Package ‘nlmixr2auto’

February 6, 2026
Type Package

Title Automated Population Pharmacokinetic Modeling
Version 1.0.0

Description Automated population pharmacokinetic modeling framework for
data-driven initialisation, model evaluation, and metaheuristic
optimization. Supports genetic algorithms, ant colony optimization,
tabu search, and stepwise procedures for automated model selection
and parameter estimation within the nlmixr2 ecosystem.

License GPL (>= 3)
URL https://github.com/ucl-pharmacometrics/nlmixr2auto

BugReports https://github.com/ucl-pharmacometrics/nlmixr2auto/issues
Depends R (>=4.1.0), nlmixr2data

Imports nlmixr2, nlmixr2est, nlmixr2autoinit, rxode2, dplyr,
progressr, processx (> 3.8.0), withr, crayon

Encoding UTF-8
Language en-US
NeedsCompilation no
RoxygenNote 7.3.1

Author Zhonghui Huang [aut, cre],
Joseph Standing [ctb],
Matthew Fidler [ctb],

Frank Kloprogge [ctb]

Maintainer Zhonghui Huang <huangzhonghui22@gmail.com>
Repository CRAN
Date/Publication 2026-02-06 19:40:02 UTC

Contents

tawoBitCode L
ACO.0PCTALOT o oL e e e e e e e e e e e

https://github.com/ucl-pharmacometrics/nlmixr2auto
https://github.com/ucl-pharmacometrics/nlmixr2auto/issues

Contents

acoControl e 7
add_covariate e e 8
add_variability 9
applyParamDeps 10
auto_param_table oL L 11
base model L e 12
build_odeline 13
CTEALE.POP + v v v v e 15
CreateANnts L L e e e e e e 16
decodeBinary 18
deteCt_MOVE o o e e e e e 20
encodeBinary L 21
fitness e 23
GACTOSSOVET .« « . v v v v e e et e e e e e e e e e e e e e 24
CAMUIAION L. e e e e e e e e e e 25
GA.0PETAtOT e e e e 26
gasseltournament Lo 28
gaControl e e e 29
generate_neighbors_df L L 30
getmod.ISt.o e 31
initialize_param L. 33
initialize_param_table L 34
mitNodeList e 35
Is_move_tabu e 36
MOdLTUN . . . o oL e e e e 37
omega_block e 41
pcalculation 42
param.bounds oL e 43
parseName e e e e e e e 44
parseParamso Lo 46
penaltyControl 47
perturb_2bit L e e e e 48
phiccalculate 50
ppkmodGen 52
print.acoOperatorResult o 55
print.gaOperatorResult L 55
print.sfOperatorResult 56
print.tabuOperatorResult 56
rank_NEW e e e e e 57
runlocal 58
run_model_in_subprocess 60
SfOperator e e e e e e 62
spaceConfig e e e 64
SEP_COMPAItMENLS« o v v vt e e e e e e e e e e e e e e e e e e e 65
step_correlationo e 67
step_elimination L L L e e e e 69
step_iiv_f . . . e e 71

step_iiv_ka . ..o 74

.twoBitCode 3

Step_IIV_KM . . . L e e e e 76
] 7] 5 78
tabu.operator 80
tabuControl e 82
validStringbinary L. 83
validStringecat L 85

Index 87

. twoBitCode 2-bit code helper
Description

Internal utility used by decodeBinary() and encodeBinary() to convert between a 2-bit representa-
tion and categorical values via lookup tables.

Usage
. twoBitCode(
mode = c("decode”, "encode"),
value,
bit2 = NULL,

decode_map = NULL,
encode_map = NULL,

param_name = "param”
)
Arguments
mode Character, either "decode" or "encode".
value For decode: the first bit (0/1). For encode: the categorical value to encode.
bit2 For decode: the second bit (0/1). Ignored for encode.
decode_map Numeric vector of length 4 used for decoding, in the order corresponding to 00,
01, 10, 11. Use NA for illegal codes.
encode_map Named integer/numeric vector mapping categorical values (as names) to integer
codes 0..3 (corresponding to 00..11).
param_name Character, parameter name used in error messages.
Details

The helper supports two modes:

* decode: converts (bitl, bit2) to a categorical value using a length-4 lookup table decode_map

corresponding to 00, 01, 10, 11.

* encode: converts a categorical value to a 2-bit code using a named lookup table encode_map

mapping values to integer codes 0..3 (corresponding to 00..11).

4 aco.operator

Value

For decode: a single numeric categorical value. For encode: an integer vector length 2 containing
bits c(bitl, bit2).

Author(s)

Zhonghui Huang

See Also

decodeBinary, encodeBinary

Examples
Decode example (00/01 map to level 1).
.twoBitCode("decode”, @, @, decode_map = c(1, 1, 2, 3)) # 1
.twoBitCode("decode”, @, 1, decode_map = c(1, 1, 2, 3)) # 1
.twoBitCode("decode”, 1, @, decode_map = c(1, 1, 2, 3)) # 2
.twoBitCode("decode”, 1, 1, decode_map = c(1, 1, 2, 3)) # 3

Encode example (level 1 emits 01).

encode_map <- stats::setNames(c(1, 2, 3), c(1, 2, 3))
.twoBitCode("encode”, 1, encode_map = encode_map) # c(0, 1)
.twoBitCode("encode”, 2, encode_map = encode_map) # c(1, @)
.twoBitCode("encode”, 3, encode_map = encode_map) # c(1, 1)

Decode 4-level example (00..11 map to 1..4).
.twoBitCode("decode”, @, @, decode_map = c(1, 2, 3, 4)) # 1

aco.operator ACO operator for model selection

Description

Implements an ant colony optimization algorithm to explore model space and identify the best-
performing model given pre-defined fitness function.

Usage
aco.operator(
dat,
param_table = NULL,
search.space = c("ivbase", "oralbase"),

no.cores = NULL,

aco.control = acoControl(),
penalty.control = penaltyControl(),
precomputed_results_file = NULL,

aco.operator

foldername = NULL,
filename = "test”,
seed = 1234,
.modEnv = NULL,
verbose = TRUE,

)

Arguments
dat A data frame containing pharmacokinetic data in standard nlmixr2 format, in-

param_table

search. space
no.cores

aco.control

penalty.control

cluding "ID", "TIME", "EVID", and "DV", and may include additional columns.

Optional data frame of initial parameter estimates. If NULL, the table is gener-
ated by auto_param_table().

Character, one of "ivbase" or "oralbase". Default is "ivbase".
Integer. Number of CPU cores to use. If NULL, uses rxode2: : getRxThreads().
A list of ACO control parameters defined by acoControl(). Includes:

* nants - number of ants per iteration.

* niter - maximum number of iterations.

* rho - pheromone evaporation rate.

¢ phi0 - initial pheromone level.

* phi_min, phi_max - bounds for pheromone levels.

* alpha - pheromone weight exponent.

* elite - proportion of best solutions preserved each iteration.
* prob.min - minimum sampling probability.

* diff_tol - threshold for significant fitness difference.

A list of penalty control parameters defined by penaltyControl(), specifying
penalty values used for model diagnostics during fitness evaluation.

precomputed_results_file

foldername

filename

seed

.modEnv

verbose

Optional path to a CSV file of previously computed model results used for
caching.

Character string specifying the folder name for storing intermediate results. If
NULL (default), tempdir() is used for temporary storage. If specified, a cache
directory is created in the current working directory.

Optional character string used as a prefix for output files. Defaults to "test".

Integer. Random seed controlling the random sampling steps of the ant colony
optimization operator for reproducible runs. Default is 1234.

Optional environment used internally to store model indices, cached parameter
tables, and results across steps.

Logical. If TRUE, print progress messages.

Additional arguments passed to mod. run().

6 aco.operator

Details

The ACO approach uses a colony of "ants" to stochastically sample models, evaluate their fitness,
and update pheromone trails that guide future searches. This iterative process balances exploration
of new models with exploitation of promising candidates.

Value

An object of class "acoOperatorResult”, containing:

* $°Final Selected Code™ - Vector representation of the best model.
* $"Final Selected Model Name™ - Human-readable name of the selected model.
¢ $"Model Run History™ - Data frame of model runs across iterations.

* $ Node Run History"™ - History of pheromone probabilities for each iteration.

Author(s)

Zhonghui Huang

See Also

acoControl, penaltyControl, auto_param_table, mod. run, ppkmodGen

Examples

Example usage with phenotype dataset
outs <- aco.operator(
dat = pheno_sd,
param_table = NULL,
search.space = "ivbase",
aco.control = acoControl(),
saem.control = nlmixr2est::saemControl(

seed = 1234,
nBurn = 200,
nEm = 300,
loglik = TRUE

)
)
print(outs)

acoControl

acoControl

Create control parameters for the ACO algorithm

Description

Creates a list of control settings for the aco.operator function.

Usage

acoControl(
nants = 15
niter = 20
Q=1,
rho = 0.5,
phio = 2
phi_min
phi_max =
alpha =1
elite = @
prob_min
diff_tol

’

Arguments

nants

niter

Q

rho

phio

phi_min

phi_max

alpha

elite

’

’

1,
Inf,

Integer. Number of ants (candidate solutions) generated at each iteration. De-
faults to 15.

Integer. Maximum number of ACO iterations. Defaults to 20.

A positive numeric value. Pheromone scaling constant controlling the amount of
pheromone deposited by high-quality solutions during each iteration. Defaults
to 1.

Numeric in (0, 1). Pheromone evaporation rate. Higher values increase evapo-
ration, encouraging exploration. Defaults to 0.5.

A non-negative numeric value. Initial pheromone value assigned to all nodes at
the start of the search. Defaults to 2.

A non-negative numeric value. Lower bound for pheromone values, preventing
premature convergence. Defaults to 1.

A non-negative numeric value. Upper bound for pheromone values, limiting
excessive reinforcement. Defaults to Inf.

A non-negative numeric value. Exponent controlling the influence of pheromone
values on the probability of selecting a component during solution construction.
Defaults to 1.

Numeric. Elitism rate between 0 and 1. Specifies the proportion of elite ants
whose solutions are preserved and directly propagated to the next iteration. De-
faults to 0.

8 add_covariate

prob_min Numeric. Minimum probability floor between 0 and 1. Applied during solution
construction to avoid zero-probability choices. Defaults to 0.2.

diff_tol Numeric. Significance difference threshold used for ranking. Values within this
threshold are considered equal and receive the same rank. Default is 1.

Value

A named list containing all ACO control parameters.

Author(s)

Zhonghui Huang

Examples

acoControl()

add_covariate Add a covariate effect to a parameter model

Description

Automates the creation of covariate effects in pharmacometric models by generating appropriate
beta coefficients and modifying model expressions. Supports both standard allometric scaling rules
and custom covariate effects.

Usage

add_covariate(
param_name,
covariate_var,
param_model,
beta_value = NULL,
existing_betas = c(),
use_fix = TRUE

Arguments

param_name Character. Target parameter name (e.g., "cl", "vc").

covariate_var Character. Covariate variable name (e.g., "WT", "BMI").
param_model Character. Current parameter model expression (e.g., "cl = exp(tcl)").
beta_value Numeric. Optional fixed beta value. If NULL, uses built-in rules.
existing_betas Character vector. Existing beta definitions to append to.

use_fix Logical. Use fix() for beta values? Default TRUE.

add_variability 9

Details
Automatic beta selection rules:

¢ Standard covariates ("wt"/"ffm"/"bmi"/"bsa"):
— 0.75 for clearance parameters (cl/q/q2)
— 1.0 for volume parameters (vc/vp/vp2)

* Other covariates: Default beta = -0.1 with message

Value
List with two elements:

* betas - Updated character vector of beta definitions

* mod - Modified model expression with covariate term

Author(s)

Zhonghui Huang

Examples

Add weight effect to clearance
add_covariate("cl”, "WT", "cl = exp(tcl)")

Custom beta value for BMI effect
add_covariate(
"vc", "BMI", "vc = exp(tvc)”,
beta_value = -0.2, use_fix = FALSE
)

add_variability Add inter-individual variability to a parameter

Description

Defines a model string for a parameter, optionally adding inter-individual variability.

Usage

add_variability(param_name, eta_flag, param_table, param.type = 1)

Arguments
param_name Character. The name of the parameter.
eta_flag Integer. If 1, inter-individual variability is added; otherwise, it is not.
param_table Data frame. A table containing parameter details with columns Name, init, and

optionally bounds like 1b and ub.

param. type Integer. Transformation type: 1=Exponential, 2=Logistic. Defaults to 1.

10 applyParamDeps

Value

A list containing:

mod Character. The model string for the parameter.

eta_init Character. The initialization string for the variability parameter (if applicable).
Author(s)

Zhonghui Huang
Examples

param_table <- initialize_param_table()
add_variability("cl”, 1, param_table)

applyParamDeps Apply parameter dependency rules

Description
Applies dependency constraints among structural and statistical flags in a model-code parameter
list to produce a feasible combination.

Usage

applyParamDeps (params)

Arguments
params Named list of model-code parameters. Elements are typically scalar categorical
values or 0/1 flags. Unknown elements are ignored.
Details

Corrections are applied in the following groups:

» Compartment rules: disable peripheral ITV terms when "no.cmpt” implies they are not used.

non

¢ Michaelis-Menten rules: enable or disable "eta.vmax", "eta.km", and "eta.cl" based on "mm".

non

 Oral absorption rules: enable or disable oral-related terms based on "abs.delay", "abs.type",
and "abs.bio".

 Correlation rules: disable "mcorr" when too few IIV terms are present.

 II'V requirement: ensure at least one IIV term is present by enabling a default term consistent
with "mm".

Value

A named list with corrected parameter values.

auto_param_table 11

Author(s)

Zhonghui Huang

Examples

params <- list(

no.cmpt = 1, mm = @, mcorr = 1,

eta.vc = 1, eta.cl = 0, eta.vp = 1, eta.q =1
)
applyParamDeps (params)

params2 <- list(

no.cmpt = 2, mm = 1,

eta.vmax = @, eta.km = 0, eta.cl =1
)
applyParamDeps (params2)

auto_param_table Automatically generate a parameter table with initial estimates

Description
Constructs a parameter table for nlmixr2 model fitting. It supports:

* Direct use of a user-provided parameter table.
* Automatic initialization of parameters from data using getPPKinits().

¢ Fallback to a default parameter table created by initialize_param_table().

Usage

auto_param_table(
dat = NULL,
param_table = NULL,
nlmixr2autoinits = TRUE,
foldername = NULL,
filename = "test"”,
out.inits = TRUE,

Arguments

dat A data frame containing observed data (required if nlmixr2autoinits = TRUE).
param_table Optional. A user-provided parameter table (if provided, all other logic is skipped).
nlmixr2autoinits

Logical. Whether to automatically estimate initial values using getPPKinits().
Default is TRUE.

12 base_model

foldername Character string specifying the folder name for storing nlmixr2autoinits out-
puts. If NULL (default), tempdir () is used for temporary storage. If specified, a
cache directory is created in the current working directory.

filename Character string specifying the base name for model output files generated dur-
ing evaluation.

out.inits Logical flag indicating whether the results returned by the automated initializa-
tion procedure should be saved to an RDS file. When TRUE, the output of the
initialization step is written to disk for reproducibility or debugging purposes.

