This vignette is supposed to be a short reference of the primitives
and tools supplied by the mlrCPO
package.
CPOs are first-class objects in R that represent
data manipulation. They can be combined to form networks of operation,
they can be attached to mlr
Learner
s, and they
have tunable Hyperparameters that influence their behaviour.
CPO
s go through a lifecycle from construction to
CPO
to a CPOTrained
“retrafo” or “inverter”
object. The different stages of a CPO
related object can be
distinguished using getCPOClass()
, which
takes one of five values:
getCPOClass(cpoPca)
#> [1] "CPOConstructor"
getCPOClass(cpoPca())
#> [1] "CPO"
getCPOClass(pid.task %>|% cpoPca())
#> [1] "CPORetrafo"
getCPOClass(inverter(bh.task %>>% cpoLogTrafoRegr()))
#> [1] "CPOInverter"
getCPOClass(NULLCPO)
#> [1] "NULLCPO"
CPO
s are created using
CPOConstructor
s. These are R functions
with a print function and many parameters in common.
print(cpoAsNumeric) # example CPOConstructor
#> <<CPO as.numeric()>>
print(cpoAsNumeric, verbose = TRUE) # alternative: !cpoAsNumeric
#> <<CPO as.numeric()>>
#>
#> cpo.retrafo:
#> function (data)
#> {
#> as.data.frame(lapply(data, as.numeric), row.names = rownames(data))
#> }
#> <environment: namespace:mlrCPO>
class(cpoAsNumeric)
#> [1] "CPOConstructor" "function"
getCPOName(cpoPca) # same as getCPOName() of the *constructed* CPO
#> [1] "pca"
getCPOClass(cpoPca)
#> [1] "CPOConstructor"
The function parameters of a CPOConstructor
CPO
HyperparametersCPO
id
(default to the
CPO
’s name
)affect.*
parameters)CPO
’s hyperparameters are
“exported”, i.e. can late be manipulated using
setHyperPars()
.names(formals(cpoPca))
#> [1] "center" "scale"
#> [3] "tol" "rank"
#> [5] "id" "export"
#> [7] "affect.type" "affect.index"
#> [9] "affect.names" "affect.pattern"
#> [11] "affect.invert" "affect.pattern.ignore.case"
#> [13] "affect.pattern.perl" "affect.pattern.fixed"
cpo = cpoScale()) # construct CPO with default Hyperparameter values
(#> scale(center = TRUE, scale = TRUE)
print(cpo, verbose = TRUE) # detailed printing. Alternative: !cpo
#> Trafo chain of 1 cpos:
#> scale(center = TRUE, scale = TRUE)
#> Operating: feature
#> ParamSet:
#> Type len Def Constr Req Tunable Trafo
#> scale.center logical - TRUE - - TRUE -
#> scale.scale logical - TRUE - - TRUE -
class(cpo) # CPOs that are not compound are "CPOPrimitive"
#> [1] "CPOPrimitive" "CPO"
getCPOClass(cpo)
#> [1] "CPO"
The inner “state” of a CPO
can be inspected and
manipulated using various getters and setters.
getParamSet(cpo)
#> Type len Def Constr Req Tunable Trafo
#> scale.center logical - TRUE - - TRUE -
#> scale.scale logical - TRUE - - TRUE -
getHyperPars(cpo)
#> $scale.center
#> [1] TRUE
#>
#> $scale.scale
#> [1] TRUE
setHyperPars(cpo, scale.center = FALSE)
#> scale(center = FALSE, scale = TRUE)
getCPOId(cpo)
#> [1] "scale"
setCPOId(cpo, "MYID")
#> MYID<scale>(center = TRUE, scale = TRUE)
getCPOName(cpo)
#> [1] "scale"
getCPOAffect(cpo) # empty, since no affect set
#> named list()
getCPOAffect(cpoPca(affect.pattern = "Width$"))
#> $pattern
#> [1] "Width$"
getCPOConstructor(cpo) # the constructor used to create the CPO
#> <<CPO scale(center = TRUE, scale = TRUE)>>
getCPOProperties(cpo) # see properties explanation below
#> $handling
#> [1] "numerics" "factors" "ordered" "missings" "cluster"
#> [6] "classif" "multilabel" "regr" "surv" "oneclass"
#> [11] "twoclass" "multiclass" "prob" "se"
#>
#> $adding
#> character(0)
#>
#> $needed
#> character(0)
getCPOPredictType(cpo)
#> response prob se
#> "response" "prob" "se"
getCPOClass(cpo)
#> [1] "CPO"
getCPOOperatingType(cpo) # Operating on feature, target, retrafoless?
