + D_Xd1 + D_Xd2 + D_X1 + D_X2
#> Supply RHS : S_P + S_Xs1 + S_X1 + S_X2
#> Price Dynamics RHS: I(D_Q - S_Q) + Xp1
#> Short Side Rule : Q = min(D_Q, S_Q)
#> Shocks : Correlated
#> Nobs : 4000
#> Sample Separation : Not Separated
#> Quantity Var : Q
#> Price Var : P
#> Key Var(s) : id, date
#> Time Var : date
#>
#> Maximum likelihood estimation:
#> Method : BFGS
#> Max Iterations : 1e+05
#> Convergence Status : success
#> Starting Values :
#> D_P D_CONST D_Xd1 D_Xd2 D_X1 D_X2 S_P
#> -1.00158 22.19624 1.67280 -0.73584 1.48376 0.04390 0.10972
#> S_CONST S_Xs1 S_X1 S_X2 P_DIFF P_CONST P_Xp1
#> 16.83321 1.80322 0.05562 1.57367 0.92252 0.42843 -0.07090
#> D_VARIANCE S_VARIANCE P_VARIANCE RHO_DS RHO_DP RHO_SP
#> 2.58729 2.98552 5.60450 0.00000 0.00000 0.00000
#>
#> Coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> D_P -1.31678069 0.01374289 -95.8154072 0.000000e+00 ***
#> D_CONST 24.88425787 0.07604569 327.2277235 0.000000e+00 ***
#> D_Xd1 2.29596931 0.02228707 103.0179994 0.000000e+00 ***
#> D_Xd2 -0.98502218 0.01939144 -50.7967401 0.000000e+00 ***
#> D_X1 2.62337313 0.02912280 90.0796982 0.000000e+00 ***
#> D_X2 -1.14372398 0.03011240 -37.9818330 0.000000e+00 ***
#> S_P 0.63216311 0.01611099 39.2380068 0.000000e+00 ***
#> S_CONST 15.98170066 0.07430136 215.0929829 0.000000e+00 ***
#> S_Xs1 2.97894891 0.02786543 106.9048104 0.000000e+00 ***
#> S_X1 -1.55155068 0.03410057 -45.4992563 0.000000e+00 ***
#> S_X2 3.24779056 0.03521129 92.2371880 0.000000e+00 ***
#> P_DIFF 1.21068401 0.01331229 90.9448118 0.000000e+00 ***
#> P_CONST 0.89786543 0.03672925 24.4455156 5.616513e-132 ***
#> P_Xp1 -0.10822251 0.02145413 -5.0443670 4.550253e-07 ***
#> D_VARIANCE 1.04693421 0.03435125 30.4773222 5.206601e-204 ***
#> S_VARIANCE 0.98237039 0.03766173 26.0840478 5.531219e-150 ***
#> P_VARIANCE 0.99622390 0.09802695 10.1627555 2.907411e-24 ***
#> RHO_DS -0.02631395 0.06405949 -0.4107737 6.812385e-01
#> RHO_DP -0.04298693 0.05583361 -0.7699113 4.413525e-01
#> RHO_SP -0.01373388 0.06060979 -0.2265951 8.207386e-01
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> -2 log L: 16932.03
Calculate marginal effects on the shortage probabilities. Markets offers two marginal effect calls out of the box. The mean marginal effects and the marginal effects ate the mean. Marginal effects on the shortage probabilities are state-dependent. If the variable is only in the demand equation, the output name of the marginal effect is the variable name prefixed by D_
. If the variable is only in the supply equation, the name of the marginal effect is the variable name prefixed by S_
. If the variable is in both equations, then it is prefixed by B_
.
c("bs", "dr", "da", "sa")
diseq_abbrs <- c(bs_fit, dr_fit, da_fit, sa_fit)
diseq_fits <- c("P", "Xd1", "Xd2", "X1", "X2", "Xs1")
variables <-
function(fnc, ...) {
apply_marginal <-function(fit) {
sapply(variables, function(v) fnc(fit, v, ...), USE.NAMES = FALSE)
}
}
sapply(diseq_fits, apply_marginal(shortage_probability_marginal))
mspm <-colnames(mspm) <- diseq_abbrs
# Mean Shortage Probabilities' Marginal Effects
mspm#> bs dr da sa
#> B_P -0.10160382 -0.1366526 -0.1919618 -0.19683597
#> D_Xd1 0.18445642 0.2518488 0.2433550 0.23188424
#> D_Xd2 -0.06411454 -0.1076561 -0.1044440 -0.09948352
#> B_X1 0.24856404 0.3359714 0.4014243 0.42165155
#> B_X2 -0.31751469 -0.3534875 -0.4234075 -0.44352639
#> S_Xs1 -0.24898988 -0.2633837 -0.2757743 -0.30086260
sapply(
spmm <-
diseq_fits,apply_marginal(shortage_probability_marginal, aggregate = "at_the_mean")
)colnames(spmm) <- diseq_abbrs
# Shortage Probabilities' Marginal Effects at the Mean
spmm#> bs dr da sa
#> B_P -0.1666732 -0.3001412 -0.4054235 -0.4984543
#> D_Xd1 0.3025865 0.5531559 0.5139659 0.5872082
#> D_Xd2 -0.1051750 -0.2364539 -0.2205857 -0.2519255
#> B_X1 0.4077501 0.7379211 0.8478083 1.0677624
#> B_X2 -0.5208583 -0.7763931 -0.8942368 -1.1231568
#> S_Xs1 -0.4084487 -0.5784910 -0.5824356 -0.7618845
Copy the disequilibrium model data frame and augment it with post-estimation data. The disequilibrium models can be used to estimate:
Shortage probabilities. These are the probabilities that the disequilibrium models assign to observing a particular extent of excess demand.
