This vignette describes the analysis of treatments for
moderate-to-severe plaque psoriasis from an HTA report (Woolacott et al.
2006), replicating the analysis in NICE Technical Support
Document 2 (Dias et al.
2011). The data are available in this package as
hta_psoriasis
:
head(hta_psoriasis)
#> studyn studyc year trtn trtc sample_size PASI50 PASI75 PASI90
#> 1 1 Elewski 2004 1 Supportive care 193 12 5 1
#> 2 1 Elewski 2004 2 Etanercept 25 mg 196 59 46 21
#> 3 1 Elewski 2004 3 Etanercept 50 mg 194 54 56 40
#> 4 2 Gottlieb 2003 1 Supportive care 55 5 1 0
#> 5 2 Gottlieb 2003 2 Etanercept 25 mg 57 23 11 6
#> 6 3 Lebwohl 2003 1 Supportive care 122 13 5 1
Outcomes are ordered multinomial success/failure to achieve 50%, 75%, or 90% reduction in symptoms on the Psoriasis Area and Severity Index (PASI) scale. Some studies report ordered outcomes at all three cutpoints, others only one or two:
dplyr::filter(hta_psoriasis, studyc %in% c("Elewski", "Gordon", "ACD2058g", "Altmeyer"))
#> studyn studyc year trtn trtc sample_size PASI50 PASI75 PASI90
#> 1 1 Elewski 2004 1 Supportive care 193 12 5 1
#> 2 1 Elewski 2004 2 Etanercept 25 mg 196 59 46 21
#> 3 1 Elewski 2004 3 Etanercept 50 mg 194 54 56 40
#> 4 5 Gordon 2003 1 Supportive care 187 18 8 NA
#> 5 5 Gordon 2003 4 Efalizumab 369 118 98 NA
#> 6 6 ACD2058g 2004 1 Supportive care 170 25 NA NA
#> 7 6 ACD2058g 2004 4 Efalizumab 162 99 NA NA
#> 8 10 Altmeyer 1994 1 Supportive care 51 NA 1 NA
#> 9 10 Altmeyer 1994 6 Fumaderm 49 NA 12 NA
Here, the outcome counts are given as “exclusive” counts. That is, for a study reporting all outcomes (e.g. Elewski), the counts represent the categories 50 < PASI < 75, 75 < PASI < 90, and 90 < PASI < 100, and the corresponding columns are named by the lower end of the interval. Missing values are used where studies only report a subset of the outcomes. For a study reporting only two outcomes, say PASI50 and PASI75 as in Gordon, the counts represent the categories 50 < PASI < 75 and 75 < PASI < 100. For a study reporting only one outcome, say PASI70 as in Altmeyer, the count represents 70 < PASI < 100. We also need the count for the lowest category (i.e. no higher outcomes achieved), which is equal to the sample size minus the counts in the other observed categories.
We begin by setting up the network. We have arm-level ordered
multinomial count data, so we use the function
set_agd_arm()
. The function multi()
helps us
to specify the ordered outcomes correctly.
pso_net <- set_agd_arm(hta_psoriasis,
study = paste(studyc, year),
trt = trtc,
r = multi(r0 = sample_size - rowSums(cbind(PASI50, PASI75, PASI90), na.rm = TRUE),
PASI50, PASI75, PASI90,
inclusive = FALSE,
type = "ordered"))
pso_net
#> A network with 16 AgD studies (arm-based).
#>
#> ------------------------------------------------------- AgD studies (arm-based) ----
#> Study Treatment arms
#> ACD2058g 2004 2: Supportive care | Efalizumab
#> ACD2600g 2004 2: Supportive care | Efalizumab
#> Altmeyer 1994 2: Supportive care | Fumaderm
#> Chaudari 2001 2: Supportive care | Infliximab
#> Elewski 2004 3: Supportive care | Etanercept 25 mg | Etanercept 50 mg
#> Ellis 1991 3: Supportive care | Ciclosporin | Ciclosporin
#> Gordon 2003 2: Supportive care | Efalizumab
#> Gottlieb 2003 2: Supportive care | Etanercept 25 mg
#> Gottlieb 2004 3: Supportive care | Infliximab | Infliximab
#> Guenther 1991 2: Supportive care | Ciclosporin
#> ... plus 6 more studies
#>
#> Outcome type: ordered (4 categories)
#> ------------------------------------------------------------------------------------
#> Total number of treatments: 8
#> Total number of studies: 16
#> Reference treatment is: Supportive care
#> Network is connected
Plot the network structure.