#> [1] "feature"
Compare the predict type and operating type of a TOCPO or ROCPO:
getCPOPredictType(cpoResponseFromSE())
#> response se
#> "se" "se"
getCPOOperatingType(cpoResponseFromSE())
#> [1] "target"
getCPOOperatingType(cpoSample())
#> [1] "retrafoless"
The identicalCPO()
function is used to check whether the
underlying operation of two CPO
s is identical. For
this understanding, CPO
s with different hyperparameters can
still be “identical”.
identicalCPO(cpoScale(scale = TRUE), cpoScale(scale = FALSE))
#> [1] TRUE
identicalCPO(cpoScale(), cpoPca())
#> [1] FALSE
CPO
s can be applied to data.frame
and
Task
objects using %>>%
or
applyCPO
.
head(iris) %>>% cpoPca()
#> Species PC1 PC2 PC3 PC4
#> 1 setosa -0.1634147 0.017230444 -0.11038321 -0.0231625616
#> 2 setosa 0.3324970 -0.189351624 -0.08152883 0.0005612917
#> 3 setosa 0.3268659 0.101103375 -0.02238439 0.0464537730
#> 4 setosa 0.4202367 0.005523981 0.17106514 -0.0222757931
#> 5 setosa -0.1768684 0.140149101 -0.04185224 -0.0194870755
#> 6 setosa -0.7393165 -0.074655279 0.08508352 0.0179103657
= applyCPO(cpoPca(), iris.task)
task head(getTaskData(task))
#> Species PC1 PC2 PC3 PC4
#> 1 setosa -2.684126 -0.3193972 0.02791483 0.002262437
#> 2 setosa -2.714142 0.1770012 0.21046427 0.099026550
#> 3 setosa -2.888991 0.1449494 -0.01790026 0.019968390
#> 4 setosa -2.745343 0.3182990 -0.03155937 -0.075575817
#> 5 setosa -2.728717 -0.3267545 -0.09007924 -0.061258593
#> 6 setosa -2.280860 -0.7413304 -0.16867766 -0.024200858
CPO
composition can be done using
%>>%
or composeCPO
. It results in a new
CPO which mostly behaves like a primitive CPO. Exceptions are:
id
= cpoScale()
scale = cpoPca() pca
= scale %>>% pca
compound composeCPO(scale, pca) # same
#> (scale >> pca)(scale.center = TRUE, scale.scale = TRUE, pca.center = TRUE, pca.scale = FALSE)
class(compound)
#> [1] "CPOPipeline" "CPO"
!compound
#> Trafo chain of 2 cpos:
#> scale(center = TRUE, scale = TRUE)
#> Operating: feature
#> ParamSet:
#> Type len Def Constr Req Tunable Trafo
#> scale.center logical - TRUE - - TRUE -
#> scale.scale logical - TRUE - - TRUE -
#> ====>
#> pca(center = TRUE, scale = FALSE)[not exp'd: tol = <NULL>, rank = <NULL>]
#> Operating: feature
#> ParamSet:
#> Type len Def Constr Req Tunable Trafo
#> pca.center logical - TRUE - - TRUE -
#> pca.scale logical - FALSE - - TRUE -
getCPOName(compound)
#> [1] "pca.scale"
getHyperPars(compound)
#> $scale.center
#> [1] TRUE
#>
#> $scale.scale
#> [1] TRUE
#>
#> $pca.center
#> [1] TRUE
#>
#> $pca.scale
#> [1] FALSE
setHyperPars(compound, scale.center = TRUE, pca.center = FALSE)
#> (scale >> pca)(scale.center = TRUE, scale.scale = TRUE, pca.center = FALSE, pca.scale = FALSE)
getCPOId(compound) # error: no ID for compound CPOs
#> Error in getCPOId.CPO(compound): Compound CPOs have no IDs.
getCPOAffect(compound) # error: no affect for compound CPOs
#> Error in getCPOAffect.CPO(compound): Compound CPOs have no affect arguments.
getCPOOperatingType()
always considers the operating
type of the whole CPO
chain and may return multiple
values:
getCPOOperatingType(NULLCPO)
#> character(0)
getCPOOperatingType(cpoScale())
#> [1] "feature"
getCPOOperatingType(cpoScale() %>>% cpoLogTrafoRegr() %>>% cpoSample())
#> [1] "feature" "target" "retrafoless"
Composite CPO
objects can be broken into their
constituent primitive CPO
s using as.list()
.
The inverse of this operation is pipeCPO()
, which composes
a list of CPO
s in the given order.
as.list(compound)
#> [[1]]
#> scale(center = TRUE, scale = TRUE)
#>
#> [[2]]
#> pca(center = TRUE, scale = FALSE)[not exp'd: tol = <NULL>, rank = <NULL>]
pipeCPO(as.list(compound)) # chainCPO: (list of CPO) -> CPO
#> (scale >> pca)(scale.center = TRUE, scale.scale = TRUE, pca.center = TRUE, pca.scale = FALSE)
pipeCPO(list())
#> NULLCPO
CPO-Learner attachment works using %>>%
or
attachCPO
.
