A novel ensemble method employing Support Vector Machines (SVMs) as base learners. This powerful ensemble model is designed for both classification (Ara A., et. al, 2021) <doi:10.6339/21-JDS1014>, and regression (Ara A., et. al, 2021) <doi:10.1016/j.eswa.2022.117107> problems, offering versatility and robust performance across different datasets and compared with other consolidated methods as Random Forests (Maia M, et. al, 2021) <doi:10.6339/21-JDS1025>.
Version: | 0.1.0 |
Depends: | R (≥ 2.10) |
Imports: | kernlab, methods, stats |
Published: | 2023-12-14 |
DOI: | 10.32614/CRAN.package.randomMachines |
Author: | Mateus Maia [aut, cre], Anderson Ara [cte], Gabriel Ribeiro [cte] |
Maintainer: | Mateus Maia <mateus.maiamarques.2021 at mumail.ie> |
License: | MIT + file LICENSE |
NeedsCompilation: | no |
Materials: | README |
CRAN checks: | randomMachines results |
Reference manual: | randomMachines.pdf |
Package source: | randomMachines_0.1.0.tar.gz |
Windows binaries: | r-devel: randomMachines_0.1.0.zip, r-release: randomMachines_0.1.0.zip, r-oldrel: randomMachines_0.1.0.zip |
macOS binaries: | r-release (arm64): randomMachines_0.1.0.tgz, r-oldrel (arm64): randomMachines_0.1.0.tgz, r-release (x86_64): randomMachines_0.1.0.tgz, r-oldrel (x86_64): randomMachines_0.1.0.tgz |
Please use the canonical form https://CRAN.R-project.org/package=randomMachines to link to this page.