We fit both fixed effect (FE) and random effects (RE) models.
First, we fit a fixed effect model using the nma()
function with trt_effects = "fixed"
, using a probit link
function link = "probit"
. We use \(\mathrm{N}(0, 10^2)\) prior distributions
for the treatment effects \(d_k\), and
\(\mathrm{N}(0, 100^2)\) prior
distributions for the study-specific intercepts \(\mu_j\). We can examine the range of
parameter values implied by these prior distributions with the
summary()
method:
summary(normal(scale = 10))
#> A Normal prior distribution: location = 0, scale = 10.
#> 50% of the prior density lies between -6.74 and 6.74.
#> 95% of the prior density lies between -19.6 and 19.6.
summary(normal(scale = 100))
#> A Normal prior distribution: location = 0, scale = 100.
#> 50% of the prior density lies between -67.45 and 67.45.
#> 95% of the prior density lies between -196 and 196.
We also need to specify prior distributions for the latent cutpoints
\(c_\textrm{PASI75}\) and \(c_\textrm{PASI90}\) on the underlying scale
- here the PASI standardised mean difference due to the probit link (the
cutpoint \(c_\textrm{PASI50}=0\)). To
make these easier to reason about, we actually specify priors on the
differences between adjacent cutpoints, e.g. \(c_\textrm{PASI90} - c_\textrm{PASI75}\) and
\(c_\textrm{PASI75} -
c_\textrm{PASI50}\). These can be given any positive-valued prior
distribution, and Stan will automatically impose the necessary ordering
constraints behind the scenes. We choose to give these implicit flat
priors flat()
.
The model is fitted using the nma()
function.
pso_fit_FE <- nma(pso_net,
trt_effects = "fixed",
link = "probit",
prior_intercept = normal(scale = 100),
prior_trt = normal(scale = 10),
prior_aux = flat())
#> Note: Setting "Supportive care" as the network reference treatment.
Basic parameter summaries are given by the print()
method:
pso_fit_FE
#> A fixed effects NMA with a ordered likelihood (probit link).
#> Inference for Stan model: ordered_multinomial.
#> 4 chains, each with iter=2000; warmup=1000; thin=1;
#> post-warmup draws per chain=1000, total post-warmup draws=4000.
#>
#> mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
#> d[Ciclosporin] 1.92 0.01 0.34 1.27 1.69 1.91 2.14 2.61 1542 1
#> d[Efalizumab] 1.19 0.00 0.06 1.07 1.15 1.19 1.23 1.30 2011 1
#> d[Etanercept 25 mg] 1.51 0.00 0.09 1.33 1.45 1.51 1.58 1.70 2125 1
#> d[Etanercept 50 mg] 1.92 0.00 0.10 1.73 1.85 1.92 1.99 2.12 2228 1
#> d[Fumaderm] 1.48 0.01 0.49 0.60 1.13 1.45 1.78 2.55 2766 1
#> d[Infliximab] 2.33 0.01 0.27 1.83 2.15 2.32 2.50 2.89 2717 1
#> d[Methotrexate] 1.61 0.01 0.44 0.78 1.31 1.61 1.91 2.51 1800 1
#> lp__ -3405.26 0.09 3.58 -3413.59 -3407.46 -3404.85 -3402.65 -3399.36 1472 1
#> cc[PASI50] 0.00 NaN 0.00 0.00 0.00 0.00 0.00 0.00 NaN NaN
#> cc[PASI75] 0.76 0.00 0.03 0.70 0.74 0.76 0.78 0.82 4912 1
#> cc[PASI90] 1.56 0.00 0.05 1.47 1.53 1.56 1.60 1.67 5098 1
#>
#> Samples were drawn using NUTS(diag_e) at Mon Apr 29 16:50:37 2024.