= makeLearner("classif.logreg")
lrn cpolrn = cpo %>>% lrn) # the new learner has the CPO hyperparameters
(#> Learner classif.logreg.scale from package stats
#> Type: classif
#> Name: ; Short name:
#> Class: CPOLearner
#> Properties: numerics,factors,twoclass,prob
#> Predict-Type: response
#> Hyperparameters: model=FALSE
attachCPO(compound, lrn) # attaching compound CPO
#> Learner classif.logreg.pca.scale from package stats
#> Type: classif
#> Name: ; Short name:
#> Class: CPOLearner
#> Properties: numerics,factors,twoclass,prob
#> Predict-Type: response
#> Hyperparameters: model=FALSE
The new object is a CPOLearner
, which performs the
operation given by the CPO
before trainign the
Learner
.
class(lrn)
#> [1] "classif.logreg" "RLearnerClassif" "RLearner" "Learner"
The work performed by a CPOLearner
can also be performed
manually:
= cpoLogTrafoRegr() %>>% makeLearner("regr.lm")
lrn = train(lrn, subsetTask(bh.task, 1:300))
model predict(model, subsetTask(bh.task, 301:500))
#> Prediction: 200 observations
#> predict.type: response
#> threshold:
#> time: 0.00
#> id truth response
#> 301 1 24.8 28.69715
#> 302 2 22.0 27.89821
#> 303 3 26.4 28.33370
#> 304 4 33.1 33.80868
#> 305 5 36.1 34.93957
#> 306 6 28.4 28.77130
#> ... (#rows: 200, #cols: 3)
is equivalent to
= subsetTask(bh.task, 1:300) %>>% cpoLogTrafoRegr()
trafo = train("regr.lm", trafo)
model
= subsetTask(bh.task, 301:500) %>>% retrafo(trafo)
newdata = predict(model, newdata)
pred invert(inverter(newdata), pred)
#> Prediction: 200 observations
#> predict.type: response
#> threshold:
#> time: 0.00
#> id truth response
#> 301 1 24.8 28.69715
#> 302 2 22.0 27.89821
#> 303 3 26.4 28.33370
#> 304 4 33.1 33.80868
#> 305 5 36.1 34.93957
#> 306 6 28.4 28.77130
#> ... (#rows: 200, #cols: 3)
It is possible to obtain both the underlying Learner
and
the attached CPO
from a CPOLearner
. Note that
if a CPOLearner
is wrapped by some method (e.g. a
TuneWrapper
), this does not work, since CPO
can not probe below the first wrapping layer.
getLearnerCPO(cpolrn) # the CPO
#> scale(center = TRUE, scale = TRUE)
getLearnerBare(cpolrn) # the Learner
#> Learner classif.logreg from package stats
#> Type: classif
#> Name: Logistic Regression; Short name: logreg
#> Class: classif.logreg
#> Properties: twoclass,numerics,factors,prob,weights
#> Predict-Type: response
#> Hyperparameters: model=FALSE
CPOs perform data-dependent operation. However, when this operation
becomes part of a machine-learning process, the operation on
predict-data must depend only on the training data. A
CPORetrafo
object represents the re-application of a
trained CPO. A CPOInverter
object represents the
transformation of a prediction made on a transformed task back to the
form of the original data.
The CPOTrained
objects generated by application of a
CPO
(or application of another CPOTrained
) can
be retrieved using the retrafo()
or the
inverter()
function.
= iris %>>% cpoScale()
transformed head(transformed)
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1 -0.8976739 1.01560199 -1.335752 -1.311052 setosa
#> 2 -1.1392005 -0.13153881 -1.335752 -1.311052 setosa
#> 3 -1.3807271 0.32731751 -1.392399 -1.311052 setosa
#> 4 -1.5014904 0.09788935 -1.279104 -1.311052 setosa
#> 5 -1.0184372 1.24503015 -1.335752 -1.311052 setosa
#> 6 -0.5353840 1.93331463 -1.165809 -1.048667 setosa
ret = retrafo(transformed))
(#> CPO Retrafo chain
#> [RETRAFO scale(center = TRUE, scale = TRUE)]
head(getTaskTargets(bh.task))
#> [1] 24.0 21.6 34.7 33.4 36.2 28.7
= bh.task %>>% cpoLogTrafoRegr()
transformed head(getTaskTargets(transformed))
#> [1] 3.178054 3.072693 3.546740 3.508556 3.589059 3.356897
inv = inverter(transformed))
(#> CPO Inverter chain {type:regr} (able to predict 'response', 'se')
#> [INVERTER fun.apply.regr.target(){type:regr}]
head(invert(inv, getTaskTargets(transformed)))
#> [1] 24.0 21.6 34.7 33.4 36.2 28.7
Retrafos and inverters are stored as attributes:
attributes(transformed)
#> $names
#> [1] "type" "env" "weights" "blocking" "coordinates"
#> [6] "task.desc"
#>
#> $class
#> [1] "RegrTask" "SupervisedTask" "Task"
#>
#> $retrafo
#> CPO Retrafo / Inverter chain {type:regr} (able to predict 'response', 'se')
#> [RETRAFO fun.apply.regr.target(){type:regr}]
#>
#> $inverter
#> CPO Inverter chain {type:regr} (able to predict 'response', 'se')
#> [INVERTER fun.apply.regr.target(){type:regr}]
It is possible to set the "retrafo"
and
"inverter"
attributes of an object using
retrafo()
and inverter()
. This can be useful
for writing elegant scripts, especially since CPOTrained are
automatically chained. To delete the CPOTrained
attribute of an object, set it to NULL
or
NULLCPO
, or use clearRI()
.
