multimix: Fit Mixture Models Using the Expectation Maximisation (EM) Algorithm

A set of functions which use the Expectation Maximisation (EM) algorithm (Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977) <doi:10.1111/j.2517-6161.1977.tb01600.x> Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society, 39(1), 1–22) to take a finite mixture model approach to clustering. The package is designed to cluster multivariate data that have categorical and continuous variables and that possibly contain missing values. The method is described in Hunt, L. and Jorgensen, M. (1999) <doi:10.1111/1467-842X.00071> Australian & New Zealand Journal of Statistics 41(2), 153–171 and Hunt, L. and Jorgensen, M. (2003) <doi:10.1016/S0167-9473(02)00190-1> Mixture model clustering for mixed data with missing information, Computational Statistics & Data Analysis, 41(3-4), 429–440.

Version: 1.0-10
Depends: mvtnorm, R (≥ 4.0.0)
Imports: methods
Published: 2023-01-18
DOI: 10.32614/CRAN.package.multimix
Author: Murray Jorgensen [aut], James Curran [cre, ctb]
Maintainer: James Curran <j.curran at auckland.ac.nz>
BugReports: https://github.com/jmcurran/multimix/issues
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
URL: https://github.com/jmcurran/multimix
NeedsCompilation: no
CRAN checks: multimix results

Documentation:

Reference manual: multimix.pdf

Downloads:

Package source: multimix_1.0-10.tar.gz
Windows binaries: r-devel: multimix_1.0-10.zip, r-release: multimix_1.0-10.zip, r-oldrel: multimix_1.0-10.zip
macOS binaries: r-release (arm64): multimix_1.0-10.tgz, r-oldrel (arm64): multimix_1.0-10.tgz, r-release (x86_64): multimix_1.0-10.tgz, r-oldrel (x86_64): multimix_1.0-10.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=multimix to link to this page.