#> For each parameter, n_eff is a crude measure of effective sample size,
#> and Rhat is the potential scale reduction factor on split chains (at
#> convergence, Rhat=1).
Note: the treatment effects are the opposite sign to those in TSD 2 (Dias et al. 2011). This is because we parameterise the linear predictor as \(\mu_j + d_k + c_m\), rather than \(\mu_j + d_k - c_m\). The interpretation here thus follows that of a standard binomial probit (or logit) regression; SMDs (or log ORs) greater than zero mean that the treatment increases the probability of an event compared to the comparator (and less than zero mean a reduction in probability). Here higher outcomes are positive, and all of the active treatments are estimated to increase the response (i.e. a greater reduction) on the PASI scale compared to the network reference (supportive care).
By default, summaries of the study-specific intercepts \(\mu_j\) are hidden, but could be examined
by changing the pars
argument:
The prior and posterior distributions can be compared visually using
the plot_prior_posterior()
function:
Focusing specifically on the cutpoints we see that these are highly identified by the data, which is why the implicit flat priors work for these parameters.
We now fit a random effects model using the nma()
function with trt_effects = "random"
. Again, we use \(\mathrm{N}(0, 10^2)\) prior distributions
for the treatment effects \(d_k\),
\(\mathrm{N}(0, 100^2)\) prior
distributions for the study-specific intercepts \(\mu_j\), implicit flat prior distributions
for the latent cutpoints, and we additionally use a \(\textrm{half-N}(2.5^2)\) prior for the
heterogeneity standard deviation \(\tau\). We can examine the range of
parameter values implied by these prior distributions with the
summary()
method:
summary(normal(scale = 10))
#> A Normal prior distribution: location = 0, scale = 10.
#> 50% of the prior density lies between -6.74 and 6.74.
#> 95% of the prior density lies between -19.6 and 19.6.
summary(normal(scale = 100))
#> A Normal prior distribution: location = 0, scale = 100.
#> 50% of the prior density lies between -67.45 and 67.45.
#> 95% of the prior density lies between -196 and 196.
summary(half_normal(scale = 2.5))
#> A half-Normal prior distribution: location = 0, scale = 2.5.
#> 50% of the prior density lies between 0 and 1.69.
#> 95% of the prior density lies between 0 and 4.9.
Fitting the RE model
pso_fit_RE <- nma(pso_net,
trt_effects = "random",
link = "probit",
prior_intercept = normal(scale = 100),
prior_trt = normal(scale = 10),
prior_aux = flat(),
prior_het = half_normal(scale = 2.5),
adapt_delta = 0.99)
#> Note: Setting "Supportive care" as the network reference treatment.
Basic parameter summaries are given by the print()
method:
pso_fit_RE
#> A random effects NMA with a ordered likelihood (probit link).
#> Inference for Stan model: ordered_multinomial.
#> 4 chains, each with iter=5000; warmup=2500; thin=1;
#> post-warmup draws per chain=2500, total post-warmup draws=10000.
#>
#> mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
#> d[Ciclosporin] 2.02 0.01 0.42 1.29 1.73 1.99 2.26 2.93 3254 1.00
#> d[Efalizumab] 1.19 0.00 0.18 0.81 1.10 1.19 1.27 1.56 4674 1.00
#> d[Etanercept 25 mg] 1.53 0.00 0.24 1.04 1.41 1.52 1.65 2.02 5301 1.00
#> d[Etanercept 50 mg] 1.92 0.00 0.27 1.36 1.79 1.92 2.06 2.48 4726 1.00
#> d[Fumaderm] 1.49 0.01 0.60 0.36 1.08 1.46 1.85 2.77 7513 1.00
#> d[Infliximab] 2.31 0.00 0.37 1.58 2.08 2.31 2.54 3.04 7618 1.00
#> d[Methotrexate] 1.71 0.01 0.63 0.60 1.29 1.67 2.07 3.05 4457 1.00
#> lp__ -3410.87 0.19 6.66 -3424.53 -3415.37 -3410.59 -3406.24 -3398.55 1254 1.00
#> tau 0.30 0.01 0.21 0.02 0.15 0.26 0.41 0.83 872 1.01
#> cc[PASI50] 0.00 NaN 0.00 0.00 0.00 0.00 0.00 0.00 NaN NaN
#> cc[PASI75] 0.76 0.00 0.03 0.70 0.74 0.76 0.78 0.82 16145 1.00
#> cc[PASI90] 1.56 0.00 0.05 1.46 1.53 1.56 1.60 1.67 20656 1.00
#>
#> Samples were drawn using NUTS(diag_e) at Mon Apr 29 16:51:56 2024.