= bh.task
bh2 retrafo(bh2) = ret
attributes(bh2)
#> $names
#> [1] "type" "env" "weights" "blocking" "coordinates"
#> [6] "task.desc"
#>
#> $class
#> [1] "RegrTask" "SupervisedTask" "Task"
#>
#> $retrafo
#> CPO Retrafo chain
#> [RETRAFO scale(center = TRUE, scale = TRUE)]
retrafo(bh2) = NULLCPO
# equivalent:
# retrafo(bh2) = NULL
attributes(bh2)
#> $names
#> [1] "type" "env" "weights" "blocking" "coordinates"
#> [6] "task.desc"
#>
#> $class
#> [1] "RegrTask" "SupervisedTask" "Task"
# clearRI returns the object without retrafo or inverter attributes
= clearRI(transformed)
bh3 attributes(bh3)
#> $names
#> [1] "type" "env" "weights" "blocking" "coordinates"
#> [6] "task.desc"
#>
#> $class
#> [1] "RegrTask" "SupervisedTask" "Task"
General methods that work on CPOTrained
object to
inspect its object properties. Many methods that work on a
CPO
also work on a CPOTrained
and give the
same result.
getCPOName(ret)
#> [1] "scale"
getParamSet(ret)
#> Type len Def Constr Req Tunable Trafo
#> center logical - TRUE - - TRUE -
#> scale logical - TRUE - - TRUE -
getHyperPars(ret)
#> $center
#> [1] TRUE
#>
#> $scale
#> [1] TRUE
getCPOProperties(ret)
#> $handling
#> [1] "numerics" "factors" "ordered" "missings" "cluster"
#> [6] "classif" "multilabel" "regr" "surv" "oneclass"
#> [11] "twoclass" "multiclass" "prob" "se"
#>
#> $adding
#> character(0)
#>
#> $needed
#> character(0)
getCPOPredictType(ret)
#> response prob se
#> "response" "prob" "se"
getCPOOperatingType(ret) # Operating on feature, target, both?
#> [1] "feature"
getCPOOperatingType(inv)
#> [1] "target"
A CPOTrained
has information about whether it can be
used as a CPORetrafo
object (and be applied to new data
using %>>%
), or as a CPOInverter
object
(and used by invert()
), or possibly both. This is given by
getCPOTrainedCapability()
, which returns a 1
if the object has an effect in the given role, 0
if the
object has no effect (but can be used), or -1
if the object
can not be used in the role.
getCPOTrainedCapability(ret)
#> retrafo invert
#> 1 0
getCPOTrainedCapability(inv)
#> retrafo invert
#> -1 1
getCPOTrainedCapability(NULLCPO)
#> retrafo invert
#> 0 0
The “CPO
class” of a CPOTrained
is
determined by this as well. A pure inverter is CPOInverter
,
an object that can be used for retrafo is a CPORetrafo
.
getCPOClass(ret)
#> [1] "CPORetrafo"
getCPOClass(inv)
#> [1] "CPOInverter"
The CPO
and the CPOConstructor
used to
create the `CPOTrained can be queried.
getCPOTrainedCPO(ret)
#> scale(center = TRUE, scale = TRUE)
getCPOConstructor(ret)
#> <<CPO scale(center = TRUE, scale = TRUE)>>
CPOTrained
objects can be inspected using
getCPOTrainedState()
. The state contains the
hyperparameters, the control
object (CPO dependent data
representing the data information needed to re-apply the operation), and
information about the Task
/ data.frame
layout
used for training (column names, column types) in
data$shapeinfo.input
and
data$shapeinfo.output
.
The state can be manipulated and used to create new
CPOTrained
s, using
makeCPOTrainedFromState()
.