Additional arguments passed to getPPKinits().

Details

When nlmixr2autoinits = TRUE, this function estimates initial values from data, applies a name
mapping to internal model parameters, performs log transformations where appropriate, and re-
places problematic log values (e.g. log(0) or NA) with 1og(@.@1) for numerical stability.

Value

A data. frame representing the parameter table with initial estimates, ready for use in nlmixr2().

Author(s)

Zhonghui Huang

See Also

getPPKinits, initialize_param_table

Examples

auto_param_table(dat = pheno_sd)

base_model Create a base model code for single-start model search algorithms

Description
Constructs a named numeric vector defining the initial structural and inter-individual variability
model configuration used in single-start automated PK model search algorithms.

Usage

base_model (search.space = "ivbase")

Arguments

search.space Character, one of "ivbase" or "oralbase". Default is "ivbase".

build_odeline 13

Details

Two search spaces are supported: "ivbase" and "oralbase". A user-specified initial model code can
be provided via the custom_base argument. The input is validated for numerical type and expected
length, and standardized element names are applied before returning. The function is currently used
in stepwise selection and tabu search routines, where a single starting model is iteratively updated.

Value

For search.space = "ivbase": a named integer vector of length 9 containing:

* no.cmpt - Number of compartments

o eta.km - IIV flag for K,

e eta.vc - IIV flag for V,

* eta.vp - IIV flag for V),

* eta.vp2 - IIV flag for V),»

* eta.q - IV flag for Q)

* eta.q2 - IIV flag for Q2

e mm - Michaelis—Menten term flag

* mcorr - Correlation flag among ETAs

* 1v - Residual error model code
For search.space = "oralbase": a named integer vector of length 11, including all fields above plus:

* eta.ka - IIV flag for k, (oral absorption rate constant)

Author(s)

Zhonghui Huang

Examples

base_model ("ivbase")
base_model("oralbase")

build_odeline Build ODE model lines for pharmacokinetic modeling

Description

Constructs a system of ordinary differential equations (ODEs) for pharmacokinetic modeling with
various configurations including different absorption models, compartmental structures, and elimi-
nation kinetics.

14 build_odeline

Usage
build_odeline(
mm = 0,
no.cmpt =1,
route = "bolus”,
abs.bio = 0,
abs.type = 1,
abs.delay = 0
)
Arguments
mm Michaelis-Menten elimination flag. O = linear elimination (default), 1 = Michaelis-
Menten elimination.
no.cmpt Number of compartments. Supported values: 1 (central only), 2 (central + pe-
ripheral), or 3 (central + 2 peripheral).
route Administration route. Options: "bolus" (IV), "oral", or "mixed_iv_oral".
abs.bio Bioavailability estimation flag. 0 = no bioavailability estimation (default), 1 =
include bioavailability parameter (F1).
abs.type Absorption type for oral route:
* 1 = First-order absorption (default)
¢ 2 = Zero-order absorption
* 3 = Sequential zero-first order absorption
* 4 = Dual zero-first order absorption
abs.delay Absorption delay type:
* 0 =No delay (default)
* 1 =Lag time (tlag)
* 2 = Transit compartment model
Details

Parameter Constraints: The function includes error checking for incompatible parameter combina-
tions:

* abs.bio=1 cannot be used with abs.type=4 or abs.delay=3

* Dual absorption (abs.type=4) not supported for mixed routes

Value

A character vector containing ODE equations for the specified configuration. Includes differential
equations for drug compartments, absorption models, and derived parameters.

Author(s)

Zhonghui Huang

create.pop 15

Examples

Two-compartment model with first-order absorption
build_odeline(no.cmpt = 2, route = "oral")

One-compartment IV model with Michaelis-Menten elimination

build_odeline(mm = 1, route = "bolus")
create.pop Create an initial GA population
Description

Generates an initial population for a genetic algorithm (GA). Each individual is a binary chromo-
some represented by a numeric vector containing 0 and 1.

Usage

create.pop(npop, nbits)

Arguments
npop Integer. Number of individuals (chromosomes) in the population.
nbits Integer. Number of bits in each chromosome.

Details

Bits are sampled independently. Each bit takes the value 0 or 1 with equal probability.

Value

A numeric matrix with npop rows and nbits columns containing only 0 and 1. Each row corresponds
to one chromosome.

Author(s)

Zhonghui Huang

Examples

create.pop(npop = 10, nbits = 12)

16

createAnts

createAnts

Create ant population for ACO

Description

Generate a population of ants (candidate models) for use in an ant colony optimization algorithm
for pharmacometric model search.

Usage

createAnts(
search. space
nants = 15,
init = FALSE,

= "ivbase”,

nodeslst = NULL,
custom_config = NULL,

fixed = NULL

Arguments

search.space

nants

init

nodeslst

custom_config

fixed

Details

Character, one of "ivbase" or "oralbase". Default is "ivbase".

Integer. Number of ants (candidate solutions) generated at each iteration. De-
faults to 15.

Logical. If TRUE, a subset of ants is initialized as fixed base models and the
remaining ants are generated by probabilistic sampling. If FALSE, all ants are
generated by probabilistic sampling.

Data frame containing pheromone information used for probabilistic sampling.

It must include node identifiers and associated sampling probabilities. This ar-
gument is required whenever random ants are generated.

Optional named list defining a custom parameter structure. If provided, the
parameter names are taken from the names of this list. If NULL, a default pa-
rameter structure is used based on the selected search space.

Optional list specifying fixed ants for initialization. The list may contain the
following elements:
* n: number of fixed ants.

* mat: optional matrix specifying fixed ant encodings, with parameters in
rows and ants in columns.

Each ant is represented as a column vector encoding discrete structural model decisions, including
the number of compartments, inclusion of random effects, Michaelis—Menten elimination, correla-
tion structures, and residual error models. The set of parameters included in the encoding depends
on the selected search space.

createAnts 17

Ants are generated using a combination of fixed initialization and pheromone-guided probabilistic
sampling. When fixed initialization is enabled, a subset of ants corresponds to predefined base
models, such as one- to three-compartment structures with different residual error models. The
remaining ants are sampled according to probability distributions derived from pheromone weights
stored in the node list.

Structural dependencies between parameters are enforced during generation. For example, param-
eters associated with peripheral compartments are only active when the number of compartments
is sufficient, and parameters related to Michaelis—Menten elimination are only sampled when the
corresponding mechanism is selected. Parameters that are not applicable for a given structure are
encoded with a value of -1.

Value

A numeric matrix in which rows correspond to model parameters and columns correspond to indi-
vidual ants. Column names identify ants sequentially.

Parameter values are encoded as integers. Binary indicators represent exclusion or inclusion of
model components, categorical values represent multi-level structural choices, and the value -1
indicates that a parameter is not applicable for the given model structure.

Author(s)

Zhonghui Huang

See Also

initNodelist, aco.operator

Examples

Example 1: Use defaults (6 fixed base models)
nodes <- initNodelList(search.space = "ivbase”, phi@ = 1)
createAnts(

search.space = "ivbase",

nants = 15,

init = TRUE,

nodeslst = nodes

)

Example 2: Custom number of fixed ants
createAnts(

search.space = "ivbase”,

nants = 20,

init = TRUE,

nodeslst = nodes,

fixed = list(n = 10) # 10 fixed, mat = NULL (auto-generate)
)

Example 3: Custom fixed models

my_models <- matrix(
c(1, -1, o, -1, -1, -1,
2, -1,1, o, -1, o, -1, 0, 0,

L
‘®
‘®
N =

18 decodeBinary

3, -1, 1, 1, o, 1, o, 1,1, 3),
nrow = 10, ncol = 3

)
rownames (my_models) <- c("no.cmpt”, "eta.km", "eta.vc", "eta.vp",
"eta.vp2", "eta.q", "eta.g2”, "mm", "mcorr”, "rv")
createAnts(
search.space = "ivbase",
nants = 10,
init = TRUE,

nodeslst = nodes,
fixed = list(n = 3, mat = my_models)

decodeBinary Decode binary encoding to categorical encoding

Description

Converts a binary-encoded GA chromosome (0/1 vector) into a categorical parameter vector.

Usage

decodeBinary(binary_string, search.space = "ivbase"”, custom_config)

Arguments

binary_string Numeric vector of bits (0/1). Length must match the expected layout for the
selected search.space.

search.space Character string specifying which search space to use. Options are "ivbase",
"oralbase", or "custom". Default is "ivbase".

custom_config Optional named list defining a custom parameter structure. If provided, the
parameter names are taken from the names of this list. If NULL, a default pa-
rameter structure is used based on the selected search space.
Details
Supported search spaces:
* "ivbase": binary string has 12 bits and decodes to 10 values.
* "oralbase": binary string has 13 bits and decodes to 11 values.
* "custom": binary string has 29 bits and decodes to 24 values.

Legacy layout ("ivbase" and "oralbase"):

* The first two bits encode the number of compartments (no.cmpt) as 00 or 01 for 1, 10 for 2,
and 11 for 3.

* The middle parameters are copied directly and preserve values such as 0, 1, and -1.

decodeBinary 19

¢ The last two bits encode the residual error model (rv) as 00 or 01 for 1, 10 for 2, and 11 for 3.
Custom layout ("custom"):

* Multi-level parameters are stored as 2-bit fields (for example, no.cmpt, absorption type, ab-
sorption delay, residual error model, and allometric scaling).

* Binary flags are stored as single bits, including absolute bioavailability (abs.bio), the Michaelis-
Menten indicator (mm), and the correlation indicator (mcorr).

* Inter-individual variability indicators (eta.*) are stored as 16 single-bit flags in a fixed order.

For "custom", the categorical output order is:

no.cmpt, abs.type, abs.delay, abs.bio,

eta.vmax, eta.km, eta.cl, eta.vc, eta.vp, eta.vp2, eta.q, eta.q2,
eta.ka, eta.tlag, eta.D2, eta.F1, eta.Fr, eta.mtt, eta.n, eta.bio,
mm, mcorr, rv, allometric_scaling

Value

Numeric vector of categorical parameter values.

Author(s)

Zhonghui Huang

See Also

.twoBitCode, encodeBinary

Examples

binary_iv <- c(0, 0, 0, 1, 0, 0, 0, @, 0, 0, 1, 1)
decodeBinary(binary_iv, "ivbase")

binary_oral <- c(@, 1, rep(o, 9), 1, 1)
decodeBinary(binary_oral, "oralbase")

binary_custom <- c(
0, 9, 0, 1, 1, 1, 1, rep(o, 16), 0, 1, 1, 0, 0, 1
)

decodeBinary(binary_custom, "custom")

20 detect_move

detect_move Detect the primary move between two model codes

Description

Compares a previous model code with a new one and identifies the primary intended change. If
an original_neighbor is provided, this is used to determine the intended change, ignoring any
secondary modifications introduced by validation.

Usage

detect_move(prev_string, new_string, original_neighbor = NULL)

Arguments
prev_string A named numeric vector: the starting model code.
new_string A named numeric vector: the validated model code.

original_neighbor
Optional named numeric vector: the original neighbor before validation. If pro-
vided, this is used to identify the primary change.

Value

A list with element, from, and to describing the primary change.

Author(s)

Zhonghui Huang

Examples

prev <- c(no.cmpt = 2, eta.vc = 1)

orig <- c(no.cmpt = 3, eta.vc = 1) # original neighbor

new <- c(no.cmpt = 3, eta.vc = @) # validated neighbor (extra fix)
detect_move(prev, new, original_neighbor = orig)

encodeBinary 21

encodeBinary Encode categorical encoding to binary encoding

Description

Converts a categorical parameter vector into a binary-encoded GA chromosome.

Usage

encodeBinary(categorical_string, search.space = "ivbase"”, custom_config)

Arguments

categorical_string
Numeric vector of categorical parameter values. Length must match the ex-
pected layout for the selected search. space.

search.space Character string specifying which search space to use. Options are "ivbase",
"oralbase", or "custom". Default is "ivbase".

custom_config Optional named list defining a custom parameter structure. If provided, the
parameter names are taken from the names of this list. If NULL, a default pa-
rameter structure is used based on the selected search space.

Details

This function converts a vector of categorical parameter values into a 0/1 bit string (a GA chromo-
some). The required input layout and the encoding rules depend on the selected search space.

Built-in search spaces: ivbase / oralbase

» Expected input length:
— ivbase: 10 categorical values
— oralbase: 11 categorical values

o Structure: the first value is no.cmpt and the last value is rv. All middle values are copied as-is
(they are expected to be 0/1 flags). Specifically, ivbase copies indices 2..9 and oralbase copies
indices 2..10.

* no.cmpt and rv use the legacy 3-level 2-bit encoding:
- 1->01
-2->10
-3->11
The code 00 is not used in this mapping.
* Qutput length:

— ivbase: 12 bits (2 + 8 +2)
— oralbase: 13 bits (2 + 9 +2)

22 encodeBinary

Custom search space: custom

For search.space = "custom", the function reads categorical values in the order given by params.
If custom_config$params is provided and non-empty, that vector defines the parameter names and
order; otherwise, the default 24-parameter layout is used:

no.cmpt, abs.type, abs.delay, abs.bio,

eta.vmax, eta.km, eta.cl, eta.vc, eta.vp, eta.vp2, eta.q, eta.q2,
eta.ka, eta.tlag, eta.D2, eta.F1, eta.Fr, eta.mtt, eta.n, eta.bio,
mm, mcorr, rv, allometric_scaling

* Parameters encoded with 2 bits: no.cmpt, abs.type, abs.delay, rv, and allometric_scaling.

* All other parameters must be single-bit flags (0 or 1) and are appended directly to the chro-
mosome.

2-bit encoding rules

* no.cmpt (1..3): 1->01, 2->10, 3->11 (00 unused)

e abs.type (1..4): 1->00, 2->01, 3->10, 4->11

* abs.delay (0..2): 0->00, 1->01, 2->10 (11 unused)

e rv (1..4): 1->00, 2->01, 3->10, 4->11

e allometric_scaling (0..3): 0->00, 1->01, 2->10, 3->11

Value

Numeric vector of bits (0/1).

Author(s)

Zhonghui Huang

See Also

.twoBitCode, decodeBinary

Examples

ivbase: 10 categorical -> 12 bits
cat_iv <- c(1, rep(@, 8), 3)
encodeBinary(cat_iv, "ivbase")

Custom: 24 categorical -> 29 bits
cat_custom <- c(

1, 2,0, 1,
rep(e, 16),
0, 1, 3, 1

)

encodeBinary(cat_custom, "custom”)

fitness 23

fitness Evaluate fitness of a population pharmacokinetic model

Description

Evaluates the quality of a fitted model based on parameter bounds and diagnostic thresholds.