#> For each parameter, n_eff is a crude measure of effective sample size,
#> and Rhat is the potential scale reduction factor on split chains (at
#> convergence, Rhat=1).
By default, summaries of the study-specific intercepts \(\mu_j\) and study-specific relative effects
\(\delta_{jk}\) are hidden, but could
be examined by changing the pars
argument:
The prior and posterior distributions can be compared visually using
the plot_prior_posterior()
function:
Model fit can be checked using the dic()
function:
(dic_FE <- dic(pso_fit_FE))
#> Residual deviance: 75.1 (on 58 data points)
#> pD: 25.7
#> DIC: 100.9
The random effects model has a lower DIC and the residual deviance is closer to the number of data points, so is preferred in this case.
We can also examine the residual deviance contributions with the
corresponding plot()
method.
Most data points are fit well, with posterior mean residual deviances close to the degrees of freedom. The Meffert 1997 study has a substantially higher residual deviance contribution, which could be investigated further to see why this study appears to be an outlier.
Dias et al. (2011) produce absolute predictions of
probability of achieving responses at each PASI cutoff, assuming a
Normal distribution for the baseline probit probability of PASI50
response on supportive care with mean \(-1.097\) and precision \(123\). We can replicate these results using
the predict()
method. The baseline
argument
takes a distr()
distribution object, with which we specify
the corresponding Normal distribution. We set
type = "response"
to produce predicted probabilities
(type = "link"
would produce predicted probit
probabilities).
pred_FE <- predict(pso_fit_FE,
baseline = distr(qnorm, mean = -1.097, sd = 123^-0.5),
type = "response")
pred_FE
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> pred[Supportive care, PASI50] 0.14 0.02 0.10 0.12 0.14 0.15 0.18 3631 3432 1
#> pred[Supportive care, PASI75] 0.03 0.01 0.02 0.03 0.03 0.04 0.05 3711 3337 1
#> pred[Supportive care, PASI90] 0.00 0.00 0.00 0.00 0.00 0.00 0.01 3807 3857 1
#> pred[Ciclosporin, PASI50] 0.78 0.10 0.57 0.72 0.79 0.85 0.94 1633 2174 1
#> pred[Ciclosporin, PASI75] 0.52 0.13 0.28 0.43 0.52 0.62 0.79 1625 2317 1
#> pred[Ciclosporin, PASI90] 0.24 0.11 0.08 0.16 0.22 0.30 0.49 1642 2010 1
#> pred[Efalizumab, PASI50] 0.54 0.04 0.45 0.51 0.54 0.56 0.62 2935 3506 1
#> pred[Efalizumab, PASI75] 0.25 0.04 0.19 0.23 0.25 0.28 0.33 3030 3880 1
#> pred[Efalizumab, PASI90] 0.07 0.02 0.05 0.06 0.07 0.08 0.11 3140 3464 1
#> pred[Etanercept 25 mg, PASI50] 0.66 0.05 0.56 0.63 0.66 0.69 0.75 2520 3160 1
#> pred[Etanercept 25 mg, PASI75] 0.37 0.05 0.28 0.33 0.37 0.40 0.47 2597 2945 1
#> pred[Etanercept 25 mg, PASI90] 0.13 0.03 0.08 0.11 0.13 0.15 0.19 2697 3643 1
#> pred[Etanercept 50 mg, PASI50] 0.79 0.04 0.71 0.77 0.79 0.82 0.86 2558 3180 1
#> pred[Etanercept 50 mg, PASI75] 0.53 0.05 0.42 0.49 0.53 0.56 0.63 2610 2722 1
#> pred[Etanercept 50 mg, PASI90] 0.23 0.04 0.16 0.20 0.23 0.26 0.32 2659 3182 1