state = getCPOTrainedState(retrafo(iris %>>% cpoScale())))
(#> $center
#> [1] TRUE
#>
#> $scale
#> [1] TRUE
#>
#> $control
#> $control$center
#> Sepal.Length Sepal.Width Petal.Length Petal.Width
#> 5.843333 3.057333 3.758000 1.199333
#>
#> $control$scale
#> Sepal.Length Sepal.Width Petal.Length Petal.Width
#> 0.8280661 0.4358663 1.7652982 0.7622377
#>
#>
#> $data
#> $data$shapeinfo.input
#> <ShapeInfo (input) Sepal.Length: num, Sepal.Width: num, Petal.Length: num, Petal.Width: num, Species: fac>
#>
#> $data$shapeinfo.output
#> <ShapeInfo (output)>:
#> numeric:
#> <ShapeInfo Sepal.Length: num, Sepal.Width: num, Petal.Length: num, Petal.Width: num>
#> factor:
#> <ShapeInfo Species: fac>
#> other:
#> <ShapeInfo (empty)>
$control$center[1] = 1000 # will now subtract 1000 from the first column
state= makeCPOTrainedFromState(cpoScale, state)
new.retrafo head(iris %>>% new.retrafo)
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1 -1201.474 1.01560199 -1.335752 -1.311052 setosa
#> 2 -1201.716 -0.13153881 -1.335752 -1.311052 setosa
#> 3 -1201.957 0.32731751 -1.392399 -1.311052 setosa
#> 4 -1202.078 0.09788935 -1.279104 -1.311052 setosa
#> 5 -1201.595 1.24503015 -1.335752 -1.311052 setosa
#> 6 -1201.112 1.93331463 -1.165809 -1.048667 setosa
When executing data %>>% CPO
, the result has an
associated CPORetrafo
and CPOInverter
object.
When applying another CPO
, the CPORetrafo
and
CPOInverter
will be chained automatically. This is to make
(data %>>% CPO1) %>>% CPO2
work the same as
data %>>% (CPO1 %>>% CPO2)
.
= head(iris) %>>% cpoPca()
data retrafo(data)
#> CPO Retrafo chain
#> [RETRAFO pca(center = TRUE, scale = FALSE)]
= data %>>% cpoScale() data2
retrafo(data2)
is the same as
retrafo(data %>>% pca %>>% scale)
:
retrafo(data2)
#> CPO Retrafo chain
#> [RETRAFO pca(center = TRUE, scale = FALSE)] =>
#> [RETRAFO scale(center = TRUE, scale = TRUE)]
To interrupt this chain, set retrafo to NULL
either
explicitly, or using clearRI()
.
= clearRI(data)
data = data %>>% cpoScale()
data2 retrafo(data2)
#> CPO Retrafo chain
#> [RETRAFO scale(center = TRUE, scale = TRUE)]
this is equivalent to
retrafo(data) = NULL
inverter(data) = NULL
= data %>>% cpoScale()
data3 retrafo(data3)
#> CPO Retrafo chain
#> [RETRAFO scale(center = TRUE, scale = TRUE)]
CPOTrained
can be composed using %>>%
and pipeCPO()
, just like CPO
s. They can also
be split apart into primitive parts using as.list
. It is
recommended to only chain CPOTrained
objects if they were
created in the given order by preprocessing operations, since
CPOTrained
s are very dependent on their position within a
preprocessing pipeline.
= retrafo(head(iris) %>>% compound)
compound.retrafo
compound.retrafo#> CPO Retrafo chain
#> [RETRAFO scale(center = TRUE, scale = TRUE)] =>
#> [RETRAFO pca(center = TRUE, scale = FALSE)]
retrafolist = as.list(compound.retrafo))
(#> [[1]]
#> CPO Retrafo chain
#> [RETRAFO scale(center = TRUE, scale = TRUE)]
#>
#> [[2]]
#> CPO Retrafo chain
#> [RETRAFO pca(center = TRUE, scale = FALSE)]
1]] %>>% retrafolist[[2]]
retrafolist[[#> CPO Retrafo chain
#> [RETRAFO scale(center = TRUE, scale = TRUE)] =>
#> [RETRAFO pca(center = TRUE, scale = FALSE)]
pipeCPO(retrafolist)
#> CPO Retrafo chain
#> [RETRAFO scale(center = TRUE, scale = TRUE)] =>
#> [RETRAFO pca(center = TRUE, scale = FALSE)]
Similarly to CPO
s, CPOTrained
objects can
be applied to data using %>>%
, applyCPO
,
or predict
. This only works with objects that have the
"retrafo"
capability and hence the CPORetrafo
class.
= iris %>>% cpoScale()
transformed head(iris) %>>% retrafo(transformed)
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1 -0.8976739 1.01560199 -1.335752 -1.311052 setosa
#> 2 -1.1392005 -0.13153881 -1.335752 -1.311052 setosa
#> 3 -1.3807271 0.32731751 -1.392399 -1.311052 setosa
#> 4 -1.5014904 0.09788935 -1.279104 -1.311052 setosa
#> 5 -1.0184372 1.24503015 -1.335752 -1.311052 setosa
#> 6 -0.5353840 1.93331463 -1.165809 -1.048667 setosa
Should in general give the same as head(transformed)
,
since the same data was used:
head(transformed)
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1 -0.8976739 1.01560199 -1.335752 -1.311052 setosa
#> 2 -1.1392005 -0.13153881 -1.335752 -1.311052 setosa
#> 3 -1.3807271 0.32731751 -1.392399 -1.311052 setosa
#> 4 -1.5014904 0.09788935 -1.279104 -1.311052 setosa
#> 5 -1.0184372 1.24503015 -1.335752 -1.311052 setosa
#> 6 -0.5353840 1.93331463 -1.165809 -1.048667 setosa
applyCPO()
and
predict()
are synonyms of
%>>%
when used for CPORetrafo
objects:
applyCPO(retrafo(transformed), head(iris))
predict(retrafo(transformed), head(iris))
To use CPOTrained
objects for inversion, the
invert()
function is used. Besides the
CPOTrained
, it takes the data to invert, and optionally the
predict.type
. Typically CPOTrained
objects
that were retrieved using inverter()
from a transformed
dataset should be used for inversion. Retrafo CPOTrained
objects retrieved from a transformed data set using
retrafo()
sometimes have both the "retrafo"
as
well as the "invert"
capability (precisely when all TOCPOs
used had the constant.invert
flag set, see Building Custom CPOs) and can then also
be used for inversion. In that case, however, the "truth"
column of an inverted prediction is dropped.