Normalized shortages. The point estimates of the shortages are normalized by the variance of the difference of demand and supply shocks.
Relative shortages: The point estimates of the shortages are normalized by the estimated supplied quantity.
sa_fit
fit <- cbind(
mdt <-@model@data,
fitshortage_indicators = c(shortage_indicators(fit)),
normalized_shortages = c(normalized_shortages(fit)),
shortage_probabilities = c(shortage_probabilities(fit)),
relative_shortages = c(relative_shortages(fit))
)
How is the sample separated post-estimation? The indices of the observations for which the estimated demand is greater than the estimated supply are easily obtained.
if (requireNamespace("ggplot2", quietly = TRUE)) {
data.frame(
pdt <-Shortage = c(mdt$normalized_shortages, mdt$relative_shortages),
Type = c(rep("Normalized", nrow(mdt)), rep("Relative", nrow(mdt))),
xpos = c(rep(-1.0, nrow(mdt)), rep(1.0, nrow(mdt))),
ypos = c(
rep(0.8 * max(mdt$normalized_shortages), nrow(mdt)),
rep(0.8 * max(mdt$relative_shortages), nrow(mdt))
)
)::ggplot(pdt) +
ggplot2 ggplot2::stat_density(ggplot2::aes(Shortage,
linetype = Type,
color = Type
geom = "line") +
), ggplot2::ggtitle(paste0("Estimated shortages densities (", name(fit), ")")) +
ggplot2::theme(
panel.background = ggplot2::element_rect(fill = "transparent"),
plot.background = ggplot2::element_rect(
fill = "transparent",
color = NA
),legend.background = ggplot2::element_rect(fill = "transparent"),
legend.box.background = ggplot2::element_rect(
fill = "transparent",
color = NA
),legend.position = c(0.8, 0.8)
)else {
} summary(mdt[, grep("shortage", colnames(mdt))])
}
The estimated demanded and supplied quantities can be calculated per observation.
cbind(
market <-demand = demanded_quantities(fit)[, 1],
supply = supplied_quantities(fit)[, 1]
)summary(market)
#> demand supply
#> Min. : 8.45 Min. : 4.754
#> 1st Qu.:16.69 1st Qu.:16.746
#> Median :18.57 Median :19.093
#> Mean :18.55 Mean :19.115
#> 3rd Qu.:20.36 3rd Qu.:21.454
#> Max. :29.74 Max. :30.763
The package also offers basic aggregation functionality.
aggregate_demand(fit) |>
aggregates <- dplyr::left_join(aggregate_supply(fit), by = "date") |>
dplyr::mutate(date = as.numeric(date)) |>
dplyr::rename(demand = D_Q, supply = S_Q)
if (requireNamespace("ggplot2", quietly = TRUE)) {
data.frame(
pdt <-Date = c(aggregates$date, aggregates$date),
Quantity = c(aggregates$demand, aggregates$supply),
Side = c(rep("Demand", nrow(aggregates)), rep("Supply", nrow(aggregates)))
)::ggplot(pdt, ggplot2::aes(x = Date)) +
ggplot2 ggplot2::geom_line(ggplot2::aes(y = Quantity, linetype = Side, color = Side)) +
ggplot2::ggtitle(paste0(
"Aggregate estimated demand and supply (", name(fit), ")"
+
)) ggplot2::theme(
panel.background = ggplot2::element_rect(fill = "transparent"),
plot.background = ggplot2::element_rect(
fill = "transparent", color = NA
),legend.background = ggplot2::element_rect(fill = "transparent"),
legend.box.background = ggplot2::element_rect(
fill = "transparent", color = NA
),legend.position = c(0.8, 0.5)
)else {
}
aggregates }