#> pred[Fumaderm, PASI50] 0.63 0.17 0.30 0.51 0.63 0.76 0.93 3000 2201 1
#> pred[Fumaderm, PASI75] 0.37 0.17 0.10 0.23 0.34 0.47 0.77 2976 2264 1
#> pred[Fumaderm, PASI90] 0.15 0.12 0.02 0.06 0.11 0.19 0.46 2980 2254 1
#> pred[Infliximab, PASI50] 0.88 0.05 0.76 0.85 0.89 0.92 0.97 2820 2596 1
#> pred[Infliximab, PASI75] 0.68 0.10 0.48 0.61 0.68 0.75 0.86 2770 2518 1
#> pred[Infliximab, PASI90] 0.38 0.11 0.19 0.30 0.37 0.45 0.61 2797 2499 1
#> pred[Methotrexate, PASI50] 0.68 0.15 0.37 0.58 0.70 0.80 0.92 1858 2106 1
#> pred[Methotrexate, PASI75] 0.41 0.16 0.13 0.29 0.40 0.53 0.75 1845 2027 1
#> pred[Methotrexate, PASI90] 0.17 0.11 0.03 0.09 0.15 0.23 0.45 1855 2113 1
plot(pred_FE)
pred_RE <- predict(pso_fit_RE,
baseline = distr(qnorm, mean = -1.097, sd = 123^-0.5),
type = "response")
pred_RE
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> pred[Supportive care, PASI50] 0.14 0.02 0.10 0.12 0.14 0.15 0.18 9886 9993 1
#> pred[Supportive care, PASI75] 0.03 0.01 0.02 0.03 0.03 0.04 0.05 10332 9526 1
#> pred[Supportive care, PASI90] 0.00 0.00 0.00 0.00 0.00 0.00 0.01 11235 9542 1
#> pred[Ciclosporin, PASI50] 0.80 0.11 0.57 0.73 0.81 0.88 0.97 3802 3564 1
#> pred[Ciclosporin, PASI75] 0.56 0.15 0.27 0.45 0.55 0.66 0.87 3771 3580 1
#> pred[Ciclosporin, PASI90] 0.28 0.14 0.08 0.17 0.25 0.35 0.62 3879 3629 1
#> pred[Efalizumab, PASI50] 0.54 0.08 0.38 0.49 0.54 0.58 0.69 5601 3346 1
#> pred[Efalizumab, PASI75] 0.26 0.06 0.14 0.22 0.25 0.29 0.40 5684 3423 1
#> pred[Efalizumab, PASI90] 0.07 0.03 0.03 0.06 0.07 0.09 0.15 5852 3938 1
#> pred[Etanercept 25 mg, PASI50] 0.66 0.09 0.47 0.61 0.67 0.72 0.83 6096 4236 1
#> pred[Etanercept 25 mg, PASI75] 0.38 0.09 0.20 0.32 0.37 0.43 0.58 6104 4272 1
#> pred[Etanercept 25 mg, PASI90] 0.14 0.06 0.05 0.10 0.13 0.16 0.27 6186 4399 1
#> pred[Etanercept 50 mg, PASI50] 0.79 0.08 0.60 0.75 0.80 0.84 0.92 5675 3803 1
#> pred[Etanercept 50 mg, PASI75] 0.53 0.11 0.30 0.47 0.53 0.59 0.74 5699 3704 1
#> pred[Etanercept 50 mg, PASI90] 0.24 0.08 0.09 0.19 0.23 0.28 0.43 5759 3824 1
#> pred[Fumaderm, PASI50] 0.63 0.19 0.23 0.49 0.64 0.78 0.95 7867 5674 1
#> pred[Fumaderm, PASI75] 0.37 0.20 0.07 0.22 0.35 0.50 0.82 7842 5826 1
#> pred[Fumaderm, PASI90] 0.16 0.14 0.01 0.06 0.12 0.21 0.55 7852 5891 1
#> pred[Infliximab, PASI50] 0.87 0.08 0.68 0.83 0.89 0.93 0.98 8008 5911 1
#> pred[Infliximab, PASI75] 0.67 0.13 0.39 0.58 0.68 0.76 0.89 7961 5649 1
#> pred[Infliximab, PASI90] 0.37 0.13 0.14 0.28 0.36 0.46 0.66 8030 5646 1
#> pred[Methotrexate, PASI50] 0.70 0.18 0.30 0.58 0.72 0.84 0.98 4997 3897 1
#> pred[Methotrexate, PASI75] 0.45 0.21 0.10 0.29 0.43 0.59 0.89 4991 4113 1
#> pred[Methotrexate, PASI90] 0.21 0.17 0.02 0.09 0.16 0.28 0.66 5065 3963 1
plot(pred_RE)
If instead of information on the baseline PASI 50 response probit
probability we have PASI 50 event counts, we can use these to construct
a Beta distribution for the baseline probability of PASI 50 response.
