There are at least 5 R packages with a function for performing NIPALS on a matrix that contains missing values: >>>>>>> empca
ade4::nipals
mixOmics::nipals
nipals::nipals
plsdepot::nipals
pcaMethods::nipalsPca
and pcaMethods::RnipalsPca
.These functions have slightly different scalings for the returned values, and were written with different coding styles. With careful attention to some of the scaling details of the returned values, packages 1-4 produce the same results. However, there are dramatic differences in speed. (Number 5 was added to the list later and is not included in the comparisons).
There are other R packages with a NIPALS function that do NOT allow missing values (which are not considered here):
mvdalab::pca.nipals
A small dataset with 2 missing values in the first column will be used to compare the numerical results from the 4 packages.
<- matrix(c(50, 67, 90, 98, 120,
B 55, 71, 93, 102, 129,
65, 76, 95, 105, 134,
50, 80, 102, 130, 138,
60, 82, 97, 135, 151,
65, 89, 106, 137, 153,
75, 95, 117, 133, 155), ncol=5, byrow=TRUE)
rownames(B) <- c("G1","G2","G3","G4","G5","G6","G7")
colnames(B) <- c("E1","E2","E3","E4","E5")
= B
B2 1,1] = B2[2,1] = NA
B2[<- as.matrix(B2)
B2
<- function(a,b, tol=1e-3){
same all.equal( abs(a), abs(b), tol=tol, check.attributes=FALSE)
}
Since principal components are only unique up to a change of sign, a small function same()
has been defined to take absolute values before calling all.equal
. The same()
function will be used to compare results from the different functions. In the next 3 sections, the results from the nipals
package are compared to the ade4
, plsdepot
, and mixOmics
packages respectively.
The ade4
package uses a maximum-likelihood scaling of the data which divides by n
instead of n-1
, so we need to scale the data by hand before using the nipals
package. Note: only for ade4 version >= 1.7-10.
library(ade4)
<- ade4::nipals(B2, nf=5, rec=TRUE, niter=500, tol=1e-9)
made
<- apply(B2, 2, function(x) {
B2a <- sum(!is.na(x))
n <- x - mean(x, na.rm=TRUE)
x <- x / ( sd(x, na.rm=TRUE) * sqrt((n-1) / n ))
x
})
<- nipals::nipals(B2a, ncomp=5, center=FALSE, scale=FALSE,
mnip fitted=TRUE, maxiter=500, tol=1e-9, gramschmidt=FALSE)
The eigenvalues reported by ade4
are the squared singular values divided by \(n-1\).
# data
same(B2a, as.matrix(made$tab))
# TRUE
# eigenvalues, ade4 uses squared singular values / n-1
$eig
mnip# [1] 5.2913781 2.2555596 1.1651281 0.2590878 0.1563175
$eig
made# [1] 4.666454778 0.847924398 0.226254436 0.011187921 0.004072542
same(mnip$eig ^ 2 / (nrow(B2a)-1), made$eig)
# TRUE
# P loadings
same(mnip$loadings, made$c1)
# TRUE
# T scores. For nipals, sweep IN the eigenvalues
same( sweep(mnip$scores, 2, mnip$eig, "*"), made$li)
# TRUE
library(plsdepot)
<- plsdepot::nipals(B2, comps=5)
mpls library(nipals)
<- nipals::nipals(B2a, ncomp=5, maxiter=100, tol=1e-6, gramschmidt=FALSE) mnip
The plsdepot
package reports squared singular values.
# eigenvalues
$eig
mnip# [1] 4.8762167 2.0442757 1.0728055 0.2369607 0.1432779
$values[,1]
mpls# [1] 3.963172007 0.696484184 0.191839875 0.009366425 0.003421661
same(mnip$eig, sqrt(mpls$values[,1] * 6) )
# TRUE
# P loadings
$loadings
mnip$loadings
mplssame(mnip$loadings, mpls$loadings, tol=1e-2 )
# TRUE
# T scores
$scores
mnip$scores
mplssame( sweep(mnip$scores, 2, mnip$eig, "*"), mpls$scores)
# TRUE
library(mixOmics)
library(nipals)
<- nipals::nipals(B2, gramschmidt=FALSE)
mnip <- mixOmics::nipals(scale(B2), ncomp=5) mmix
# eigenvalues
$eig
mnip$eig
mmixsame(mnip$eig, mmix$eig)
# TRUE
# P loadings
$loadings
mnip$p
mmixsame(mnip$loadings, mmix$p, tol=1e-2)
# TRUE
# T scores
$scores
mnip$t
mmixsame(mnip$scores, mmix$t, tol=1e-2)
# TRUE
For the purpose of comparing performance of the functions, we simulate a 100 x 100 matrix and insert one missing value.
set.seed(43)
<- matrix(rnorm(100*100), nrow=100)
Bbig <- Bbig
Bbig2 1,1] <- NA Bbig2[
The ade4::nipals
function uses for
loops to loop over the columns of X
, which results in very slow execution even when calculating only 1 principal component.
system.time(ade4::nipals(Bbig2, nf=1)) # Only 1 PC!
## user system elapsed
## 42.09 0.00 42.14
The plsdepot::nipals
function is fast enough that all 100 PCs can be calculated.
system.time(plsdepot::nipals(Bbig2, comps=1)) # Only 1 PC !
# user system elapsed
# 0.5 0.0 0.5
system.time(plsdepot::nipals(Bbig2, comps=100)) # 100 PCs
# user system elapsed
# 30.19 0.00 30.18
The mixOmics::nipals
function uses the crossprod
function and a few other tricks to improve performance.
system.time(mixOmics::nipals(scale(Bbig2), ncomp=100)) # 100 PCs
# user system elapsed
# 20.70 0.00 20.81
The nipals::nipals
function was optimized through extensive testing and is about 5 times faster! Note that Gram-Scmidt is turned off in order to make a fair comparison with other functions.
system.time(nipals::nipals(Bbig2, ncomp=100, gramschmidt=FALSE)) # 100 PCs
# user system elapsed
# 2.93 0.00 2.93
When Gram-Schmidt is turned on (which is the default setting), the function is a bit slower.
system.time(nipals::nipals(Bbig2, ncomp=100, gramschmidt=TRUE)) # 100 PCs
# user system elapsed
# 3.6 0.0 3.6
The nipals::empca
function results here are VERY tentative:
system.time(empca(Bbig2, ncomp=100, gramschmidt=FALSE)) # 100 PCs
# user system elapsed
# 1.03 0.00 1.03
system.time(empca(Bbig2, ncomp=100, gramschmidt=TRUE)) # 100 PCs
# user system elapsed
# 10.44 0.00 10.45