nbfar: Negative Binomial Factor Regression Models ('nbfar')
We developed a negative binomial factor regression model to estimate structured (sparse) associations between a feature matrix X and overdispersed count data Y. With 'nbfar', microbiome count data Y can be used, for example, to associate host or environmental covariates with microbial abundances. Currently, two models are available: a) Negative Binomial reduced rank regression (NB-RRR), b) Negative Binomial co-sparse factor regression (NB-FAR). Please refer the manuscript 'Mishra, A. K., & Müller, C. L. (2021). Negative Binomial factor regression with application to microbiome data analysis. bioRxiv.' for more details.
Version: |
0.1 |
Depends: |
R (≥ 3.5.0), stats, utils |
Imports: |
Rcpp (≥ 0.12.9), MASS, magrittr, rrpack, glmnet, RcppParallel, mpath |
LinkingTo: |
Rcpp, RcppArmadillo, RcppParallel |
Suggests: |
rmarkdown, knitr, spelling |
Published: |
2022-02-22 |
DOI: |
10.32614/CRAN.package.nbfar |
Author: |
Aditya Mishra [aut, cre],
Christian Mueller [aut] |
Maintainer: |
Aditya Mishra <amishra at flatironinstitute.org> |
License: |
GPL (≥ 3.0) |
URL: |
https://github.com/amishra-stats/nbfar,
https://www.biorxiv.org/content/10.1101/2021.11.29.470304v1 |
NeedsCompilation: |
yes |
Language: |
en-US |
CRAN checks: |
nbfar results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=nbfar
to link to this page.