For example, if 56 out of 408 individuals achieved PASI 50 response on
supportive care in the target population of interest, the appropriate
Beta distribution for the response probability would be \(\textrm{Beta}(56, 408-56)\). We can specify
this Beta distribution for the baseline response using the
baseline_type = "reponse"
argument (the default is
"link"
, used above for the baseline probit
probability).
pred_FE_beta <- predict(pso_fit_FE,
baseline = distr(qbeta, 56, 408-56),
baseline_type = "response",
type = "response")
pred_FE_beta
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> pred[Supportive care, PASI50] 0.14 0.02 0.10 0.12 0.14 0.15 0.17 3940 4002 1
#> pred[Supportive care, PASI75] 0.03 0.01 0.02 0.03 0.03 0.04 0.05 4005 4022 1
#> pred[Supportive care, PASI90] 0.00 0.00 0.00 0.00 0.00 0.00 0.01 4272 4064 1
#> pred[Ciclosporin, PASI50] 0.78 0.10 0.57 0.72 0.79 0.85 0.93 1611 2198 1
#> pred[Ciclosporin, PASI75] 0.52 0.13 0.28 0.43 0.52 0.61 0.78 1605 2222 1
#> pred[Ciclosporin, PASI90] 0.24 0.11 0.08 0.16 0.23 0.30 0.49 1621 2346 1
#> pred[Efalizumab, PASI50] 0.54 0.04 0.46 0.51 0.54 0.56 0.61 3015 3689 1
#> pred[Efalizumab, PASI75] 0.25 0.03 0.19 0.23 0.25 0.28 0.32 3175 3752 1
#> pred[Efalizumab, PASI90] 0.07 0.01 0.05 0.06 0.07 0.08 0.10 3247 3443 1
#> pred[Etanercept 25 mg, PASI50] 0.66 0.05 0.57 0.63 0.66 0.69 0.75 2588 3092 1
#> pred[Etanercept 25 mg, PASI75] 0.37 0.05 0.28 0.34 0.37 0.40 0.47 2672 3101 1
#> pred[Etanercept 25 mg, PASI90] 0.13 0.03 0.08 0.11 0.13 0.14 0.19 2949 3301 1
#> pred[Etanercept 50 mg, PASI50] 0.79 0.04 0.72 0.77 0.79 0.82 0.86 2577 3029 1
#> pred[Etanercept 50 mg, PASI75] 0.53 0.05 0.43 0.49 0.53 0.56 0.63 2633 3000 1
#> pred[Etanercept 50 mg, PASI90] 0.23 0.04 0.16 0.20 0.23 0.26 0.31 2807 3081 1
#> pred[Fumaderm, PASI50] 0.63 0.17 0.30 0.51 0.63 0.75 0.93 3063 2212 1
#> pred[Fumaderm, PASI75] 0.37 0.17 0.10 0.24 0.34 0.47 0.76 3039 2251 1
#> pred[Fumaderm, PASI90] 0.15 0.12 0.02 0.06 0.11 0.19 0.46 3049 2195 1
#> pred[Infliximab, PASI50] 0.88 0.05 0.76 0.85 0.89 0.92 0.97 2726 2652 1
#> pred[Infliximab, PASI75] 0.68 0.10 0.48 0.61 0.68 0.75 0.86 2717 2641 1
#> pred[Infliximab, PASI90] 0.38 0.11 0.19 0.30 0.37 0.45 0.61 2757 2551 1
#> pred[Methotrexate, PASI50] 0.68 0.15 0.37 0.58 0.70 0.79 0.92 1854 2223 1
#> pred[Methotrexate, PASI75] 0.41 0.16 0.14 0.29 0.41 0.52 0.75 1848 2526 1
