One or several persons start to show symptoms of COVID-19. When did the person become infected?
get_infection_density
for one personThe function get_infection_density()
can be used to
calculate a data frame containing the infection probability when the
person shows symptoms.
The function get_infection_density()
expects the
following input arguments:
First, the symptom_begin_date
is needed, which defines
when the person started to have symptoms.
Then, the max_incubation_days
has to be set, which
defines the interval length of the distribution output.
The remaining inputs meanlog
and sdlog
are
the parameters of the log-normal distribution for the infection
probability.
<- as.Date("2021-12-28")
symptom_begin_date <- 18
max_incubation_days <- 1.69
meanlog <- 0.55
sdlog
<- get_infection_density(symptom_begin_date,
infec_date_df
max_incubation_days,
meanlog, sdlog)
The default values of log-normal distribution are taken from the paper Xin et al [1]. In this paper the authors made a systematic review of the current literature and estimated those parameters based on their meta-analysis.
The data frame shows for each hour from the earliest potential start of infection up to the symptom begin date the resulting density of the log-normal distribution. This density can be used for calculating the most probable period of the infection.
dates | distribution | |
---|---|---|
100 | 2021-12-14 04:00:00 | 0.0122820 |
101 | 2021-12-14 05:00:00 | 0.0124346 |
102 | 2021-12-14 06:00:00 | 0.0125891 |
103 | 2021-12-14 07:00:00 | 0.0127457 |
104 | 2021-12-14 08:00:00 | 0.0129043 |
105 | 2021-12-14 09:00:00 | 0.0130650 |
106 | 2021-12-14 10:00:00 | 0.0132277 |
107 | 2021-12-14 11:00:00 | 0.0133926 |
108 | 2021-12-14 12:00:00 | 0.0135597 |
109 | 2021-12-14 13:00:00 | 0.0137289 |
get_misc_infection_density
for several personsThe function get_misc_infection_density()
creates a data
frame containing the mixture probability of all considered persons. It
can be used to give an overview of the infection probability of several
persons with symptom onset dates, e.g., one person with symptom onset on
24.12.2021 and two persons with symptom onset on 28.12.2021.
The following arguments are needed for using the function
get_misc_infection_density()
:
The first parameter symptom_begin_dates
contains the
dates when the persons got symptoms.
The second parameter persons
contains the number of
persons having symptoms on each date.
The remaining inputs are the same as in
get_infection_density
.
<- c(as.Date("2021-12-24"), as.Date("2021-12-28"))
symptom_begin_dates <- c(1, 2)
persons <- 18
max_incubation_days
<- get_misc_infection_density(symptom_begin_dates,
misc_infec_date_df
persons, max_incubation_days)
This function uses the get_infection_density
function
and generates a mixture distribution [2]. This probability distribution
is obtained by a sum of the infection probability distribution for each
symptom onset day multiplied by the percentage of persons, which have
started to show symptoms on this day.
The data shows the mixture log-normal distribution and thus gives an overview of the potential infection time points for all considered persons. However, it does not necessarily have to imply that they had their infection on the same time point. In fact, there did not have to be an event, where the persons met. It shows when the persons got infected and it is possible that there is more than one infection date, which can be seen based on several maxima.
dates | distribution | |
---|---|---|
100 | 2021-12-10 04:00:00 | 0.0066933 |
101 | 2021-12-10 05:00:00 | 0.0067743 |
102 | 2021-12-10 06:00:00 | 0.0068564 |
103 | 2021-12-10 07:00:00 | 0.0069395 |
104 | 2021-12-10 08:00:00 | 0.0070237 |
105 | 2021-12-10 09:00:00 | 0.0071090 |
106 | 2021-12-10 10:00:00 | 0.0071953 |
107 | 2021-12-10 11:00:00 | 0.0072828 |
108 | 2021-12-10 12:00:00 | 0.0073713 |
109 | 2021-12-10 13:00:00 | 0.0074610 |
get_infection_density
<- function(probability, df) {
.calculate_qstart_qend <- hdr(den = data.frame(x = 1:length(df$distribution), y = df$distribution),
hdr_df p = probability * 100)$hdr
<- (hdr_df[1:(length(hdr_df) / 2) * 2] - 1) / 24