= bh.task %>>% cpoLogTrafoRegr()
transformed = predict(train("regr.lm", transformed), transformed)
prediction = inverter(transformed)
inv invert(inv, prediction)
#> Prediction: 506 observations
#> predict.type: response
#> threshold:
#> time: 0.00
#> id truth response
#> 1 1 24.0 29.46569
#> 2 2 21.6 24.65039
#> 3 3 34.7 30.48177
#> 4 4 33.4 28.91454
#> 5 5 36.2 27.40745
#> 6 6 28.7 25.77416
#> ... (#rows: 506, #cols: 3)
= retrafo(transformed)
ret invert(ret, prediction)
#> Prediction: 506 observations
#> predict.type: response
#> threshold:
#> time: 0.00
#> id response
#> 1 1 29.46569
#> 2 2 24.65039
#> 3 3 30.48177
#> 4 4 28.91454
#> 5 5 27.40745
#> 6 6 25.77416
#> ... (#rows: 506, #cols: 2)
Inversion can be done on both predictions given by mlr
Learner
s, as well as plain vectors,
data.frame
s, and matrix
objects.
Note that the prediction being inverted must have the form of a
prediction done with the predict.type
that an inverter
expects as input for the predict.type
given to
invert()
as an argument. This can be queried using the
getCPOPredictType()
function. If invert()
is
called with predict.type = p
, then the prediction must be
one made with a Learner
that has predict.type
set to getCPOPredictType(cpo)[p]
.
NULLCPO
is the neutral element of
%>>%
and the operations it represents
(composeCPO()
, applyCPO()
, and
attachCPO()
), i.e. when it is used as an argument of these
functions, the data, Learner
or CPO
is not
changed. NULLCPO
is also the result pipeCPO()
called with the empty list, and of retrafo()
and
inverter()
when they are called for objects with no
CPOTrained
objects attached.
pipeCPO(list())
#> NULLCPO
as.list(NULLCPO) # the inverse of pipeCPO
#> list()
retrafo(bh.task)
#> NULLCPO
inverter(bh.task %>>% cpoPca()) # cpoPca is a TOCPO, so no inverter is created
#> NULLCPO
Many getters give characteristic results for
NULLCPO
.
getCPOClass(NULLCPO)
#> [1] "NULLCPO"
getCPOName(NULLCPO)
#> [1] "NULLCPO"
getCPOId(NULLCPO)
#> [1] "NULLCPO"
getHyperPars(NULLCPO)
#> named list()
getParamSet(NULLCPO)
#> [1] "Empty parameter set."
getCPOAffect(NULLCPO)
#> named list()
getCPOOperatingType(NULLCPO) # operates neither on features nor on targets.
#> character(0)
getCPOProperties(NULLCPO)
#> $handling
#> [1] "numerics" "factors" "ordered" "missings" "cluster"
#> [6] "classif" "multilabel" "regr" "surv" "oneclass"
#> [11] "twoclass" "multiclass" "prob" "se"
#>
#> $adding
#> character(0)
#>
#> $needed
#> character(0)
# applying NULLCPO leads to a retrafo() of NULLCPO, so it is its own CPOTrainedCPO
getCPOTrainedCPO(NULLCPO)
#> NULLCPO
# NULLCPO has no effect on applyCPO and invert, so NULLCPO's capabilities are 0.
getCPOTrainedCapability(NULLCPO)
#> retrafo invert
#> 0 0
getCPOTrainedState(NULLCPO)
#> NULL
Some helper functions convert NULLCPO
to
NULL
and back, while leaving other values as they are.
nullToNullcpo(NULL)
#> NULLCPO
nullcpoToNull(NULLCPO)
#> NULL
nullToNullcpo(10) # not changed
#> [1] 10
nullcpoToNull(10) # ditto
#> [1] 10
A CPO
has a “name” which identifies the general
operation done by this CPO
. For example, it is
"pca"
for a CPO
created using
cpoPca()
. Furthermore, a CPO
has an “ID” which
is associated with the particular CPO
object at hand. For
primitive CPO
s, it can be queried and set using
getCPOId()
and setCPOId()
, and it can be set
during construction, but it defaults to the CPO
’s
name. The ID will also be prefixed to the CPO
’s
hyperparameters after construction, if they are exported. This can help
prevent hyperparameter name clashes when composing CPO
s
with otherwise identical hyperparameter names. It is possible to set the
ID to NULL
to have no prefix for hyperparameter names.
