This vignette introduces two functions, get_init_pars_logistic and get_init_pars_baranyi, which help find reasonable initial parameter approximations for Logistic and Baranyi growth models. These initial approximations can be used as starting values for the subsequent optimization algorithm.
The get_init_pars_logistic function aims to find reasonable initial approximations for parameters of the Logistic growth model, including K (carrying capacity), lag (lag phase duration), and gr_rate (growth rate). These initial values are based on the provided growth curve and some optional initial values.
The function takes the following parameters:
# Load required libraries
library(dplyr)
# Generate example growth curve data
set.seed(123)
time <- 1:10
biomass <- c(0.1, 0.3, 0.7, 1.5, 3.0, 5.0, 8.0, 12.0, 18.0, 25.0)
gr_curve <- data.frame(time = time, biomass = biomass)
# Get initial parameters for the Logistic model
initial_params <- get_init_pars_logistic(gr_curve, this_n0 = 0.1, init_K = 30, init_lag = 0.5, init_gr_rate = 0.5)
# Print the initial parameter approximations
initial_params
The get_init_pars_baranyi function is designed to find reasonable initial approximations for parameters of the Baranyi growth model, including init_mumax (maximum specific growth rate) and lag (lag phase duration). These initial values are based on the provided growth curve and some optional initial values.
The function takes the following parameters:
# Load required libraries
library(dplyr)
# Generate example growth curve data
set.seed(123)
time <- 1:10
biomass <- c(0.1, 0.3, 0.7, 1.5, 3.0, 5.0, 8.0, 12.0, 18.0, 25.0)
gr_curve <- data.frame(time = time, biomass = biomass)
# Get initial parameters for the Baranyi model
initial_params <- get_init_pars_baranyi(gr_curve, this_n0 = 0.1, init_lag = 0.5, init_gr_rate = 0.5)
# Print the initial parameter approximations
initial_params
These functions are useful for obtaining initial parameter approximations for Logistic and Baranyi growth models. You can use these initial values as starting points for optimization algorithms to fit growth models to your data accurately.