Usage
fitness(
search.space = "ivbase”,
fit = NULL,
dat = NULL,
penalty.control = penaltyControl(),
objf = "BIC"
)
Arguments

search. space Character, one of "ivbase" or "oralbase". Default is "ivbase".
fit Data frame. Model summary from tools such as get.mod.1st(), with parame-
ter estimates and diagnostics.

dat A data frame containing pharmacokinetic data in standard nlmixr2 format, in-
cluding "ID", "TIME", "EVID", and "DV", and may include additional columns.
penalty.control
List created using penaltyControl (), including:
penalty.value Numeric. Default penalty multiplier used in binary violations.
step.penalties Numeric vector or list. Penalties applied to step violations (mild,
severe).
bounds List of parameter lower/upper bounds, typically from param.bounds().
thresholds Named list of diagnostic constraints (e.g., RSE, shrinkage). Each
contains a method ("binary" or "step") and the corresponding threshold or
step levels.
penalty.terms Character vector of constraint categories to penalize. Valid terms

non non non non non non

include "theta", "rse", "omega", "shrinkage", "sigma", "correlation", "co-
variance", and "total".

objf Character. Column name in fit used as the base objective function (e.g., "AIC",
"BIC", "OBJFV").

Value

A data frame extending fit with the following:

* flag.* columns: indicators of constraint violations (0 = no violation, 1 = mild, 2 = severe).
* count.constraint.* columns: number of violations per constraint type.

* fitness: penalized objective function value, computed from the specified objf plus applicable
penalties.

24

Author(s)

Zhonghui Huang

See Also

penaltyControl(), param.bounds().

Examples

Fit a model (using nlmixr2)
pheno <- function() {
ini({
tcl <- log(0.008)
tv <- log(0.6)
eta.cl + eta.v ~ c(1,
0.01, 1)
add.err <- 0.1
D
model ({
cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)
ke <= cl /v

d/dt(A1) = - ke * Al
cp=A1 /v
cp ~ add(add.err)

b))

}

ga.crossover

fit <- nlmixr2est::nlmixr2(pheno, pheno_sd, "saem”, control = list(print = @),

table = list(cwres = TRUE, npde = TRUE))
Store. <- get.mod.lst(fit.s = fit, 1)
fitness(fit = Store.,dat = pheno_sd)

ga.crossover Crossover operator (one- or two-point) for binary chromosomes

Description

Apply one- or two-point crossover to a selected population of binary chromosomes.

Usage

ga.crossover(sel.population, pcross, npop, nbits)

ga.mutation 25

Arguments

sel.population Numeric matrix of dimension npop by nbits. Each row is a chromosome and is
expected to contain binary values (0/1).

pcross Single numeric value in [0, 1] giving the probability of applying crossover to
each parent pair.
npop Single positive even integer giving the population size.
nbits Single positive integer giving the chromosome length.
Details

Parents are paired sequentially (1 with 2, 3 with 4, etc.). For each pair, crossover is applied with
probability pcross; otherwise the parents are copied unchanged. Crossover points are sampled
from O:nbits. If the sampled points do not yield a valid crossover, no crossover is performed for
that pair.

Value

Numeric matrix containing the children population after crossover.

Author(s)

Zhonghui Huang

Examples

sel.population <- matrix(sample(@:1, 100, replace = TRUE), nrow = 10)
ga.crossover(sel.population = sel.population, pcross = 0.7, npop = 10, nbits = 10)

ga.mutation Mutation operator for binary genetic algorithms

Description

Mutate a binary population by flipping bits with probability pmut.

Usage

ga.mutation(children.cross, pmut)

Arguments

children.cross Numeric matrix containing the child population. Rows are individuals and
columns are bits. Values are expected to be 0/1.

pmut Single numeric value in [0, 1] giving the per-bit mutation probability.

26 ga.operator

Details
Mutation is applied independently to each bit (gene). For each position, a Bernoulli trial with
success probability pmut determines whether the bit is flipped (0 becomes 1, 1 becomes 0).

Value

Numeric matrix containing the mutated population.

Author(s)

Zhonghui Huang

Examples

children.cross <- matrix(sample(@:1, 120, replace = TRUE), nrow = 10)
ga.mutation(children.cross, pmut = 0.1)

ga.operator Genetic algorithm operator for model selection

Description

Run a genetic algorithm to search for an optimal PK model structure within a predefined search
space using nlmixr2-based model fitting and penalties.

Usage
ga.operator(
dat,
param_table = NULL,
search.space = c("ivbase"”, "oralbase”),

no.cores = NULL,

ga.control = gaControl(),
penalty.control = penaltyControl(),
precomputed_results_file = NULL,
foldername = NULL,

filename = "test”,

seed = 1234,

.modEnv = NULL,

verbose = TRUE,

ga.operator

Arguments

dat

param_table

search. space
no.cores

ga.control

penalty.control

27

A data frame containing pharmacokinetic data in standard nlmixr2 format, in-
cluding "ID", "TIME", "EVID", and "DV", and may include additional columns.

Optional data frame of initial parameter estimates. If NULL, the table is gener-
ated by auto_param_table().

Character, one of "ivbase" or "oralbase". Default is "ivbase".
Integer. Number of CPU cores to use. If NULL, uses rxode2: : getRxThreads().
A list of GA control parameters, generated by gaControl(). Includes:

* npop - number of individuals (chromosomes) per generation.

* niter - maximum number of generations.

* pcross - crossover probability.

e pmut - per-bit mutation probability.

* diff_tol - significance difference threshold used for ranking.

* nls - frequency (in generations) of running local exhaustive search around
the best current model.

A list of penalty control parameters defined by penaltyControl(), specifying
penalty values used for model diagnostics during fitness evaluation.

precomputed_results_file

foldername

filename

seed

.modEnv

verbose

Details

Optional path to a CSV file of previously computed model results used for
caching.

Character string specifying the folder name for storing intermediate results. If
NULL (default), tempdir() is used for temporary storage. If specified, a cache
directory is created in the current working directory.

Optional character string used as a prefix for output files. Defaults to "test".

Integer. Random seed controlling the random sampling steps of the genetic
algorithm operator for reproducible runs. Default is 1234.

Optional environment used to store run state and cached results. If NULL, a
new environment is created.

Logical. If TRUE, print progress messages.

Additional arguments passed to mod. run().

The algorithm evolves a population of binary-encoded candidate models over multiple generations
using tournament selection, crossover, mutation, and local search. Candidate encodings are vali-
dated and then evaluated by fitting models and applying user-defined penalties. The best individual
is carried forward to the next generation.

Value

An object of class "gaOperatorResult" containing:

* Final Selected Code: data frame with the best binary encoding.

28 ga.sel.tournament

* Final Selected Model Name: model identifier for the best encoding.
* Model Run History: data frame of fitted models and fitness values.

* Selection History: list of per-generation results.

Author(s)

Zhonghui Huang

See Also

mod.run, gaControl, penaltyControl, auto_param_table, spaceConfig, create.pop, validStringbi-
nary, decodeBinary, parseName, rank_new, runlocal, ga.sel.tournament, ga.crossover, ga.mutation

Examples

Example usage with phenotype dataset
outs <- ga.operator(

dat = pheno_sd,

param_table = NULL,

search.space = "ivbase",

ga.control = gaControl(),

saem.control = nlmixr2est::saemControl(

seed = 1234,
nBurn = 200,
nEm = 300,
loglik = TRUE
)
)
print(outs)
ga.sel.tournament Tournament selection
Description

Select individuals for the next generation using tournament selection.

Usage

ga.sel.tournament(data.pop, npop, nbits)

gaControl 29

Arguments
data.pop A data.frame containing the current population. The first nbits columns must be
the chromosome (typically coded as 0/1). The data frame must also contain a
column named rank, where smaller values indicate better individuals (e.g., rank
1 is best).
npop Integer. Number of individuals to select for the next generation.
nbits Integer. Number of bits (genes) per chromosome; i.e., the number of columns
taken from data. pop to form the chromosome matrix.
Value

A matrix of dimension npop x nbits containing the selected chromosomes for the next generation.

Author(s)

Zhonghui Huang

Examples

data.pop <- data.frame(fitness = stats::runif(10), rank = rank(stats::runif(10)))
population <- matrix(sample(@:1, 100, replace = TRUE), nrow = 10)
ga.sel.tournament(data.pop=cbind(as.data.frame(population), data.pop), npop=10, nbits=10)

gaControl Control parameters for genetic algorithm

Description

Creates a list of control settings for the ga.operator () function.

Usage

gaControl(
npop = 20,
niter = 20,
pcross = 0.7,
pmut = 0.1,
diff_tol =1,
nls = 3

30 generate_neighbors_df

Arguments
npop Integer. The number of individuals (chromosomes) in the population for each
generation.
niter Integer. The maximum number of generations to run the GA.
pcross Numeric in [0, 1]. Probability of performing crossover between two selected
parents.
pmut Numeric in [0, 1]. Probability of mutating each bit in a chromosome.
diff_tol A numeric value specifying the significance difference threshold. Values within
this threshold are considered equal and receive the same rank. Default is 1.
nls Integer. Frequency (in generations) of running local exhaustive search around
the best current model.
Value

A named list containing all GA control parameters.

Author(s)

Zhonghui Huang

See Also

ga.operator, rank_new, runlocal

Examples

Default settings
gaControl()

generate_neighbors_df Generate neighbor models

Description

Generates a set of neighbor models from a given current model code. The neighborhood is defined
as all single-variable changes (1-bit modifications).

Usage

generate_neighbors_df(
current_string,
search.space = c("ivbase"”, "oralbase”),
nsize = NULL

get.mod.Ist 31

Arguments

current_string A named numeric vector representing the current model code. Names corre-
spond to model features (e.g. "no.cmpt", "eta.vc", "rv"), and values to their
current states.

search. space Character, one of "ivbase" or "oralbase". Default is "ivbase".

nsize Integer (optional). Maximum number of neighbors to return. If NULL (default),
the full neighborhood is returned. If specified, a random subset of this size is
sampled.
Details

For each neighbor, both the original (pre-validation) and the validated (post-validation) codes are
retained. This allows downstream functions (e.g. detect_move()) to distinguish between the in-
tended primary modification and any secondary adjustments introduced by validation.

Optionally, the function can restrict the number of neighbors by random sampling (candidate list
strategy).

Value
A list with two components:

original Neighbors generated by single-variable flips, before validation.

validated Neighbors after validation, representing feasible models.

Author(s)

Zhonghui Huang

Examples

current_string <- c(no.cmpt = 2, eta.km = 0, eta.vc = 1,

eta.vp = 0, eta.vp2 = 0, eta.q =1,

eta.q2 = @, mm = @, mcorr = 1, rv = 2)
neighbors <- generate_neighbors_df(current_string, search.space = "ivbase")
head(neighbors$original) # raw neighbors (pre-validation)
head(neighbors$validated) # validated neighbors (post-validation)

get.mod.1st Summarize parameter estimates and run information from an nlmixr2

fit

Description

Extracts fixed effects, between-subject variability, residual variability, estimation precision, confi-
dence intervals, covariance structure, shrinkage, and key runtime metrics from a fitted model pro-
duced by nlmixr2.

32 get.mod.Ist

Usage
get.mod.lst(fit.s, modi)

Arguments
fit.s A model object generated using nlmixr2.
modi A numeric identifier used to label the model results, for example when multiple
models are evaluated in sequence.
Details

The function checks for the presence of each element before extraction to ensure robust handling of
incomplete estimation or missing covariance results.

Value

A data.frame with parameter summaries, model fit criteria (AIC, BIC, objective function value,
log-likelihood, number of estimated parameters) and computation timings extracted from the fitted
object.

Author(s)

Zhonghui Huang

Examples

pheno <- function() {

ini({
tcl <- log(@.008) # typical value of clearance
tv <- log(@0.6) # typical value of volume
eta.cl + eta.v ~ c(1,

0.01, 1) ## cov(eta.cl, eta.v), var(eta.v)

add.err <- 0.1 # residual variability

D)

model ({

cl <- exp(tcl + eta.cl) # individual value of clearance
v <- exp(tv + eta.v) # individual value of volume
ke <= cl /v # elimination rate constant
d/dt(A1) = - ke * Al # model differential equation
cp = Al /v # concentration in plasma
cp ~ add(add.err) # define error model

i)

3

Fit the model using nlmixr2
fit <- nlmixr2est::nlmixr2(pheno, pheno_sd, est="saem”, nlmixr2est::saemControl (print=0))

Extract model results
model_results <- get.mod.lst(fit,1)
print(model_results)

initialize_param 33

initialize_param Initialize model parameters from parameter table

Description

Generates parameter initialization code based on a parameter table, handling both fixed and esti-
mated parameters.

Usage

initialize_param(param_name, param_table)

Arguments
param_name Character, name of the parameter to initialize (without "1" prefix)
param_table Dataframe containing parameter specifications, must include:
* Name: Character parameter names with "1" prefix (e.g., "lka" corresponds to
param_name="ka")
* init: Numeric initial values
» fixed: Integer flag (0/1) indicating fixed status (1 = fixed)
Value

Character vector containing generated initialization code line. Format:

* Fixed parameters: <param_name> <- fix(initial_value)

» Estimated parameters: 1<param_name> <- initial_value

Author(s)

Zhonghui Huang

Examples

Create sample parameter table
param_table <- initialize_param_table()

Generate initialization code
initialize_param("ka", param_table) # Returns "ka <- fix(0.500)"
initialize_param(”cl”, param_table) # Returns "lcl <- 1.200"

34 initialize_param_table

initialize_param_table
Generate initial parameter table for pharmacometric model estima-
tion

Description

Creates a structured parameter table containing initial estimates with constraints for base parame-
ters, inter-individual variability (ETA), residual errors (SIGMA), and correlation terms (OMEGA)
to initialize nonlinear mixed-effects model fitting.

Usage

initialize_param_table()

Details
This table includes:

* Base PK parameters (absorption, clearance, volumes, etc.) in log-scale
* Michaelis-Menten kinetics parameters (vmax, km)
* Absorption parameters including zero-order, mixed-order, and transit compartment models
* Residual variability components (additive and proportional error)
* Inter-individual variability (ETA) terms with variance parameters
* Correlation parameters between ETA terms in two blocks:
— Block 1: vmax and km parameters
— Block 2: clearance, volumes, and inter-compartmental clearance

Parameters are organized with:

e Name: Parameter name following standard nomenclature

* init: Initial estimate for model fitting

* Ib/ub: Lower/upper bounds for parameter estimation

* fixed: Flag indicating fixed parameters (1) vs estimated (0)

* Description: Plain-text explanation of parameter meaning

Value

A data.frame with 29 columns containing parameter specifications. The structure includes:

non

Name Parameter name (e.g., "Icl", "eta.vc", "cor.eta_cl_vc")

init Numeric initial value for parameter estimation

Ib Lower bound constraint (use -Inf for unconstrained)

ub Upper bound constraint (use Inf for unconstrained)

fixed Integer flag indicating whether parameter should be fixed (1) or estimated (0)

Description Text description of parameter’s biological/pharmacometric meaning

initNodeList 35

Author(s)

Zhonghui Huang

Examples

Generate default parameter table
initialize_param_table()

initNodelList Initialize node list for ACO search space

Description

Construct the initial edge list used in model structure search based on ant colony optimization.