= cpoPca()
cpo getCPOId(cpo)
#> [1] "pca"
getParamSet(cpo)
#> Type len Def Constr Req Tunable Trafo
#> pca.center logical - TRUE - - TRUE -
#> pca.scale logical - FALSE - - TRUE -
getParamSet(setCPOId(cpo, "my.id"))
#> Type len Def Constr Req Tunable Trafo
#> my.id.center logical - TRUE - - TRUE -
#> my.id.scale logical - FALSE - - TRUE -
getParamSet(setCPOId(cpo, NULL))
#> Type len Def Constr Req Tunable Trafo
#> center logical - TRUE - - TRUE -
#> scale logical - FALSE - - TRUE -
In the following (silly) example an error is thrown because of hyperparameter name clash. This can be avoided by setting the ID of one of the constituents to a different value.
%>>% cpo
cpo #> Error in parameterClashAssert(cpo1, cpo2, cpo1$debug.name, cpo2$debug.name): Parameters "pca.center", "pca.scale" occur in both pca and pca
#> Use the id parameter when constructing, or setCPOId, to prevent name collisions.
%>>% setCPOId(cpo, "two")
cpo #> (pca >> two<pca>)(pca.center = TRUE, pca.scale = FALSE, two.center = TRUE, two.scale = FALSE)
CPOs contain information about the kind of data they can work with,
and what kind of data they produce. getCPOProperties
returns a list with the slots handling
,
adding
, needed
.
properties$handling
indicates the kind of data a CPO can
handle, properties$needed
indicates the kind of data it
needs the data receiver (e.g. attached learner) to have, and
properties$adding
lists the properties it adds to a given
learner. An example is cpoDummyEncode()
, a CPO that
converts factors to numerics: The receiving learner needs to handle
numerics, so properties$needed == "numerics"
, but it
adds the ability to handle factors (since they are converted),
so properties$adding = c("factors", "ordered")
.
getCPOProperties(cpoDummyEncode())
#> $handling
#> [1] "numerics" "factors" "ordered" "missings" "cluster"
#> [6] "classif" "multilabel" "regr" "surv" "oneclass"
#> [11] "twoclass" "multiclass" "prob" "se"
#>
#> $adding
#> [1] "factors" "ordered"
#>
#> $needed
#> [1] "numerics"
As a result, cpoDummyEncode
endows a
Learner
with the ability to train on data with factor
variables:
train("classif.fnn", bc.task) # gives an error
#> Error in checkLearnerBeforeTrain(task, learner, weights): Task 'BreastCancer-example' has factor inputs in 'Cl.thickness, Cell.size, Cell.shape, Marg.adhes...', but learner 'classif.fnn' does not support that!
train(cpoDummyEncode(reference.cat = TRUE) %>>% makeLearner("classif.fnn"), bc.task)
#> Model for learner.id=classif.fnn.dummyencode; learner.class=CPOLearner
#> Trained on: task.id = BreastCancer-example; obs = 683; features = 9
#> Hyperparameters:
getLearnerProperties("classif.fnn")
#> [1] "twoclass" "multiclass" "numerics"
getLearnerProperties(cpoDummyEncode(TRUE) %>>% makeLearner("classif.fnn"))
#> [1] "numerics" "factors" "ordered" "twoclass" "multiclass"
.sometimes
-PropertiesAs described in more detail in the Building Custom CPOs vignette,
CPO
s can have properties that are considered only when
composing CPO
s, or only when checking data returned by
CPO
s. In short, consider a CPO
that does
imputation, but only for factorial features. This CPO
would
need to have "missings"
in its $adding
properties slot, since it enables Learner
to handle (some)
Tasks
that have missing values. However, this
CPO
may under certain circumstances still return data that
has missing values. This discrepancy is recorded internally by having
two “hidden” sets of properties that can be retrieved with
getCPOProperties()
with get.internal
set to
TRUE
. These properties are adding.min
, the
minimal set of properties added, and needed.max
, the
maximal set of properties needed by consecutive operators. These can be
understood as a description of the “worst case” behaviour of the
CPO
, since behaviour that is out of bounds of these sets
causes an error by the mlrCPO
-framework.