#> pred[Methotrexate, PASI90] 0.17 0.11 0.03 0.09 0.15 0.23 0.44 1857 2347 1
plot(pred_FE_beta)
pred_RE_beta <- predict(pso_fit_RE,
baseline = distr(qbeta, 56, 408-56),
baseline_type = "response",
type = "response")
pred_RE_beta
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> pred[Supportive care, PASI50] 0.14 0.02 0.11 0.13 0.14 0.15 0.17 9843 9606 1
#> pred[Supportive care, PASI75] 0.03 0.01 0.02 0.03 0.03 0.04 0.05 10394 9888 1
#> pred[Supportive care, PASI90] 0.00 0.00 0.00 0.00 0.00 0.00 0.01 11660 9942 1
#> pred[Ciclosporin, PASI50] 0.80 0.11 0.57 0.74 0.81 0.88 0.97 3811 3800 1
#> pred[Ciclosporin, PASI75] 0.56 0.15 0.28 0.45 0.55 0.66 0.86 3780 3772 1
#> pred[Ciclosporin, PASI90] 0.27 0.14 0.08 0.17 0.25 0.35 0.61 3865 3928 1
#> pred[Efalizumab, PASI50] 0.54 0.07 0.38 0.49 0.54 0.58 0.69 5503 3485 1
#> pred[Efalizumab, PASI75] 0.26 0.06 0.14 0.22 0.25 0.29 0.40 5590 3413 1
#> pred[Efalizumab, PASI90] 0.07 0.03 0.03 0.06 0.07 0.09 0.14 5783 3664 1
#> pred[Etanercept 25 mg, PASI50] 0.66 0.09 0.47 0.62 0.67 0.71 0.82 6002 4220 1
#> pred[Etanercept 25 mg, PASI75] 0.38 0.09 0.20 0.32 0.37 0.42 0.57 6006 4277 1
#> pred[Etanercept 25 mg, PASI90] 0.14 0.06 0.05 0.10 0.13 0.16 0.27 6086 4211 1
#> pred[Etanercept 50 mg, PASI50] 0.79 0.08 0.60 0.75 0.80 0.83 0.92 5596 3660 1
#> pred[Etanercept 50 mg, PASI75] 0.53 0.10 0.30 0.47 0.53 0.59 0.74 5596 3685 1
#> pred[Etanercept 50 mg, PASI90] 0.24 0.08 0.09 0.19 0.23 0.28 0.44 5650 3730 1
#> pred[Fumaderm, PASI50] 0.63 0.19 0.23 0.49 0.64 0.78 0.95 7864 5868 1
#> pred[Fumaderm, PASI75] 0.37 0.20 0.07 0.22 0.35 0.50 0.82 7846 5695 1
#> pred[Fumaderm, PASI90] 0.16 0.14 0.01 0.06 0.12 0.21 0.55 7853 5914 1
#> pred[Infliximab, PASI50] 0.87 0.08 0.68 0.83 0.89 0.93 0.98 8002 5900 1
#> pred[Infliximab, PASI75] 0.67 0.13 0.39 0.58 0.68 0.76 0.89 7951 5679 1
#> pred[Infliximab, PASI90] 0.37 0.13 0.14 0.28 0.36 0.46 0.66 8017 5752 1
#> pred[Methotrexate, PASI50] 0.70 0.18 0.31 0.58 0.72 0.83 0.97 4900 4110 1
#> pred[Methotrexate, PASI75] 0.45 0.21 0.10 0.29 0.43 0.59 0.88 4893 4206 1
#> pred[Methotrexate, PASI90] 0.21 0.17 0.02 0.09 0.16 0.28 0.66 4968 3951 1
plot(pred_RE_beta)
(Notice that these results are equivalent to those calculated above using the Normal distribution for the baseline probit probability, since these event counts correspond to the same probit probability.)
