Implements standard and reference based multiple imputation methods for continuous longitudinal endpoints (Gower-Page et al. (2022) <doi:10.21105/joss.04251>). In particular, this package supports deterministic conditional mean imputation and jackknifing as described in Wolbers et al. (2022) <doi:10.1002/pst.2234>, Bayesian multiple imputation as described in Carpenter et al. (2013) <doi:10.1080/10543406.2013.834911>, and bootstrapped maximum likelihood imputation as described in von Hippel and Bartlett (2021) <doi:10.1214/20-STS793>.
Version: | 1.3.0 |
Depends: | R (≥ 3.4.0) |
Imports: | mmrm, pkgload, Matrix, tools, methods, R6, assertthat |
Suggests: | dplyr, tidyr, nlme, testthat, emmeans, tibble, mvtnorm, knitr, rmarkdown, bookdown, lubridate, purrr, ggplot2, rstan (≥ 2.26.0), R.rsp |
Published: | 2024-10-16 |
DOI: | 10.32614/CRAN.package.rbmi |
Author: | Craig Gower-Page [aut, cre], Alessandro Noci [aut], Marcel Wolbers [ctb], F. Hoffmann-La Roche AG [cph, fnd] |
Maintainer: | Craig Gower-Page <craig.gower-page at roche.com> |
BugReports: | https://github.com/insightsengineering/rbmi/issues |
License: | Apache License (≥ 2) |
URL: | https://insightsengineering.github.io/rbmi/, https://github.com/insightsengineering/rbmi |
NeedsCompilation: | no |
Citation: | rbmi citation info |
Materials: | README NEWS |
In views: | ClinicalTrials |
CRAN checks: | rbmi results |
Reference manual: | rbmi.pdf |
Vignettes: |
rbmi: Inference with Conditional Mean Imputation (source) rbmi: Advanced Functionality (source) rbmi: Quickstart (source) rbmi: Statistical Specifications (source) |
Package source: | rbmi_1.3.0.tar.gz |
Windows binaries: | r-devel: rbmi_1.3.0.zip, r-release: rbmi_1.3.0.zip, r-oldrel: rbmi_1.3.0.zip |
macOS binaries: | r-release (arm64): rbmi_1.2.6.tgz, r-oldrel (arm64): rbmi_1.3.0.tgz, r-release (x86_64): rbmi_1.2.6.tgz, r-oldrel (x86_64): rbmi_1.3.0.tgz |
Old sources: | rbmi archive |
Please use the canonical form https://CRAN.R-project.org/package=rbmi to link to this page.