Usage

initNodelList(search.space, phi@)

Arguments

search. space Character, one of "ivbase" or "oralbase". Default is "ivbase".

phi@ A non-negative numeric value. Initial pheromone value assigned to all nodes at
the start of the search. Defaults to 2.

Value

A data.frame in which each row represents an edge in the ACO path-construction graph, with the
following columns:

travel Integer. Travel counter associated with the edge, initialized to zero.

node.no Integer. Decision node identifier corresponding to a model feature.

node.name Character. Semantic label of the decision node.

edge.no Integer. Global edge index.

local.edge.no Integer. Index of the edge within the corresponding decision node.

edge.name Character. Semantic label of the edge (model component choice).

phi Numeric. Initial pheromone value associated with the edge.

delta_phi Numeric. Change in pheromone level, initialized to zero.

p Numeric. Initial selection probability of the edge.

Author(s)

Zhonghui Huang

36 1S_move_tabu

Examples
initNodelList(search.space = "ivbase”, phi@ = 1)
initNodelList(search.space = "oralbase”, phi@ = 1)
is_move_tabu Check if a move is tabu
Description

Given a move (variable, from-value, to-value) and a tabu list, this function checks whether the move
is currently forbidden by the tabu list.

Usage
is_move_tabu(move, tabu_list, policy = c("attribute”, "move"))
Arguments
move A list as returned by detect_move, containing element, from, and to.
tabu_list Data frame of tabu elements, with columns: elements (variable name), elements.value
(forbidden value), and tabu.iteration.left (remaining tabu tenure).
policy Character scalar. Tabu restriction type: "attribute” (default) or "move”.
Value

Logical scalar: TRUE if the move is tabu, FALSE otherwise.

Author(s)
Zhonghui Huang
Examples
move <- list(element = "no.cmpt”, from = 2, to = 3)
tabu_list <- data.frame(
elements = c("no.cmpt”, "eta.vc"),

elements.value = c(3, 1),
tabu.iteration.left = c(2, 1)
)

is_move_tabu(move, tabu_list)

mod.run

37

mod. run

Run population pharmacokinetic model with pre-defined search space

Description

Fits a population PK model using nlmixr2 with configurable search spaces. Supports pre-defined
model structures (IV, oral) and custom configurations for advanced modeling scenarios.

Usage

mod. run(

string = NULL,

dat = NULL,
search. space

no.cores =

= "ivbase”,
NULL,

penalty.control = penaltyControl(),

param_table

NULL,

nlmixr2autoinits = TRUE,

reuse_cache

T,

precomputed_results_file = NULL,

foldername

NULL,

filename = "test”,
save_fit_rds = FALSE,
save_csv = TRUE,

.modEnv =

NULL,

verbose = TRUE,
custom_config,

Arguments

string

dat

search. space

Numeric vector of parameter values. The length and interpretation depends on
the search.space configuration:

* "ivbase": 10 values in order: (no.cmpt, eta.km, eta.vc, eta.vp, eta.vp2, eta.q,
eta.q2, mm, mcorr, rv)
e "oralbase": 11 values in order: (no.cmpt, eta.km, eta.vc, eta.vp, eta.vp2,
eta.q, eta.q2,eta.ka, mm, mcorr, rv)
 "custom": Length determined by custom_config$params in the order spec-
ified
The meaning of each element name is defined in ppkmodGen().

A data frame containing pharmacokinetic data in standard nlmixr2 format, in-
cluding "ID", "TIME", "EVID", and "DV", and may include additional columns.

Character string specifying which search space to use. Options are "ivbase",
"oralbase", or "custom". Default is "ivbase".

38 mod.run

no.cores Integer. Number of CPU cores to use. If NULL, uses rxode2: : getRxThreads().
penalty.control
A list of penalty control parameters defined by penaltyControl(), specifying
penalty values used for model diagnostics during fitness evaluation.

param_table Optional data frame of initial parameter estimates. If NULL, the table is gener-
ated by auto_param_table().

nlmixr2autoinits
Logical; if TRUE, use automatic initial estimates from nlmixr2. Default is
TRUE.

reuse_cache Integer; if 1, attempt to reuse cached results from previous runs. Default is 1.

precomputed_results_file
Character string; path to a CSV file containing pre-computed model results for
caching

foldername Character string specifying the folder name for storing model files and results.
If NULL (default), tempdir() is used for temporary storage. If specified, a cache
directory is created in the current working directory.

filename Character string; base name for output files (without extension). Required pa-
rameter with no default.

save_fit_rds Logical; if TRUE, save the fitted model object as an RDS file. Default is FALSE.
save_csv Logical; if TRUE, save results to a CSV file. Default is TRUE.

.modEnv Environment for storing state across multiple model runs. If NULL, a new en-
vironment will be created.

verbose Logical; if TRUE, print progress messages. Default is TRUE.

custom_config List; custom search space configuration for use with search.space = "custom".
Must contain four elements: route, params, param_dependencies, and fixed_params.
See Details and Examples.

Additional arguments passed to nlmixr2 control functions (e.g., saem.control,
table.control, max_wall_time)

Details

This function implements a flexible framework for fitting population PK models with different
structural configurations. It uses a configuration-driven approach where the search.space parameter
determines how the string vector is interpreted and which model structure is generated.

Search Space Configurations: The function supports three types of search spaces:

ivbase Pre-defined IV bolus model with 11 parameters. Supports 1-3 compartment models with
linear or Michaelis-Menten elimination.

oralbase Pre-defined oral model with 12 parameters (adds eta.ka for first-order absorption). Same
features as ivbase plus absorption kinetics.

custom User-defined model structure requiring custom_config argument. Allows any combination
of parameters supported by ppkmodGen(). Supported parameters include: no.cmpt, abs.bio,
abs.type, abs.delay, eta.ka, eta.vc, eta.vp, eta.vp2, eta.q, eta.q2, mm, eta.km, eta.tlag, eta.n,
eta.mtt, eta.bio, eta.D2, eta.F1, eta.Fr, mcorr, rv, and allometric_scaling. Note: eta.cl and

mod.run 39

eta.vmax are mutually exclusive and cannot be placed in the search space simultaneously;
NLME models must include either eta.cl (when mm = 0) or eta.vmax (when mm = 1) to
ensure at least one random effect on elimination. For advanced model parameters not covered
by nlmixr2autoinit(), initial estimates default to 1 before any transformation. Users can
provide custom initial estimates through the param_table argument.

Custom Configuration Structure: When using search.space = "custom", the custom_config argu-
ment must be provided as a list with four required elements:

non

route Character string: "bolus", "oral", or "mixed_iv_oral"

params Character vector of parameter names expected in string, in the exact order they appear.
Length of this vector must match length of string.

param_dependencies Named list of functions where each function computes a parameter value
based on other parameters. Example: eta.vmax = function(mm) if (mm == 0) O else 1. Use
empty list if no dependencies exist.

fixed_params Named list of parameters with fixed values that are NOT in string. These parameters
are automatically passed to the model generator. Use empty list if no fixed parameters exist.

Using fixed_params: The fixed_params element specifies parameter values that remain constant
and do not appear in the string vector. This mechanism serves to:

* Define model structure (e.g., compartment count, absorption type)
* Fix certain parameters at specific values across all model runs

* Keep the string vector shorter and focused on variable parameters
Caching System: A two-level caching system avoids re-fitting identical models:

* In-memory cache: Results stored in .modEnv during current session

* File-based cache: Results loaded from CSV file specified by filename

To enable caching, set reuse_cache = 1 (default) and use consistent filename across runs. Pass the
same .modEnv object to subsequent calls to maintain in-memory cache between model evaluations.

Value

Numeric value representing the fitness score of the fitted model

Author(s)

Zhonghui Huang

See Also

spaceConfig for search space configuration details. parseParams for parameter parsing. ppkmodGen
for model generation. penaltyControl for penalty control settings.

40 mod.run

Examples

Example 1: IV model with pre-defined search space
param_table <- initialize_param_table()
param_table$init[param_table$Name == "lcl"”] <- log(@.008)
param_table$init[param_table$Name == "lvcicmpt”] <- log(@.6)
result <- mod.run(

string = c(1, 0, 0, 0, @0, 9, 0, 0, @, 1),

dat = pheno_sd,

search.space = "ivbase",

param_table = param_table,

saem.control = nlmixr2est::saemControl(logLik = TRUE,nBurn=200,nEm=300)
)

Example 2: Oral model with pre-defined search space
param_table <- initialize_param_table()
param_table$init[param_table$Name == "1lcl"] <- log(2.72)
param_table$init[param_table$Name == "lvclcmpt”"] <- log(31.5)
result <- mod.run(
string = c(1, 0, 0, @, @0, 0, 0, @0, @, 0, 1),
dat = theo_sd,
search.space = "oralbase”,
param_table = param_table,
saem.control = nlmixr2est::saemControl(logLik = TRUE,nBurn=200,nEm=300)

Example 3: Simplified 1-compartment model with allometric scalling on
Fix no.cmpt=1 and mcorr=0, vary only CL, Vc, and residual error
param_table <- initialize_param_table()

param_table$init[param_table$Name == "1cl”] <- 1log(0.008 *((70/3.5)"0.75))
param_table$init[param_table$Name == "lvclicmpt”] <- log(@.6 *((70/3.5)))
simple_config <- list(

route = "bolus”,

params = c("eta.vc”, "mcorr”, "rv"),

param_dependencies = list(),
fixed_params = list(
no.cmpt = 1,
eta.cl =1,
allometric_scaling = 1
)
)
dat<-pheno_sd
dat$LOGWT<-log(dat$WT/70)
result <- mod.run(
string = ¢(1, 1, 1), # Only 3 values needed
dat = dat,
search.space = "custom”,
custom_config = simple_config,
param_table = param_table,
saem.control = nlmixr2est::saemControl(logLik = TRUE,nBurn=200,nEm=300)

omega_block 41

omega_block Generate omega block Code for nlmixr2 model

Description

Generates the code for the omega block matrix in nlmixr2 syntax, supporting both independent
variance terms and correlated covariance structures.

Usage

omega_block(param_list, mcorr, eta_table)

Arguments
param_list A character vector of parameter names requiring inter-individual variability (IIV)
terms.
mcorr Integer flag indicating covariance structure:
* 0: Generate independent variance terms only
¢ 1: Generate full block covariance structure
eta_table A data frame containing eta initialization values and correlation coefficients.
Must contain columns:
¢ Name: Parameter names (format "eta.X" for variances, "cor.eta_X_Y" for
correlations)
e init: Initialization values for variance/covariance terms
Value

A character string containing nlmixr2 omega matrix specification code.

* When mcorr = 0: Returns individual variance terms in formula syntax

* When mcorr = 1: Returns covariance block structure in matrix syntax

Author(s)
Zhonghui Huang

Examples

Example eta table structure
eta_table <- initialize_param_table()

Generate independent terms
omega_block(c("eta.cl”, "eta.vc"), mcorr = @, eta_table)

Generate covariance block
omega_block(c("eta.cl”, "eta.vc"), mcorr = 1, eta_table)

42 p.calculation

p.calculation Calculate selection probabilities for each node

Description
Calculates the probability of selecting each node in an ant colony optimization search, based on
pheromone levels ¢.

Usage

p.calculation(nodeslst, prob_min = NULL)

Arguments
nodeslst A data frame of nodes, including columns:
phi Current pheromone level ¢
node.no Group ID for the decision step
p Probability of selection (to be calculated)
prob_min Numeric scalar. Minimum probability each node is allowed to have within its
decision group. Set to NULL or O to disable smoothing.
Details

Within each decision group G, selection probabilities are computed from pheromone levels ¢ as:

Pi
ZjeG ¢j

If prob_min is enabled and any calculated probability falls below this value, the algorithm:

pi =

1. Sets all probabilities below prob_min to prob_min.

2. Redistributes the remaining probability mass proportionally among the other nodes in the
same group.

This acts as a probability smoothing mechanism, preventing premature convergence by ensuring all
nodes retain some chance of being explored.
Value

The updated node list with recalculated p values.

Author(s)
Zhonghui Huang
Examples
node.list <- initNodelList(search.space = "ivbase"”, phi@ = 1)

p.calculation(nodeslst = node.list, prob_min = 0.2)

param.bounds 43

param.bounds Define Parameter Bounds for PK Models

Description

Utility function to generate lower and upper bounds for pharmacokinetic model parameters, includ-
ing fixed effects (theta), random effects variances (omega), residual error (sigma), and correlation
constraints.

Usage

param.bounds
theta = list(lower = NULL, upper = NULL),
omega = list(lower = NULL, upper = NULL),
sigma = list(add = list(lower = 0.001, upper = Inf), prop = list(lower = 0.001, upper =

Inf)),
correlation = list(lower = 0.1, upper = 0.8)
)
Arguments
theta A list with optional elements:
lower Named list of lower bounds for fixed effects. Defaults to -Inf for all
parameters.
upper Named list of upper bounds for fixed effects. Defaults to 10"9 for all
parameters.
omega A list with optional elements:
lower Named list of lower bounds for variance terms. Defaults to 10 for all
parameters.
upper Named list of upper bounds for variance terms. Defaults to Inf for all
parameters.
sigma A list with two elements (each itself a list of bounds):
add Lower and upper bounds for additive error component. Defaults to 0.001
and Inf.
prop Lower and upper bounds for proportional error component. Defaults to
0.001 and Inf.
correlation A list with elements lower and upper giving the bounds for correlation terms.
Defaults to 0.1 and 0.8.
Details

Default theta bounds use -Inf for lower limits and 1079 for upper limits to avoid allowing unrealis-
tically large fixed effect estimates while still providing flexibility during model estimation.

44 parseName

Value
A named list with four components:
theta List of parameter-specific lower and upper bounds for fixed effects.
omega List of lower and upper bounds for variance terms.

sigma List with additive (add) and proportional (prop) error bounds.

correlation List with lower and upper correlation bounds.

Author(s)

Zhonghui Huang

Examples

Use all default bounds
param.bounds ()

Customize only omega lower bounds
param.bounds(omega = list(lower = list(cl =5, vc = 2)))

Adjust sigma proportional error bounds
param.bounds(
sigma = list(
add = list(lower = 0.001, upper = 1),

prop = list(lower = 0.01, upper = 0.05)
)
)
parseName Parse model coding vector to model name
Description

Converts an ordinal model-coding vector into a single pharmacokinetic model name string, using a
search space configuration.
Usage

parseName (modcode, search.space = NULL, custom_config = NULL)

Arguments

modcode Numeric vector of model-coding flags/values in the order defined by the search
space configuration.

search.space Character string specifying which search space to use. Options are "ivbase",
"oralbase", or "custom". Default is "ivbase".

parseName 45

custom_config Optional named list defining a custom parameter structure. If provided, the
parameter names are taken from the names of this list. If NULL, a default pa-
rameter structure is used based on the selected search space.

Details

The function selects a configuration (either a custom configuration when search.space is "custom",
or the predefined configuration from spaceConfig(search.space) otherwise). It then decodes mod-
code with parseParams() and assembles an underscore-separated model name.

