Scatter Pie plot
set.seed(123)
long <- rnorm(50, sd=100)
lat <- rnorm(50, sd=50)
d <- data.frame(long=long, lat=lat)
d <- with(d, d[abs(long) < 150 & abs(lat) < 70,])
n <- nrow(d)
d$region <- factor(1:n)
d$A <- abs(rnorm(n, sd=1))
d$B <- abs(rnorm(n, sd=2))
d$C <- abs(rnorm(n, sd=3))
d$D <- abs(rnorm(n, sd=4))
d[1, 4:7] <- d[1, 4:7] * 3
head(d)
## long lat region A B C D
## 1 -56.047565 12.665926 1 2.13121969 8.663359 3.928711 8.676792
## 2 -23.017749 -1.427338 2 0.25688371 1.403569 1.375096 4.945092
## 4 7.050839 68.430114 3 0.24669188 0.524395 3.189978 5.138863
## 5 12.928774 -11.288549 4 0.34754260 3.144288 3.789556 2.295894
## 8 -126.506123 29.230687 5 0.95161857 3.029335 1.048951 2.471943
## 9 -68.685285 6.192712 6 0.04502772 3.203072 2.596539 4.439393
ggplot() + geom_scatterpie(aes(x=long, y=lat, group=region), data=d,
cols=LETTERS[1:4]) + coord_equal()
d$radius <- 6 * abs(rnorm(n))
p <- ggplot() + geom_scatterpie(aes(x=long, y=lat, group=region, r=radius), data=d,
cols=LETTERS[1:4], color=NA) + coord_equal()
p + geom_scatterpie_legend(d$radius, x=-140, y=-70)
The geom_scatterpie
is especially useful for visualizing
data on a map.
world <- map_data('world')
p <- ggplot(world, aes(long, lat)) +
geom_map(map=world, aes(map_id=region), fill=NA, color="black") +
coord_quickmap()
p + geom_scatterpie(aes(x=long, y=lat, group=region, r=radius),
data=d, cols=LETTERS[1:4], color=NA, alpha=.8) +
geom_scatterpie_legend(d$radius, x=-160, y=-55)
Session info
Here is the output of sessionInfo()
on the system on
which this document was compiled:
## R version 4.4.1 (2024-06-14 ucrt)
## Platform: x86_64-w64-mingw32/x64
## Running under: Windows 11 x64 (build 22621)
##
## Matrix products: default
##
##
## locale:
## [1] LC_COLLATE=C
## [2] LC_CTYPE=Chinese (Simplified)_China.utf8
## [3] LC_MONETARY=Chinese (Simplified)_China.utf8
## [4] LC_NUMERIC=C
## [5] LC_TIME=Chinese (Simplified)_China.utf8
##
## time zone: Asia/Shanghai
## tzcode source: internal
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] scatterpie_0.2.4 ggplot2_3.5.1
##
## loaded via a namespace (and not attached):
## [1] gtable_0.3.5 jsonlite_1.8.8 highr_0.11
## [4] dplyr_1.1.4 compiler_4.4.1 maps_3.4.2
## [7] tidyselect_1.2.1 Rcpp_1.0.13 tidyr_1.3.1
## [10] ggfun_0.1.5.001 jquerylib_0.1.4 scales_1.3.0
## [13] yaml_2.3.10 fastmap_1.2.0 R6_2.5.1
## [16] labeling_0.4.3 generics_0.1.3 knitr_1.48
## [19] yulab.utils_0.1.7.001 MASS_7.3-61 polyclip_1.10-7
## [22] tibble_3.2.1 munsell_0.5.1 bslib_0.8.0
## [25] pillar_1.9.0 rlang_1.1.4 utf8_1.2.4
## [28] cachem_1.1.0 xfun_0.46 fs_1.6.4
## [31] sass_0.4.9 cli_3.6.3 withr_3.0.1
## [34] magrittr_2.0.3 tweenr_2.0.3 digest_0.6.36
## [37] grid_4.4.1 ggforce_0.4.2 lifecycle_1.0.4
## [40] vctrs_0.6.5 evaluate_0.24.0 glue_1.7.0
## [43] farver_2.1.2 prettydoc_0.4.1 fansi_1.0.6
## [46] colorspace_2.1-1 purrr_1.0.2 rmarkdown_2.27
## [49] tools_4.4.1 pkgconfig_2.0.3 htmltools_0.5.8.1