An example is the cpoApplyFun
CPO
: When it
is constructed, it is not known what kind of properties will be added or
needed, so adding.min
is empty while
needed.max
is the set of all data properties. When
composing CPO
s, this CPO
is handled as if it
magically does exactly the data conversion necessary to make the
CPO
s or Learner
coming after it work with the
data. If this ends up not being the case, an error is thrown during
application or training by the following CPO
or
Learner
.
getCPOProperties(cpoApplyFun(export = "export.all"), get.internal = TRUE)
#> $handling
#> [1] "numerics" "factors" "ordered" "missings" "cluster"
#> [6] "classif" "multilabel" "regr" "surv" "oneclass"
#> [11] "twoclass" "multiclass" "prob" "se"
#>
#> $adding
#> [1] "numerics" "factors" "ordered" "missings"
#>
#> $needed
#> character(0)
#>
#> $adding.min
#> character(0)
#>
#> $needed.max
#> [1] "numerics" "factors" "ordered" "missings"
When constructing a CPO
, it is possible to restrict the
columns on which the CPO
operates using the
affect.*
parameters of the CPOConstructor
.
These parameters are:
affect.index
: Identify affected
columns by a vector of column indices.affect.names
: Identify affected
columns by a vector of column names.affect.pattern
: Match column names
against a grep()
style regex pattern.affect.pattern.ignore.case
: Ignore
case when matching by pattern.affect.pattern.perl
: Use “perl” syntax
in affect.pattern
.affect.pattern.fixed
: Use fixed
pattern instead of regex in affect.pattern
.affect.invert
: Invert the columns to
affect: Only columns not matched by any of the other
affect.*
parameters are affected.# onlhy PCA columns that have '.Length' in their name
= cpoPca(affect.pattern = ".Length")
cpo getCPOAffect(cpo)
#> $pattern
#> [1] ".Length"
= iris %>>% cpo
triris head(triris)
#> Sepal.Width Petal.Width Species PC1 PC2
#> 1 3.5 0.2 setosa -2.460241 -0.24479165
#> 2 3.0 0.2 setosa -2.538962 -0.06093579
#> 3 3.2 0.2 setosa -2.709611 0.08355948
#> 4 3.1 0.2 setosa -2.565116 0.25420858
#> 5 3.6 0.2 setosa -2.499602 -0.15286372
#> 6 3.9 0.4 setosa -2.066375 -0.40249369
Sometimes when using many CPOs, their hyperparameters may get messy.
mlrCPO
enables the user to control which hyperparameter get
exported. The parameter “export” can be one of
"export.default"
, "export.set"
,
"export.unset"
, "export.default.set"
,
"export.default.unset"
, "export.all"
,
"export.none"
. “all” and “none” do what one expects;
“default” exports the “recommended” parameters; “set” and “unset” export
the values that have not been set, or only the values that were set (and
are not left as default). “default.set” and “default.unset” work as
“set” and “unset”, but restricted to the default exported
parameters.
!cpoScale()
#> Trafo chain of 1 cpos:
#> scale(center = TRUE, scale = TRUE)
#> Operating: feature
#> ParamSet:
#> Type len Def Constr Req Tunable Trafo
#> scale.center logical - TRUE - - TRUE -
#> scale.scale logical - TRUE - - TRUE -
!cpoScale(export = "export.none")
#> Trafo chain of 1 cpos:
#> scale()[not exp'd: center = TRUE, scale = TRUE]
#> Operating: feature
#> ParamSet:
#> [1] "Empty parameter set."
!cpoScale(scale = FALSE, export = "export.unset")
#> Trafo chain of 1 cpos:
#> scale(center = TRUE)[not exp'd: scale = FALSE]
#> Operating: feature
#> ParamSet:
#> Type len Def Constr Req Tunable Trafo
#> scale.center logical - TRUE - - TRUE -
There are some %>>%
-related operators that perform
similar operations but may be more concise in certain applications. In
general these operators are left-assiciative, i.e. they are evaluated
after the expressions to their left were evaluated. Therefore, for
example, a %>>% b %<<% c
is equivalent to
(a %>>% b) %<<% c
. Exceptions are the
assignment operators, %<>>%
and
%<<<%
, as well as the %>|%
operator, see below.
The operators are:
%>>%
: The application,
composition or attachment operator.%<<%
: The above with exchanged
arguments. a %<<% b
is equivalent to
b %>>% a
%<>>%
:
%>>%
, followed with assignment to the left. This
operator evaluates the arguments to its right before being evaluated
itself. a %<>>% b %>>% c
is equivalent to
a = (a %>>% b %>>% c)
.%<<<%
:
%<<%
, followed with assignment to the left. Note this
is not the %<>>%
operator with its
arguments flipped. This operator evaluates the arguments to its right
before being evaluated itself.
a %<<<% b %>>% c
is equivalent to
a = (a %<<% (b %>>% c))
.%>|%
: %>>%
,
followed by application of retrafo()
. This operator
evaluates the arguments to its right before being evaluated itself.
a %>|% b %<<% c
is equivalent to
retrafo(a %>>% (b %<<% c))
.%|<%
: The above with exchanged
arguments. Like most R operators, this one evaluates arguments to its
left before being evaluated itself.
a %>>% b %|<% c
is equivalent to
retrafo((a %>>% b) %<<% c)
.