The name is built from these blocks in order: prefix, compartments, optional absorption, ETA block,
elimination, correlation, residual error, and optional allometric scaling.

Key rules:
* The prefix is taken from config$prefix when available; otherwise from config$route; otherwise
from search.space.

* The absorption block is included when any absorption option is present. If abs.type, abs.delay,
and abs.bio are all missing/NA, the absorption block is included only for oral or mixed routes
using FO_abs; otherwise it is omitted.

* The ETA block includes all eta.* terms equal to 1 (NA values are ignored), and also forces
Vmax when mm equals 1; otherwise it forces CL.

¢ Elimination uses FO_elim when mm is O or NA, and MM_elim when mm is 1. Correlation
uses uncorrelated when mcorr is O or NA, and correlated when mcorr is 1. Residual error uses
add, prop, or combined.

* Allometric scaling is omitted when allometric_scaling is 0 or NA; otherwise it appends "asWT",
"asBMI", or "asFFM".

Value

A character string representing the constructed model name.

Author(s)

Zhonghui Huang

See Also

spaceConfig(), parseParams()

Examples

Example 1: Parse IV base model name
parseName(c(1, 0, 0, 0, @0, 0, @, @0, @, 1), "ivbase")

Example 2: Parse oral base model name
parseName(c(2, 1, 1, @, @, 1, 1, 1, @, 1, 3), "oralbase")

Example 3: Parse custom configuration model name
custom_config <- list(
prefix = "custom”,

46 parseParams

route = "oral”,
params = c("no.cmpt”, "eta.cl”, "eta.vc”, "mm”, "mcorr”, "rv"),
param_dependencies = list(),
fixed_params = list()
)
parseName(c(2, 1, @, @, 1, 2), search.space = "custom”,
custom_config = custom_config)
parseParams Farse string vector to model parameters

Description
Converts a numeric vector of parameter values into a named list of model parameters based on the
search space configuration.

Usage

parseParams(string, config)

Arguments
string Numeric vector containing parameter values in the order specified by the search
space configuration
config List object returned by spaceConfig(), containing parameter definitions and
dependencies
Details

This function performs three main operations:

1. Maps the input vector to named parameters
2. Computes dependent parameter values using defined functions

3. Adds fixed parameters and route information

Value
A named list containing:

¢ All parameters specified in config$params with their values
* Computed dependent parameters based on param_dependencies
* Fixed parameters from fixed_params

» Administration route from config$route

Author(s)

Zhonghui Huang

penaltyControl 47

See Also

spaceConfig(), mod.run()

Examples

Example 1: Parse IV base model parameters
config_iv <- spaceConfig("ivbase")
parseParams(c(2, 1, 1, @, @, 1, 1, @, 1, 1), config_iv)

Example 2: Parse oral base model parameters
config_oral <- spaceConfig("oralbase")
parseParams(c(2, 1, 1, @, @, 1, 1, 1, @, 1, 1), config_oral)

Example 3: Parse custom configuration parameters

custom_config <- list(route = "oral”, params = c("no.cmpt”, "eta.cl”, "eta.vc"),
param_dependencies = list(), fixed_params = list(mm = 0))

parseParams(c(1, 1, 1), custom_config)

penaltyControl Configure penalty settings for model evaluation

Description

Defines rules governing penalty assignment during model adequacy evaluation.

Usage

penaltyControl(
penalty.value = 10000,
step.penalties = list(rse = c(10, 10000), shrinkage = c(10, 10000), bsv = c(10, 10000),
sigma = list(add = c(10, 10000), prop = c(10, 10000)), correlation = c(10, 10000)),
bounds = param.bounds(),
thresholds = list(),
penalty.terms = c("total”)
)

Arguments

penalty.value Numeric. Constant penalty assigned to binary violations and bound constraints.

step.penalties A named list defining penalty magnitudes used in step-wise procedures. Each
element must contain a numeric vector of length two representing penalty levels
for moderate and critical deviations.

bounds A list specifying lower and upper parameter limits, as returned by param.bounds().
The structure can include limits for theta, omega, sigma, and correlation terms.

thresholds A named list describing evaluation rules for RSE and shrinkage. Each compo-
nent must include a field named method, with value binary or step, together with
the corresponding limit definition:

48 perturb_2bit

* If method = binary: a single cutoff value stored in threshold
¢ If method = step: two deviation boundaries stored in step.levels

penalty.terms Character vector specifying which components are considered when penalties
are reported. Recognized entries include: rse, shrinkage, theta, omega, sigma,
correlation, covariance, and total. If total is included, penalties are aggregated
across all components and any other entries are ignored.

Details

Penalization may be triggered by exceeding predefined parameter bounds (fixed-effect and variance-
covariance elements) or by surpassing thresholds for relative standard error (RSE) or shrinkage
criteria. Binary and step-wise penalty procedures are supported.

Value

A list containing the full penalty configuration for use in fitness().

Author(s)

Zhonghui Huang

See Also

param.bounds(), fitness().

Examples

Default configuration
penaltyControl()

Custom bounds for selected fixed-effect parameters
penaltyControl (bounds = param.bounds(

theta = list(lower = list(cl = 0.01, vc = 0.01))
))

Binary penalty method for RSE
penaltyControl(thresholds = list(

rse = list(method = "binary”, threshold = 40)
)
perturb_2bit Apply 2-bit perturbation to escape local optimum
Description

Randomly flips two parameters ("2-bit change") in the current model string to generate a perturbed
candidate.

perturb_2bit

Usage

perturb_2bit(prev_string, search.space, max.try = 1000)

Arguments

prev_string A named numeric vector representing the current model.
search.space Character, one of "ivbase" or "oralbase". Default is "ivbase".

max.try Maximum number of attempts to generate a valid perturbed model.

Details

The function returns both:

* original_neighbor: the raw 2-bit flip before validation

e validated_neighbor: the corrected version after validation

49

This allows downstream functions (e.g. detect_move()) to identify which parameters were inten-

tionally changed (primary moves), while still using a valid model code for evaluation.

Value
A list with two named numeric vectors:
original_neighbor
raw 2-bit flip (may be invalid)

validated_neighbor
validated and usable model code

Author(s)

Zhonghui Huang

Examples

prev <- c(no.cmpt = 2, eta.km = @, eta.vc =1,

eta.vp = 0, eta.vp2 = 0, eta.q =1,

eta.q2 = @, mm = @, mcorr = 1, rv = 2)
perturb <- perturb_2bit(prev, search.space = "ivbase")
perturb$original_neighbor # original 2-bit flip
perturb$validated_neighbor # validated model

50

phi.calculate

phi.calculate

Update pheromone levels for each decision node

Description

Compute pheromone increments (delta_phi) for each node in the ant colony optimization search
tree and update the global pheromone levels (phi) based on the ants’ paths in the current round.

Usage

phi.calculate(
r,
search.space

= "ivbase",

fitness_history = NULL,

nodeslst.hist
Q=1,
alpha = 1,
rho = 0.5,
diff_tol =1,
phie = 2,
phi_min =1,
phi_max = Inf

Arguments

r

search.space
fitness_history

nodeslst.hist

Q

alpha

rho

diff_tol

phio

= NULL,

Integer. Current optimization round.

Character, one of "ivbase" or "oralbase". Default is "ivbase".

Data frame. History of ants’ fitness values and decision variable selections
across rounds.

Data frame. History of node-level pheromone values across previous rounds.

A positive numeric value. Pheromone scaling constant controlling the amount of
pheromone deposited by high-quality solutions during each iteration. Defaults
to 1.

A non-negative numeric value. Exponent controlling the influence of pheromone
values on the probability of selecting a component during solution construction.
Defaults to 1.

Numeric in (0, 1). Pheromone evaporation rate. Higher values increase evapo-
ration, encouraging exploration. Defaults to 0.5.

Numeric. Tolerance threshold controlling when differences in fitness values are
treated as meaningful during pheromone updates. Defaults to 1.

A non-negative numeric value. Initial pheromone value assigned to all nodes at
the start of the search. Defaults to 2.

phi.calculate 51

phi_min A non-negative numeric value. Lower bound for pheromone values, preventing
premature convergence. Defaults to 1.

phi_max A non-negative numeric value. Upper bound for pheromone values, limiting
excessive reinforcement. Defaults to Inf.
Details
The update proceeds as follows:

* Initialize the node list for the given search space with phi = 0.
* Subset the ants from the current round in fitness_history.

» Compute rank-based weights so better-performing ants contribute more:
A¢ o 1/rank®™.

 Extract the decision columns and attach the computed weights to form a working table of ant
paths and contributions.

* Map local decision indices to global node numbers using node.no and local.edge.no from
the node list.

* For each node, sum contributions from ants that selected the node to obtain A¢, then update
pheromone with evaporation:

¢new = (]- - P) ¢prev + A¢

* Clamp updated ¢ to be between phi_min and phi_max.

Value

A data frame (node list) with updated phi and delta_phi for each node.

Author(s)

Zhonghui Huang

See Also

initNodeList, rank_new

Examples

Define search space

search.space <- "ivbase”

Example fitness_history from round 1
fitness_history <- data.frame(

round = rep(1, 8),

mod.no = 1:8,

no.cmpt = c(1, 1, 2, 2, 3, 3, 2, 2),
eta.km = c(0, o0, 0, 0, 0, 0, 0, 0),
eta.vc =c(0, 0, 0, 0, 0, 0, 1, 1),
eta.vp = c(0, 0, 0, 0, 0, 0, 9, 1),

52

eta.vp2 = c(0, @
eta.q = c(0, 0
eta.q2 = c(0, @
0
]

mm

mcorr = c(O,

rv

fitness = c(1243.874, 1200.

’

= c(o,

=c(1, 2,

’

’

’

’

[SENSS IS

’

1 ’

’

’

’

N OO0 OO

’

’

’

’

’

(SNSRI

’

1 ’

Example node list history
nodeslst.hist <- initNodeList(
search.space = search.space,
phio = 2

)

phi.calculate(

r =

1,

’

’

’

’

0
0
o,
0
0
2

’

0
0
0
1
0
1

» 9),
,),
»),
» 9),
, 0,
» 1),

762, 31249.876, 31202.200,
51259.286, 51204.839, 61032.572, 41031.825),
allrank = c(2, 1, 4, 3, 7, 6, 8, 5)

search.space = search.space,
fitness_history = fitness_history,

nodeslst.hist = nodeslst.hist

ppkmodGen

ppkmodGen

Generate a Pharmacokinetic (PK) Model for nlmixr2

Description

Constructs a PK model based on specified parameters, absorption characteristics, variability compo-
nents, and residual error models. The model is generated as a text file compatible with nlmixr syn-
tax. The function handles various absorption types, multi-compartment models, Michaelis-Menten
kinetics, and different residual variability structures.

Usage

ppkmodGen (
modi =1,

route = "bolus”,

no.cmpt = 1,

abs.
abs.
abs.
eta.
eta.
eta.
eta.
eta.

bio = 0,

type = 1,
delay = 0,
ka =
cl =
ve
vp
vp2 =

’

’

’

[SEESER RN S

S -~

ppkmodGen

eta.q = 0,

eta.q2 =

(S}

mm = 0,

eta.vmax
eta.km =
eta.tlag

InN o 1

eta.n = 0,

eta.mtt = 0,
eta.bio = 0
eta.D2 = 0
eta.F1 =0,
eta.Fr = 0

mcorr = @,
rv=1,
allometric_scaling = 0,

param_table

53

NULL,

return.func = FALSE,
out.dir = NULL,
verbose = TRUE

Arguments

modi

route

no.cmpt

abs

abs

abs.

eta.

eta.

eta.

eta.
eta.

eta.

eta.

.bio

.type

delay

ka

cl

\

vp
vp2

q2

Model identification number (default: 1). Used for generating unique model
filenames.

non

Administration route. Valid options: "bolus", "oral", "mixed_iv_oral" (default:
"bolus").

Number of compartments in the model (1, 2, or 3) (default: 1).
Bioavailability flag (0 = no bioavailability, 1 = with bioavailability) (default: 0).

Absorption type (1 = first-order, 2 = zero-order, 3 = sequential first-order and
zero-order absorption, 4 = dual first-order and zero-order absorption) (default:

D).

Absorption delay type (0 = none, 1 = lag time, 2 = transit compartments) (de-
fault: 0).

Variability flag for absorption rate (ka) (0 = no variability, 1 = include variabil-
ity).

Variability flag for clearance (CL) (0 = no variability, 1 = include variability).
Variability flag for central volume (Vc) (0 = no variability, 1 = include variabil-
ity).

Variability flag for peripheral volume (Vp) in multi-compartment models.
Variability flag for second peripheral volume (Vp2) in 3-compartment models.

Variability flag for intercompartmental clearance (Q) in multi-compartment mod-
els.

Variability flag for second intercompartmental clearance (Q2) in 3-compartment
models.

54 ppkmodGen

mm Michaelis-Menten kinetics flag (0 = linear kinetics, 1 = Michaelis-Menten ki-
netics).

eta.vmax Variability flag for Vmax when using Michaelis-Menten kinetics.

eta.km Variability flag for Km when using Michaelis-Menten kinetics.

eta.tlag Variability flag for lag time (tlag) when abs.delay=1.

eta.n Variability flag for number of transit compartments when abs.delay=2.

eta.mtt Variability flag for mean transit time when abs.delay=2.

eta.bio Variability flag for bioavailability when abs.delay=2.

eta.D2 Variability flag for zero-order duration (D2) when abs.type=2 or 3.

eta.F1 Variability flag for bioavailability fraction (F1) when abs.bio=1.

eta.Fr Variability flag for absorption fraction (Fr) when abs.type=4.

mcorr Correlation flag for omega blocks (0 = no correlation, 1 = include correlations).

rv Residual variability type (1 = additive, 2 = proportional, 3 = combined, 4 =

log-normal).
allometric_scaling
Allometric scaling type (0 = none, 1 = weight, 2 = BMI, 3 = FFM).

param_table Data frame containing parameter initial values and variability components. Should
contain columns: Name (parameter name), init (initial value), eta (TRUE/FALSE
for variability inclusion), cov (covariate relationships).

return.func Logical, whether to return a compiled function (default FALSE returns model
code as text).

out.dir Directory where model files and results are written. Defaults to the current work-
ing directory when not provided.

verbose Logical; if TRUE, progress messages are printed.

Value

Generates a text file modX.txt’ where X = modi) containing the nlmixr-compatible model code.
The file is written to the current working directory. No explicit return value. If return.func =
TRUE, returns a compiled model function object.

Author(s)

Zhonghui Huang

Examples

withr::with_dir(tempdir(), {

#' # Create a T1-compartment oral model with first-order absorption

ppkmodGen(no.cmpt = 1, abs.type = 1,return.func = TRUE,param_table = initialize_param_table())
»

print.acoOperatorResult

55

print.acoOperatorResult

Print method for ACO operator results

Description

Print ACO operator results.

Usage
S3 method for class 'acoOperatorResult'
print(x, ...)
Arguments
X An "acoOperatorResult" object.
Additional arguments (currently ignored).
Value

Invisibly returns x.