We can modify the plots using standard ggplot2
functions. For example, to plot the cutpoints together with a colour
coding (instead of split into facets):
library(ggplot2)
plot(pred_RE, position = position_dodge(width = 0.75)) +
facet_null() +
aes(colour = Category) +
scale_colour_brewer(palette = "Blues")
If the baseline
argument is omitted, predicted
probabilities will be produced for every study in the network based on
their estimated baseline probit probability \(\mu_j\).
Treatment rankings, rank probabilities, and cumulative rank
probabilities can also be produced. We set
lower_better = FALSE
since higher outcome categories are
better (the outcomes are positive).
(pso_ranks <- posterior_ranks(pso_fit_RE, lower_better = FALSE))
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> rank[Supportive care] 7.99 0.10 8 8 8 8 8 5581 NA 1
#> rank[Ciclosporin] 2.78 1.28 1 2 3 4 6 6715 7043 1
#> rank[Efalizumab] 6.35 0.80 4 6 7 7 7 5575 5995 1
#> rank[Etanercept 25 mg] 4.91 1.06 3 4 5 6 7 6994 5325 1
#> rank[Etanercept 50 mg] 3.03 1.22 1 2 3 4 5 5053 4375 1
#> rank[Fumaderm] 4.89 1.94 1 3 5 7 7 7575 6172 1
#> rank[Infliximab] 1.79 1.17 1 1 1 2 5 4072 4882 1
#> rank[Methotrexate] 4.25 1.88 1 3 4 6 7 6156 5513 1
plot(pso_ranks)
(pso_rankprobs <- posterior_rank_probs(pso_fit_RE, lower_better = FALSE))
#> p_rank[1] p_rank[2] p_rank[3] p_rank[4] p_rank[5] p_rank[6] p_rank[7] p_rank[8]
#> d[Supportive care] 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.99
#> d[Ciclosporin] 0.16 0.29 0.28 0.17 0.08 0.02 0.00 0.00
#> d[Efalizumab] 0.00 0.00 0.00 0.02 0.10 0.36 0.51 0.00
#> d[Etanercept 25 mg] 0.00 0.01 0.09 0.21 0.39 0.26 0.04 0.00
#> d[Etanercept 50 mg] 0.08 0.31 0.26 0.24 0.09 0.02 0.01 0.00
#> d[Fumaderm] 0.07 0.09 0.10 0.12 0.15 0.19 0.27 0.01
#> d[Infliximab] 0.59 0.19 0.12 0.06 0.03 0.01 0.00 0.00
#> d[Methotrexate] 0.09 0.12 0.15 0.17 0.17 0.14 0.15 0.00
plot(pso_rankprobs)
(pso_cumrankprobs <- posterior_rank_probs(pso_fit_RE, lower_better = FALSE, cumulative = TRUE))
#> p_rank[1] p_rank[2] p_rank[3] p_rank[4] p_rank[5] p_rank[6] p_rank[7] p_rank[8]
#> d[Supportive care] 0.00 0.00 0.00 0.00 0.00 0.00 0.01 1
#> d[Ciclosporin] 0.16 0.45 0.73 0.90 0.97 1.00 1.00 1
#> d[Efalizumab] 0.00 0.00 0.01 0.03 0.12 0.49 1.00 1
#> d[Etanercept 25 mg] 0.00 0.01 0.10 0.32 0.70 0.96 1.00 1
#> d[Etanercept 50 mg] 0.08 0.38 0.65 0.89 0.98 0.99 1.00 1
#> d[Fumaderm] 0.07 0.16 0.26 0.38 0.53 0.72 0.99 1
#> d[Infliximab] 0.59 0.78 0.90 0.96 0.99 1.00 1.00 1
#> d[Methotrexate] 0.09 0.21 0.36 0.53 0.70 0.85 1.00 1
plot(pso_cumrankprobs)