Author(s)

Zhonghui Huang

See Also

aco.operator

print.gaOperatorResult

Print method for gaOperatorResult objects

Description

Custom print method for results returned by the GA operator. Displays only:

 Final selected model code

¢ Final selected model name

Usage

S3 method for class 'gaOperatorResult'
print(x, ...)

56 print.tabuOperatorResult

Arguments
X An object containing GA operator output (class gaOperatorResult).
Additional arguments (currently unused).
Value

Invisibly returns the input object.

print.sfOperatorResult
Print method for sfOperatorResult objects

Description

Defines a custom print method for objects of class *sfOperatorResult’.

Usage
S3 method for class 'sfOperatorResult'
print(x, ...)
Arguments
X An object of class ’sfOperatorResult’.
Further arguments passed to or from other methods (currently unused).
Value

Invisibly returns x.

print.tabuOperatorResult
Print method for tabu operator results

Description

Print tabu operator results.

Usage

S3 method for class 'tabuOperatorResult'
print(x, ...)

rank new 57

Arguments
X A "tabuOperatorResult" object.
Additional arguments (currently ignored).
Value

Invisibly returns x.

See Also

tabu.operator

rank_new Ranking with significance difference threshold

Description
Performs a custom ranking of a numeric vector,and ajusts the ranks of values that differ by less than
a specified threshold, ensuring they receive the same rank.

Usage

rank_new(x1, diff_tol)

Arguments
x1 A numeric vector to be ranked.
diff_tol A numeric value specifying the significance difference threshold. Values within
this threshold are considered equal and receive the same rank.
Value

A numeric vector representing the adjusted ranks of the input values.

Author(s)

Zhonghui Huang

Examples

x1 <- c(10, 20, 20.5, 30)

diff_tol <- 1

ranked_list <- rank_new(x1, diff_tol)
print(ranked_list)

58 runlocal

runlocal Perform 1-bit local search

Description

Runs a 1-bit neighbourhood local search on a binary-coded model string and returns a data frame
of candidate models with their computed fitness (and ranks).

Usage
runlocal(
dat,
param_table = NULL,
search.space = c("ivbase"”, "oralbase”),

no.cores = NULL,

start.string = NULL,

diff_tol =1,

penalty.control = penaltyControl(),
precomputed_results_file = NULL,
foldername = NULL,

filename = "test"”,

.modEnv = NULL,

verbose = TRUE,

Arguments
dat A data frame containing pharmacokinetic data in standard nlmixr2 format, in-
cluding "ID", "TIME", "EVID", and "DV", and may include additional columns.
param_table Optional data frame of initial parameter estimates. If NULL, the table is gener-

ated by auto_param_table().
search.space Character, one of "ivbase" or "oralbase". Default is "ivbase".
no.cores Integer. Number of CPU cores to use. If NULL, uses rxode2: : getRxThreads().
start.string Optional numeric/integer vector of O or 1 values giving the starting binary code.
diff_tol A numeric value specifying the significance difference threshold. Values within
this threshold are considered equal and receive the same rank. Default is 1.
penalty.control

A list of penalty control parameters defined by penaltyControl(), specifying
penalty values used for model diagnostics during fitness evaluation.

precomputed_results_file

Optional path to a CSV file of previously computed model results used for
caching.

runlocal 59

foldername Character string specifying the folder name for storing intermediate results. If
NULL (default), tempdir() is used for temporary storage. If specified, a cache
directory is created in the current working directory.

filename Optional character string used as a prefix for output files. Defaults to "test".

.modEnv Optional environment used to persist state across calls (e.g., cached parameter
tables and precomputed results). When NULL, a new environment is created.

verbose Logical. If TRUE, print progress messages.

Additional arguments passed to mod. run().

Details

For each position in the starting binary code, runlocal() constructs a candidate by flipping that
single bit (a 1-bit flip proposal). Some model components are encoded by linked two-bit schemes
(e.g., "no.cmptl"/"no.cmpt2" and "rv1"/"rv2"); when a proposal targets the second bit of a linked
pair, a feasibility rule is applied to maintain a valid encoding.

Each candidate is then canonicalised/validated using validStringbinary before evaluation. Fit-
ness is obtained by calling mod. run for each candidate and results are ranked using rank_new.

If ".modEnv" is supplied and contains the GA iteration counter ".modEnv$r", local search does not
advance this counter; implementations may decrement ".modEnv$r" (with a lower bound of 1) so
that local search does not consume a GA "round".

Value

A data frame where each row corresponds to a unique candidate model. Columns include the binary
encoding (one column per bit), the computed "fitness", and the resulting "rank".

Author(s)

Zhonghui Huang

See Also

mod. run, auto_param_table, validStringbinary, penaltyControl, rank_new

Examples

dat <- pheno_sd
Example best model binary code
current_code <- c(1, o, 1, @, 0, 0, 1, @, 0, 1, 1, @)
param_table <- initialize_param_table()
param_table$init[param_table$Name == "lcl"] <- log(0.008)
param_table$init[param_table$Name == "lvc"] <- log(0.6)
Run local search
result_local <- runlocal(

dat = dat,

search.space = "ivbase”,
start.string = current_code,
filename = "local_search_test”,

saem.control = nlmixr2est::saemControl(logLik = TRUE,nBurn=15,nEm=15)

60

)

run_model_in_subprocess

print(result_local)

run_model_in_subprocess

Run an nlmixr2 model in an isolated subprocess

Description

Executes an nlmixr2 model fitting procedure in a separate background R session using the processx
backend. Running the model in an isolated subprocess prevents the main R session from crashing
and allows monitoring errors, wall-time limits, and controlled output.

Usage

run_model_in_subprocess(

modi,
dat,
f,

saem.control = NULL,
table.control = NULL,

max_errors

max_wall_time

100,

= 86400,

temp_path = NULL,
cleanup = TRUE,
verbose = TRUE

Arguments

modi

dat

saem.control
table.control

max_errors

max_wall_time

temp_path

Integer. A model index used to generate unique temporary filenames.

A data frame containing pharmacokinetic data in standard nlmixr2 format for
model fitting.

An nlmixr2 model function (e.g., generated by ppkmodGen(. . ., return.func
= TRUE)).

A saemControl() object providing estimation settings.
A tableControl () object controlling table output behavior.

Integer. Maximum number of detected error messages before forcibly terminat-
ing the subprocess. Default is 100.

Numeric (seconds). Maximum allowed real (wall-clock) time for the subprocess
before termination. Default is 86400 (24 hours).

Character. Directory where temporary files will be written. If NULL (default),
the system temporary directory tempdir () is used. If a non-NULL path is sup-
plied but does not exist, the function aborts with an error.

run_model_in_subprocess 61

cleanup Logical. Whether to delete all temporary files upon completion. Default is
TRUE. If FALSE, generated temporary files are preserved for debugging/troubleshooting.

verbose Logical. If TRUE, progress and diagnostic messages are printed during subpro-
cess monitoring. Default is TRUE.

Details

The model fitting is executed in an isolated background R process (via processx) to prevent the
main R session from crashing due to instabilities in long-running nlmixr2/SAEM estimation rou-
tines or poorly specified models. Output and error streams are monitored in real time, and the
subprocess is automatically terminated if either the error count (max_errors) or the wall-time limit
(max_wall_time) is exceeded.

Temporary files used to pass data and retrieve results are stored only in the session-specific tempo-
rary directory (tempdir()) and are removed upon completion, ensuring that no files are created in
or left behind in the user’s working directory.

Value

A list with:

fit.s The fitted nlmixr2 object, or NULL if the subprocess failed.

loadError Logical indicating whether an error occurred (including timeout or crash).

Author(s)

Zhonghui Huang

Examples

Example: run a simple nlmixr2 model
pheno <- function() {

ini({
tcl <- log(0.008) # typical clearance
tv <- log(0.6) # typical volume

eta.cl + eta.v ~ c(1,
0.01, 1) # interindividual variability
add.err <- 0.1 # residual variability

»

model ({
cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)
ke <= cl /v
d/dt(A1) = -ke * A1
cp=A1 /v
cp ~ add(add.err)
b))
3
run_model_in_subprocess(
modi = 1,
dat = pheno_sd,

62 sf.operator

f = pheno,

saem.control = nlmixr2est: :saemControl(
seed = 1234,
nBurn = 100,
nEm = 100,
loglik = TRUE

)

)
sf.operator Stepwise model building operator for model selection
Description

Implements automated stepwise model selection for structural and statistical components of nonlin-
ear mixed-effects models, evaluating the number of compartments, elimination type, inter-individual
variability, correlation structures, and residual error models.

Usage

sf.operator(
dat,
start.mod = NULL,
search.space = "ivbase",
no.cores = NULL,
param_table = NULL,
steps = 123567,
dynamic_fitness = TRUE,
penalty.control = penaltyControl(),
precomputed_results_file = NULL,
foldername = NULL,
filename = "test"”,
.modEnv = NULL,
verbose = TRUE,

)
Arguments
dat A data frame containing pharmacokinetic data in standard nlmixr2 format, in-
cluding "ID", "TIME", "EVID", and "DV", and may include additional columns.
start.mod A named integer vector specifying the starting model code. If NULL, a base

model is generated using base_model ().
search. space Character, one of "ivbase" or "oralbase". Default is "ivbase".

no.cores Integer. Number of CPU cores to use. If NULL, uses rxode2: : getRxThreads().

sf.operator 63

param_table Optional data frame of initial parameter estimates. If NULL, the table is gener-
ated by auto_param_table().

steps Numeric or character vector defining the sequence of steps to be executed. Each
digit corresponds to a specific step:
1 Number of compartments
2 Elimination type
3 IIV on Km
4 11V on Ka
5 Forward selection of structural ITV
6 Correlation between random effects

7 Residual error model
dynamic_fitness
Logical; if TRUE, the set of penalty terms may change dynamically across steps.
penalty.control
An object created by penaltyControl() defining penalty terms used in the
fitness calculation.
precomputed_results_file
Optional path to a CSV file of previously computed model results used for

caching.

foldername Character string specifying the name of the folder to be created in the current
working directory to store intermediate results. If NULL, a name is generated
automatically.

filename Optional character string used as a prefix for output files. Defaults to "test".

.modEnv Optional environment used internally to store model indices, cached parameter

tables, and results across steps.
verbose Logical. If TRUE, print progress messages.

Additional arguments passed to mod. run().

Details

The stepwise procedure iterates over the specified steps in order. At each step, only a single compo-
nent of the model is modified, while all other structural and statistical elements remain unchanged.
Model comparison is based on a scalar fitness criterion returned by the estimation routine.

The order and inclusion of steps are controlled by the user via a numeric step code sequence. Steps
that are not applicable to the current model configuration may be skipped automatically.

The final best model is defined as the model with the minimum fitness value in the last completed
estimation round.
Value

An object of class "sfOperatorResult” with the following elements:

* "Final Best Code": Named integer vector of the selected model code.

* "Final Best Model Name": Character string identifying the best model.

64 spaceConfig
* "Stepwise Best Models": Data frame summarizing the best model selected at each executed
step.

* "Stepwise History"”: Named list containing full results for each step using descriptive step
names.

* "Model Run History": Data frame containing all model runs performed during the procedure.

Author(s)

Zhonghui Huang

See Also

step_compartments, step_elimination, step_iiv_km, step_iiv_f, step_correlation, step_rv

auto_param_table, base_model, penaltyControl, mod. run, ppkmodGen, step_compartments,
step_elimination, step_iiv_km, step_iiv_ka, step_iiv_f, step_correlation, step_rv
Examples

out<-sf.operator(
dat = pheno_sd,

steps = 1234,
search.space = "ivbase",
saem.control = nlmixr2est::saemControl(
seed = 1234,
nBurn = 200,
nEm = 300,
logLik = TRUE
)
)
print(out)
spaceConfig Get search space configuration
Description

Retrieve the configuration for a specified search space.

Usage

spaceConfig(search.space = c("ivbase"”, "oralbase"))

Arguments

search.space Character, one of "ivbase" or "oralbase". Default is "ivbase".

step_compartments 65

Details
Pre-defined search spaces:

* "ivbase": IV bolus model, 11 parameters, supports 1 to 3 compartments.

 "oralbase": Oral model, 12 parameters (adds eta.ka), supports 1 to 3 compartments.

For "ivbase" and "oralbase", param_dependencies handle the relationship between Michaelis-Menten
elimination (mm) and the associated variability parameters (eta.vmax, eta.cl).
Value
A list with four elements:
e route: Administration route ("bolus", "oral", or NULL).
» params: Character vector of parameter names expected in the string vector.

» param_dependencies: Named list of functions that compute dependent parameters.

* fixed_params: Named list of fixed parameter values.

Author(s)

Zhonghui Huang

See Also

mod.run for the main function that uses these configurations. parseParams for parameter parsing
using configurations.

Examples

Get IV base configuration
config <- spaceConfig("ivbase")
config$params

Get oral base configuration
config <- spaceConfig("oralbase")
config$params

step_compartments Screen number of compartments

Description

Runs candidate models with one, two, and three compartments by modifying only the compartment
setting in the current model code.

66

Usage

step_compartments

step_compartments(

dat,

start.mod = NULL,

search. space

no.cores =

= "ivbase",
NULL,

param_table = NULL,
penalty.control = NULL,
precomputed_results_file = NULL,
filename = "test”,

foldername = NULL,

.modEnv =

NULL,

verbose = TRUE,

Arguments

dat
start.mod

search. space
no.cores

param_table

penalty.control

A data frame containing pharmacokinetic data in standard nlmixr2 format, in-
cluding "ID", "TIME", "EVID", and "DV", and may include additional columns.

A named integer vector specifying the starting model code. If NULL, a base
model is generated using base_model ().

Character, one of "ivbase" or "oralbase". Default is "ivbase".
Integer. Number of CPU cores to use. If NULL, uses rxode2: : getRxThreads().

Optional data frame of initial parameter estimates. If NULL, the table is gener-
ated by auto_param_table().

A list of penalty control parameters defined by penaltyControl(), specifying
penalty values used for model diagnostics during fitness evaluation.

precomputed_results_file

filename

foldername

.modEnv

verbose

Details

Optional path to a CSV file of previously computed model results used for
caching.

Optional character string used as a prefix for output files. Defaults to "test".

Character string specifying the folder name for storing intermediate results. If
NULL (default), tempdir() is used for temporary storage. If specified, a cache
directory is created in the current working directory.

Internal environment used to store model indices and cached results across steps.
Logical. If TRUE, print progress messages.

Additional arguments passed to mod.run. These may include custom_base,
which is used to initialize the baseline model when no best_code is present in
start.mod.

Three candidate models are created by modifying only the number of compartments in the starting
model code. The candidate codes are evaluated sequentially, and a results table containing model

step_correlation 67

names, model codes, Fitness values, and information criteria is returned for logging and decision
making.

Value

A list with the following elements:

* results_table: a data frame with one row per candidate model, including model description
and fit statistics

* best_code: named integer vector corresponding to the best candidate

* best_row: one-row data frame containing the best candidate summary

Author(s)

Zhonghui Huang

See Also

mod. run, base_model, penaltyControl

Examples

dat <- pheno_sd
string <- c(1, 0, 0, 0, 0, 0, 9, 0, @, 1)
param_table <- initialize_param_table()
param_table$init[param_table$Name == "1lcl"] <- log(0.008)
param_table$init[param_table$Name == "lvc"] <- log(@.6)
penalty.control = penaltyControl()
penalty.control$penalty.terms = c("rse”, "theta", "covariance")
step_compartments(

dat = dat,

search.space = "ivbase”,

param_table = param_table,

filename = "step_cmpt_test”,

penalty.control = penalty.control,

saem.control = nlmixr2est::saemControl(logLik = TRUE,nBurn=15,nEm=15)

step_correlation Evaluate inclusion of ETA correlation structure

Description

Evaluates whether correlation between inter-individual random effects (ETA correlation) should be
included in the model.

68

Usage

step_correlation

step_correlation(

dat,

start.mod = NULL,

search. space

no.cores =

= "ivbase",
NULL,

param_table = NULL,
penalty.control = NULL,
precomputed_results_file = NULL,
filename = "test”,

foldername = NULL,

.modEnv =

NULL,

verbose = TRUE,

Arguments

dat

start.mod

search. space
no.cores

param_table

penalty.control

A data frame containing pharmacokinetic data in standard nlmixr2 format, in-
cluding "ID", "TIME", "EVID", and "DV", and may include additional columns.

A named integer vector specifying the starting model code. If NULL, a base
model is generated using base_model ().

Character, one of "ivbase" or "oralbase". Default is "ivbase".
Integer. Number of CPU cores to use. If NULL, uses rxode2: : getRxThreads().

Optional data frame of initial parameter estimates. If NULL, the table is gener-
ated by auto_param_table().

A list of penalty control parameters defined by penaltyControl(), specifying
penalty values used for model diagnostics during fitness evaluation.

precomputed_results_file

filename

foldername

.modEnv

verbose

Details

Optional path to a CSV file of previously computed model results used for
caching.

Optional character string used as a prefix for output files. Defaults to "test".

Character string specifying the name of the folder to be created in the current
working directory to store intermediate results. If NULL, a name is generated
automatically.

Optional environment used to store model indices and cached results across
steps.

Logical. If TRUE, print progress messages.

Additional arguments passed to the model estimation function.

Two candidate models are constructed by toggling the correlation setting of inter-individual random
effects in the model code. Model selection is based on comparison of Fitness values returned during

estimation.

step_elimination 69

Value

A list with the following elements:

* results_table: A data frame summarizing the evaluated models,
* best_code: A named integer vector corresponding to the selected model code,

* best_row: A one-row data frame containing the summary of the selected model.

Author(s)

Zhonghui Huang

See Also

mod. run, base_model, penaltyControl

Examples

dat <- pheno_sd
param_table <- initialize_param_table()
param_table$init[param_table$Name == "1cl"”] <- log(0.008)
param_table$init[param_table$Name == "1lvc"] <- log(0.6)
penalty.control <- penaltyControl()
penalty.control$penalty.terms <-

c("rse", "theta", "covariance”, "shrinkage", "omega")
start.mod <- base_model("ivbase")
start.mod["eta.vc"] <- 1L
step_correlation(

dat = dat,

start.mod = start.mod,

search.space = "ivbase”,

param_table = param_table,

filename = "step_mcorr_test"”,

penalty.control = penalty.control,

saem.control = nlmixr2est::saemControl(loglLik = TRUE,nBurn=15,nEm=15)

step_elimination Screen elimination type (linear vs Michaelis-Menten)

Description

Runs linear and Michaelis-Menten elimination candidates by modifying only the elimination setting
in the current model code.

70

Usage

step_elimination

step_elimination(

dat,

start.mod = NULL,

search.space

= "ivbase",

no.cores = NULL,

param_table = NULL,
penalty.control = NULL,
precomputed_results_file = NULL,
filename = "test”,

foldername = NULL,

.modEnv =

NULL,

verbose = TRUE,

Arguments

dat

start.mod

search. space
no.cores

param_table

penalty.control

A data frame containing pharmacokinetic data in standard nlmixr2 format, in-
cluding "ID", "TIME", "EVID", and "DV", and may include additional columns.

A named integer vector specifying the starting model code. If NULL, a base
model is generated using base_model ().

Character, one of "ivbase" or "oralbase". Default is "ivbase".
Integer. Number of CPU cores to use. If NULL, uses rxode2: : getRxThreads().

Optional data frame of initial parameter estimates. If NULL, the table is gener-
ated by auto_param_table().

A list of penalty control parameters defined by penaltyControl(), specifying
penalty values used for model diagnostics during fitness evaluation.

precomputed_results_file

filename

foldername

.modEnv

verbose

Details

Optional path to a CSV file of previously computed model results used for
caching.

Optional character string used as a prefix for output files. Defaults to "test".

Character string specifying the name of the folder to be created in the current
working directory to store intermediate results. If NULL, a name is generated
automatically.

Optional internal environment used to store model indices and cached results
across model-selection steps.

Logical. If TRUE, print progress messages.

Additional arguments passed to mod. run().

When mm = 0, any inter-individual variability term for Km (eta.km) present in the model code is
automatically set to zero.

step_iiv_f 71

Value

A list with the following elements:

* results_table: a data.frame with one row per candidate model, including model description,
Fitness, AIC, BIC, and OFV.

* best_code: named integer vector corresponding to the best candidate’s model code.

* best_row: one-row data.frame summarizing the best candidate.

Author(s)

Zhonghui Huang

See Also

mod. run, base_model, penaltyControl

Examples

dat <- pheno_sd
param_table <- initialize_param_table()

param_table$init[param_table$Name == "1cl"”] <- log(0.008)
param_table$init[param_table$Name == "lvc"] <- log(@.6)
penalty.control = penaltyControl()
penalty.control$penalty.terms = c("rse”, "theta”, "covariance”)

Initialize start.mod with a base model
start.mod <- base_model("ivbase")
step_elimination(
dat = dat,
start.mod = start.mod,
search.space = "ivbase”,
param_table = param_table,
filename = "step_elim_test”,
penalty.control = penalty.control,
saem.control = nlmixr2est::saemControl(loglLik = TRUE,nBurn=15,nEm=15)

step_iiv_f Forward selection of IIV on structural parameters

Description

Implements a forward selection procedure to assess the inclusion of inter-individual variability on
structural pharmacokinetic parameters.

72

Usage

step_iiv_f(
dat,

step_iiv_f

start.mod = NULL,

search. space

no.cores =

= "ivbase",
NULL,

param_table = NULL,
penalty.control = NULL,
precomputed_results_file = NULL,
filename = "test”,

foldername = NULL,

.modEnv =

NULL,

verbose = TRUE,

Arguments

dat

start.mod

search. space
no.cores

param_table

penalty.control

A data frame containing pharmacokinetic data in standard nlmixr2 format, in-
cluding "ID", "TIME", "EVID", and "DV", and may include additional columns.

A named integer vector specifying the starting model code. If NULL, a base
model is generated using base_model ().

Character, one of "ivbase" or "oralbase". Default is "ivbase".
Integer. Number of CPU cores to use. If NULL, uses rxode2: : getRxThreads().

Optional data frame of initial parameter estimates. If NULL, the table is gener-
ated by auto_param_table().

A list of penalty control parameters defined by penaltyControl(), specifying
penalty values used for model diagnostics during fitness evaluation.

precomputed_results_file

filename

foldername

.modEnv

verbose

Details

Optional path to a CSV file of previously computed model results used for
caching.

Optional character string used as a prefix for output files. Defaults to "test".

Character string specifying the name of the folder to be created in the current
working directory to store intermediate results. If NULL, a name is generated
automatically.

Optional environment for storing intermediate results across model runs.
Logical. If TRUE, print progress messages.

Additional arguments passed to the model estimation function.

The procedure begins with an initial model and proceeds iteratively. At each step, candidate models
are generated by adding exactly one additional IIV (random-effect) term while keeping all other
aspects of the model unchanged. If any candidate improves the chosen fitness criterion, the best-
improving candidate becomes the new reference model for the next iteration. The algorithm stops

step_iiv_f 73
when no further improvement is achieved. The set of parameters eligible for IV depends on the
number of compartments:

* One-compartment models: clearance and central volume

* Two-compartment models: clearance, central volume, peripheral volume, and inter-compartmental
clearance

* Three-compartment models: clearance, central volume, peripheral volumes, and inter-compartmental
clearances
Value
A list with three elements:

* results_table: A data frame summarizing all models evaluated during the forward selection
process.

* best_code: A named integer vector corresponding to the selected model.

* best_row: A one-row data frame containing the results of the selected model.

Author(s)

Zhonghui Huang

See Also

mod. run, base_model, penaltyControl

Examples

dat <- Bolus_2CPT[Bolus_2CPT$SD==1,]
param_table <- initialize_param_table()

param_table$init[param_table$Name == "1lcl”] <- log(4)
param_table$init[param_table$Name == "lvc2cmpt”] <- log(70)
param_table$init[param_table$Name == "lvp2cmpt”] <- log(40)
param_table$init[param_table$Name == "1g2cmpt”] <- log(4)

penalty.control <- penaltyControl()
penalty.control$penalty.terms <-

c("rse”, "theta”, "covariance”, "shrinkage", "omega")
start.mod <- base_model("ivbase")
start.mod["no.cmpt”] <- 2L

step_iiv_f(
dat = dat,
start.mod = start.mod,
search.space = "ivbase”,
param_table = param_table,
filename = "step_eta_test”,

penalty.control = penalty.control,
saem.control = nlmixr2est::saemControl(loglLik = TRUE,nBurn=15,nEm=15)

74 step_iiv_ka

step_iiv_ka Evaluate inter-individual variability on Ka

Description

Runs candidate models with and without IIV on K, by modifying only the corresponding random-
effect setting in the current model code.

Usage

step_iiv_ka(
dat,
start.mod = NULL,
search.space = "oralbase”,
no.cores = NULL,
param_table = NULL,
penalty.control = NULL,
precomputed_results_file = NULL,
filename = "test”,
foldername = NULL,
.modEnv = NULL,
verbose = TRUE,

Arguments
dat A data frame containing pharmacokinetic data in standard nlmixr2 format, in-
cluding "ID", "TIME", "EVID", and "DV", and may include additional columns.
start.mod A named integer vector specifying the starting model code. If NULL, a base

model is generated using base_model ().
search.space Character, one of "ivbase" or "oralbase". Default is "oralbase".
no.cores Integer. Number of CPU cores to use. If NULL, uses rxode2: : getRxThreads().
param_table Optional data frame of initial parameter estimates. If NULL, the table is gener-
ated by auto_param_table().
penalty.control

A list of penalty control parameters defined by penaltyControl(), specifying
penalty values used for model diagnostics during fitness evaluation.

precomputed_results_file
Optional path to a CSV file of previously computed model results used for

caching.
filename Optional character string used as a prefix for output files. Defaults to "test".
foldername Character string specifying the name of the folder to be created in the current

working directory to store intermediate results. If NULL, a temporary path is
used via tempdir().

step_iiv_ka 75

.modEnv An optional environment used to store intermediate results across model runs.
verbose Logical. If TRUE, print progress messages.

Additional arguments forwarded to mod. run().

Details

This step is executed only when the search space is "oralbase" and the starting model code does
not already include inter-individual variability on K. If these conditions are not met, no model
comparison is performed.

Value

A list with the following elements:

e results_table: A data.frame summarizing the evaluated models.
* best_code: A named integer vector representing the selected model code.

* best_row: A one-row data.frame corresponding to the selected model.

Author(s)

Zhonghui Huang

See Also

mod. run, base_model, penaltyControl

Examples

dat <- theo_sd
param_table <- initialize_param_table()
param_table$init[param_table$Name == "1lcl”] <- log(2)
param_table$init[param_table$Name == "1lvc"] <- log(30)
penalty.control <- penaltyControl()
penalty.control$penalty.terms <-

c("rse", "theta", "covariance”, "shrinkage", "omega")
start.mod <- base_model("oralbase")
step_iiv_ka(

dat = dat,

start.mod = start.mod,

search.space = "oralbase”,

param_table = param_table,

filename = "step_etaka_test”,

penalty.control = penalty.control,

saem.control = nlmixr2est::saemControl(logLik = TRUE,nBurn=15,nEm=15)

76 step_iiv_km

step_iiv_km Evaluate inter-individual variability on Km

Description

Runs candidate models with and without ITV on K, by modifying only the corresponding random-
effect setting in the current model code.

Usage

step_iiv_km(
dat,
start.mod = NULL,
search.space = "ivbase”,
no.cores = NULL,
param_table = NULL,
penalty.control = NULL,
precomputed_results_file = NULL,
filename = "test”,
foldername = NULL,
.modEnv = NULL,
verbose = TRUE,

Arguments
dat A data frame containing pharmacokinetic data in standard nlmixr2 format, in-
cluding "ID", "TIME", "EVID", and "DV", and may include additional columns.
start.mod A named integer vector specifying the starting model code. If NULL, a base

model is generated using base_model ().
search.space Character, one of "ivbase" or "oralbase". Default is "ivbase".
no.cores Integer. Number of CPU cores to use. If NULL, uses rxode2: : getRxThreads().
param_table Optional data frame of initial parameter estimates. If NULL, the table is gener-
ated by auto_param_table().
penalty.control

A list of penalty control parameters defined by penaltyControl(), specifying
penalty values used for model diagnostics during fitness evaluation.

precomputed_results_file
Optional path to a CSV file of previously computed model results used for

caching.
filename Optional character string used as a prefix for output files. Defaults to "test".
foldername Character string specifying the name of the folder to be created in the current

working directory to store intermediate results. If NULL, a name is generated
automatically.

step_iiv_km 77

.modEnv Optional internal environment used to store model indices and cached results
across model-selection steps.

verbose Logical. If TRUE, print progress messages.

Additional arguments forwarded to mod.run().

Details

This step is executed only when the starting model code specifies Michaelis—-Menten elimination
(mm = 1). If mm is not equal to 1 in the starting model, no model comparison is performed.

Value

A list with the following elements:

* results_table: A data.frame summarizing the evaluated models.
* best_code: A named integer vector representing the selected model code.

* best_row: A one-row data.frame corresponding to the selected model.

Author(s)

Zhonghui Huang

See Also

mod. run, base_model, penaltyControl

Examples

dat <- pheno_sd
param_table <- initialize_param_table()
param_table$init[param_table$Name == "lcl"] <- log(0.008)
param_table$init[param_table$Name == "lvc"] <- log(0.6)
penalty.control <- penaltyControl()
penalty.control$penalty.terms <-

c("rse”, "theta", "covariance”, "shrinkage", "omega")
start.mod <- base_model("ivbase")
start.mod["mm"] <- 1L
step_iiv_km(

dat = dat,

start.mod = start.mod,

search.space = "ivbase”,

param_table = param_table,

filename = "step_etakm_test”,

penalty.control = penalty.control,

saem.control = nlmixr2est::saemControl(loglLik = TRUE,nBurn=15,nEm=15)

)

78 step_rv

step_rv Evaluate residual error model structure

Description

Evaluates alternative residual error model structures by modifying the residual variability setting in
the model code.

Usage

step_rv(
dat,
start.mod = NULL,
search.space = "ivbase”,
no.cores = NULL,
param_table = NULL,
penalty.control = NULL,
precomputed_results_file = NULL,
filename = "test"”,
foldername = NULL,
.modEnv = NULL,
verbose = TRUE,

)
Arguments
dat A data frame containing pharmacokinetic data in standard nlmixr2 format, in-
cluding "ID", "TIME", "EVID", and "DV", and may include additional columns.
start.mod A named integer vector specifying the starting model code. If NULL, a base

model is generated using base_model ().
search.space Character, one of ivbase or oralbase. Default is ivbase.
no.cores Integer. Number of CPU cores to use. If NULL, uses rxode2: : getRxThreads().

param_table Optional parameter table used during model estimation.

penalty.control
Optional penalty control object used for reporting penalty terms in the results
table.

precomputed_results_file
Optional path to a CSV file of previously computed model results used for

caching.
filename Optional character string used as a prefix for output files. Defaults to "test".
foldername Character string specifying the name of the folder to be created in the current

working directory to store intermediate results. If NULL, a name is generated
automatically.

step_rv 79

.modEnv Optional environment used to store model indices and cached results across
steps.
verbose Logical. If TRUE, print progress messages.

Additional arguments passed to the model estimation function.

Details

Candidate models are constructed by assigning different residual error types to the model code.
Each candidate differs only in the residual variability specification, and all other structural and
statistical components are kept unchanged. Model selection is based on comparison of Fitness
values obtained during estimation.

Value

A list with the following elements:

* results_table: A data frame summarizing the evaluated residual error models and their fit
statistics,
* best_code: A named integer vector corresponding to the selected model code,

* best_row: A one-row data frame containing the summary of the selected model.

Author(s)

Zhonghui Huang

See Also

mod. run, base_model, penaltyControl

Examples

dat <- pheno_sd

param_table <- initialize_param_table()
param_table$init[param_table$Name == "1lcl"] <- log(0.008)
param_table$init[param_table$Name == "lvc"] <- log(@.6)
penalty.control <- penaltyControl()
penalty.control$penalty.terms <-

c("rse","theta”, "covariance”,"shrinkage”, "omega”,"correlation”,"sigma")
step_rv(

dat = dat,

search.space = "ivbase”,

param_table = param_table,

filename = "step_rv_test”,

penalty.control = penalty.control,
saem.control = nlmixr2est::saemControl(loglLik = TRUE,nBurn=15,nEm=15)

80

tabu.operator

tabu.operator Tabu search operator for model selection

Description

Performs tabu search to explore the pharmacometric model space and identify the best-performing

model. Supports both IV and Oral search spaces.

Usage

tabu.operator(
dat,
param_table = NULL,
start.mod = NULL,
search.space = c("ivbase"”, "oralbase”),
no.cores = NULL,

tabu.control = tabuControl(),
penalty.control = penaltyControl(),
precomputed_results_file = NULL,
foldername = NULL,

filename = "test”,
seed = 1234,
.modEnv = NULL,
verbose = TRUE,
)
Arguments
dat A data frame containing pharmacokinetic data in standard nlmixr2 format, in-

param_table

start.mod

search. space
no.cores

tabu.control

cluding "ID", "TIME", "EVID", and "DV", and may include additional columns.
Optional data frame of initial parameter estimates. If NULL, the table is gener-
ated by auto_param_table().

A named integer vector specifying the starting model code. If NULL, a base
model is generated using base_model ().

Character, one of "ivbase" or "oralbase". Default is "ivbase".

Integer. Number of CPU cores to use. If NULL, uses rxode2: : getRxThreads().
A list of Tabu Search control parameters from tabuControl:

tenure Integer. Number of iterations a move remains tabu.

niter Integer. Maximum number of search iterations.

start.point Optional initial model code vector.

aspiration Logical. If TRUE, allows aspiration criterion.

policy Character. Tabu restriction policy: move or attribute. See Details.

nsize Optional integer. Maximum number of neighbors randomly sampled from
the full neighborhood (candidate list strategy).

tabu.operator 81

penalty.control
A list of penalty control parameters defined by penaltyControl(), specifying
penalty values used for model diagnostics during fitness evaluation.
precomputed_results_file
Optional path to a CSV file of previously computed model results used for
caching.
foldername Character string specifying the folder name for storing intermediate results. If

NULL (default), tempdir() is used for temporary storage. If specified, a cache
directory is created in the current working directory.

filename Optional character string used as a prefix for output files. Defaults to "test".

seed Integer. Random seed controlling the random sampling steps of the tabu operator
for reproducible runs. Default is 1234.

.modEnv Environment for storing intermediate results. If NULL, a new environment is
created.

verbose Logical. If TRUE, print progress messages.

Additional arguments passed to mod. run().

Details

This function implements tabu search for pharmacometric model structure optimization. Models
are encoded as bit vectors representing structural and statistical components.

Neighbor Generation and Validation
Each iteration generates neighbors by one-bit flips, then validates them using validStringcat().
The algorithm maintains both:
* neighbors_orig: Original neighbors (before validation) — used to detect intended moves
* neighbors_val: Validated neighbors (after validation) — used for fitness evaluation
This separation is critical because validation may introduce secondary changes. For example,

changing no.cmpt from 2 to 3 might force eta.vp = @ to maintain model legality. The tabu list
records only the intended change (no.cmpt), not validation side effects (eta. vp).

Tabu List Policies
Two restriction policies are available:
* "move”: Forbids specific transitions (e.g., no.cmpt: 2 -> 3 and 3 -> 2). Stores both forward
and reverse moves.
* "attribute"”: Forbids setting a parameter to a specific value regardless of origin (e.g., any
move setting no.cmpt = 3).
Both policies use the same data structure (element, from, to, tabu.iteration.left). For attribute-
based policy, the from field is stored for record-keeping but only to is used in tabu checking.

Aspiration Criterion When enabled, tabu moves are allowed if they produce a solution better than
the global best.

Perturbation If the search returns to a previous starting point (cycling detected), a 2-bit perturbation
is applied to escape the local region.

82 tabuControl

Value
An object of class tabuOperatorResult, containing:

Final Selected Code
Vector representation of the best model.
Final Selected Model Name
Selected best model (human-readable).
Model Run History
Data frame of all model evaluations with fitness values.

Search History List with iteration-level history: starting.points.history, local.best.history,
tabu.elements.history, neighbors.history.

Author(s)

Zhonghui Huang

See Also

tabuControl for control parameters, detect_move for move detection, is_move_tabu for tabu
checking, perturb_2bit for perturbation

Examples

Example usage with phenotype dataset
outs <- tabu.operator(
dat = pheno_sd,
param_table = NULL,
search.space = "ivbase",
tabu.control = tabuControl(),
saem.control = nlmixr2est::saemControl(

seed = 1234,
nBurn = 200,
nEm = 300,
logLik = TRUE
)
)
print(outs)
tabuControl Control Parameters for Tabu Search
Description

Creates a list of control settings for the tabu.operator function.

validStringbinary

Usage
tabuControl (
tenure = 3,
niter = 20,
aspiration = TRUE,
nsize = NULL,
policy = "attribute”
)
Arguments
tenure Integer. Number of iterations a move remains tabu.
niter Integer. Maximum number of search iterations.
aspiration Logical. Whether to apply the aspiration criterion. If TRUE, tabu moves are
allowed if they yield a solution strictly better than the global best found so far.
nsize Optional integer. If not NULL, restricts neighborhood sear to a random subset
of this size (candidate list strategy).
policy Character. Type of tabu restriction:
* "attribute” — forbid revisiting a variable value (default).
* "move" — forbid only specific from—to transitions.
Value

A named list containing all tabu control parameters.

Author(s)

Zhonghui Huang

Examples

tabuControl()

validStringbinary Validate and correct model string for GA

Description

Validates model parameter strings from genetic algorithms.

Usage

validStringbinary(string, search.space = "ivbase”, custom_config = NULL)

84 validStringbinary

Arguments

string Numeric vector representing binary model encoding (0/1).

search.space Character string specifying which search space to use. Options are "ivbase",
"oralbase", or "custom". Default is "ivbase".

custom_config List, configuration for custom search spaces. Required when search.space is
n n
custom”.

Details
The input string is a binary chromosome (0/1). The function:

1. Decodes the binary chromosome to a categorical parameter vector using decodeBinary.
2. Applies model constraints in categorical space by calling validStringcat.
3. Encodes the corrected categorical vector back to binary using encodeBinary.

This design keeps all correction rules in validStringcat and makes the GA version a thin wrapper
around the categorical validator.

Value

Numeric vector of validated and corrected parameters (binary encoding).

Author(s)

Zhonghui Huang

See Also

validStringcat for categorical validation used by ACO/TS. decodeBinary and encodeBinary
for encoding conversions.

Examples

Example 1: ivbase, 1 compartment disables peripheral terms.
Bits 1-2 encode no.cmpt; here 00 maps to 1.

invalid_iv <- c(@, o, 1, 1, 0, 1, 0, 0, @, 1, @, 1)
validStringbinary(invalid_iv, "ivbase")

Example 2: oralbase, mm = @ forces eta.km to 0.

Bits 12-13 encode rv for oralbase.

invalid_oral <- c(1, o, 1, 1, @, 0, 0, 0, 1, 0, @, 0, 1)
validStringbinary(invalid_oral, "oralbase")

Example 3: custom, mcorr is cleared when there are not enough IIV terms.
simple_config <- list(

route = "bolus”,

params = c("eta.vc”, "mcorr”, "rv"),

param_dependencies = list(),

fixed_params = list(no.cmpt = 1, eta.cl = 1, allometric_scaling = 1)

validStringcat 85

custom encoding: eta.vc (1 bit), mcorr (1 bit), rv (2 bits)
invalid_custom <- c(0, 1, 1, 1) # eta.vc=0, mcorr=1, rv=4
validStringbinary(invalid_custom, "custom”, custom_config = simple_config)

validStringcat Validate and correct model string for ACO/TS

Description

Validates model parameter strings from ACO or tabu search algorithms.

Usage

validStringcat(string, search.space = "ivbase"”, custom_config = NULL)
Arguments

string Numeric vector representing categorical model encoding.

search.space Character string specifying which search space to use. Options are "ivbase",
"oralbase", or "custom". Default is "ivbase".

custom_config List, configuration for custom search spaces. Required when search.space is
" "
custom".

Details

The input string is interpreted using the parameter order defined by the selected search space con-
figuration (for "custom", this is custom_config$params). The function:

1. Maps the input vector to named parameters via parseParams().
2. Enforces model constraints via applyParamDeps().

3. Returns only the parameters that belong to the search space, using the same order as space_cfg$params.

This design ensures the returned vector is compatible with downstream model generation and with
binary encoding wrappers (for example, validStringbinary()).

Value

Numeric vector of validated and corrected parameters (categorical).

Author(s)

Zhonghui Huang

See Also

validStringbinary for the GA wrapper using binary encoding. parseParams for mapping vectors
to named parameters. applyParamDeps for constraint enforcement rules.

86 validStringcat

Examples

Example 1: ivbase, 1 compartment disables peripheral terms.
invalid_iv <- ¢(1, 1, 1, 1, 0, 1, @0, 0, 0, 1)
validStringcat(invalid_iv, "ivbase")

Example 2: oralbase, mm = @ forces eta.km to 0.
invalid_oral <- c(2, 1, 1, @, 0, 0, @0, 1, @, 0, 1)
validStringcat(invalid_oral, "oralbase")

Example 3: custom, mcorr is cleared when there are not enough IIV terms.
simple_config <- list(
route = "bolus”,
params = c("eta.vc”, "mcorr”, "rv"),
param_dependencies = list(),
fixed_params = list(no.cmpt = 1, eta.cl = 1, allometric_scaling = 1)
)
invalid_custom <- c(0, 1, 4)
validStringcat(invalid_custom, "custom”, custom_config = simple_config)

Index

.twoBitCode, 3, 19, 22

aco.operator, 4, 17,55
acoControl, 6,7

add_covariate, 8
add_variability, 9
applyParamDeps, 10, 85
auto_param_table, 6, 11, 28, 59, 64

base_model, 12, 64, 67,69, 71,73,75,77, 79
build_odeline, 13

create.pop, 15, 28
createAnts, 16

decodeBinary, 4, 18, 22, 28, 84
detect_move, 20, 36, 82

encodeBinary, 4, 19, 21, 84
fitness, 23, 48

ga.crossover, 24, 28
ga.mutation, 25, 28
ga.operator, 26, 30
ga.sel.tournament, 28, 28
gaControl, 28, 29
generate_neighbors_df, 30
get.mod.1st, 31
getPPKinits, 12

initialize_param, 33
initialize_param_table, 12, 34
initNodelist, /7, 35, 51
is_move_tabu, 36, 82

mod.run, 6, 28, 37, 59, 64, 65, 67, 69, 71, 73,
75,77,79

omega_block, 41

p.calculation, 42

87

param.bounds, 24, 43, 48
parseName, 28, 44
parseParams, 39, 46, 65, 85
penaltyControl, 6, 24, 28, 39, 47, 59, 64, 67,
69,71,73,75,77,79
perturb_2bit, 48, 82
phi.calculate, 50
ppkmodGen, 6, 39, 52, 64
print.acoOperatorResult, 55
print.gaOperatorResult, 55
print.sfOperatorResult, 56
print.tabuOperatorResult, 56

rank_new, 28, 30, 51, 57, 59
run_model_in_subprocess, 60
runlocal, 28, 30, 58

sf.operator, 62
spaceConfig, 28, 39, 64
step_compartments, 64, 65
step_correlation, 64, 67
step_elimination, 64, 69
step_iiv_f, 64,71
step_iiv_ka, 64, 74
step_iiv_km, 64, 76
step_rv, 64,78

tabu.operator, 57, 80
tabuControl, 80, 82, 82

validStringbinary, 28, 59, 83, 85
validStringcat, 84, 85

	.twoBitCode
	aco.operator
	acoControl
	add_covariate
	add_variability
	applyParamDeps
	auto_param_table
	base_model
	build_odeline
	create.pop
	createAnts
	decodeBinary
	detect_move
	encodeBinary
	fitness
	ga.crossover
	ga.mutation
	ga.operator
	ga.sel.tournament
	gaControl
	generate_neighbors_df
	get.mod.lst
	initialize_param
	initialize_param_table
	initNodeList
	is_move_tabu
	mod.run
	omega_block
	p.calculation
	param.bounds
	parseName
	parseParams
	penaltyControl
	perturb_2bit
	phi.calculate
	ppkmodGen
	print.acoOperatorResult
	print.gaOperatorResult
	print.sfOperatorResult
	print.tabuOperatorResult
	rank_new
	runlocal
	run_model_in_subprocess
	sf.operator
	spaceConfig
	step_compartments
	step_correlation
	step_elimination
	step_iiv_f
	step_iiv_ka
	step_iiv_km
	step_rv
	tabu.operator
	tabuControl
	validStringbinary
	validStringcat
	Index