qstart <- (hdr_df[1:(length(hdr_df) / 2) * 2 - 1] - 1) / 24
qend return(list("qstart" = qstart, "qend" = qend))
}
<- function(df, qstart, qend, fill = "red", alpha = 0.4) {
.shade_curve <- df[floor(qstart * 24):ceiling(qend * 24), ]
subset_df geom_area(data = subset_df,
aes(x = x, y = y),
fill = fill,
color = NA,
alpha = alpha)
}
<- as.Date("2021-12-28")
symptom_begin_date
<- infec_date_df
df <- .calculate_qstart_qend(0.8, df)
period_80 <- .calculate_qstart_qend(0.95, df)
period_95
<- as.POSIXct(format(as.POSIXct(symptom_begin_date, tz = "CET"), "%Y-%m-%d"))
symp_date_posixct_start <- as.POSIXct(format(as.POSIXct(symptom_begin_date + 1, tz = "CET"), "%Y-%m-%d"))
symp_date_posixct_end <- symp_date_posixct_start - as.numeric(difftime(symp_date_posixct_start,
symp_date_posixct_mid units = "hours")) / 2 * 3600 symp_date_posixct_end,
<- ggplot() +
g
scale_x_datetime(breaks = scales::date_breaks("1 days"), labels = scales::date_format("%d %b")) +
theme(axis.text.x = element_text(angle = 90)) +
# scale_x_continuous(breaks = x_tick,
# labels = x_label) +
# theme(axis.ticks.x = element_line(color = c(rbind(rep("black", length(x_label) / 2), rep(NA, length(x_label) / 2))), linetype = 2, size = 1))+
geom_path(aes(x = df$dates, y = df$distribution, color = "red")) +
.shade_curve(df = data.frame(x = df$dates, y = df$distribution),
$qstart,
period_80$qend) +
period_80.shade_curve(df = data.frame(x = df$dates, y = df$distribution),
$qstart,
period_95$qend,
period_95alpha = 0.2) +
geom_rect(data = data.frame(xmin = symp_date_posixct_start,
xmax = symp_date_posixct_end,
ymin = -Inf,
ymax = Inf),
aes(xmin = xmin, xmax = xmax, ymin = ymin, ymax = ymax),
fill = "brown", alpha = 0.3) +
geom_label(aes(x = symp_date_posixct_mid, y = 0.9*max(df$distribution), label = "symptom\nonset"),
colour = "brown", fill = "white", size = 5, label.size = NA) +
ylab("probability") +
xlab("timeline") +
labs(color = 'Verteilung') +
# ggtitle("Visualization of get_infection_density ") +
theme(legend.position = "none", text = element_text(size = 16*5/5)) +
theme(axis.text.x = element_text(colour = "black", face = "bold", angle = 30, hjust = 1)) +
theme(axis.title.x = element_text(colour = "black", face = "bold")) +
theme(axis.text.y = element_text(colour = "gray50")) +
theme(axis.title.y = element_text(colour = "gray50"))
g
get_misc_infection_density
<- misc_infec_date_df
df
<- .calculate_qstart_qend(0.8, df)
period_80 <- .calculate_qstart_qend(0.95, df)
period_95
<- as.POSIXct(format(as.POSIXct(symptom_begin_date, tz = "CET"), "%Y-%m-%d"))
symp_date_posixct_start <- as.POSIXct(format(as.POSIXct(symptom_begin_date + 1, tz = "CET"), "%Y-%m-%d"))
symp_date_posixct_end <- symp_date_posixct_start - as.numeric(difftime(symp_date_posixct_start,
symp_date_posixct_mid units = "hours")) / 2 * 3600
symp_date_posixct_end,
<- ggplot() +
g
scale_x_datetime(breaks = scales::date_breaks("1 days"), labels = scales::date_format("%d %b")) +
theme(axis.text.x = element_text(angle = 90)) +
# scale_x_continuous(breaks = x_tick,
# labels = x_label) +
# theme(axis.ticks.x = element_line(color = c(rbind(rep("black", length(x_label) / 2), rep(NA, length(x_label) / 2))), linetype = 2, size = 1))+
geom_path(aes(x = df$dates, y = df$distribution, color = "red")) +
.shade_curve(df = data.frame(x = df$dates, y = df$distribution),
$qstart,
period_80$qend) +
period_80.shade_curve(df = data.frame(x = df$dates, y = df$distribution),
$qstart,
period_95$qend,
period_95alpha = 0.2) +
ylab("probability") +
xlab("timeline") +
labs(color = 'Verteilung') +
# ggtitle("Visualization of get_infection_density") +
theme(legend.position = "none", text = element_text(size = 16 * 5 / 5)) +
theme(axis.text.x = element_text(colour = "black", face = "bold", angle = 30, hjust = 1)) +
theme(axis.title.x = element_text(colour = "black", face = "bold")) +
theme(axis.text.y = element_text(colour = "gray50")) +
theme(axis.title.y = element_text(colour = "gray50"))
g
[1] Xin H, Wong JY, Murphy C, Yeung A, Taslim Ali S, Wu P, Cowling BJ. The Incubation Period Distribution of Coronavirus Disease 2019: A Systematic Review and Meta-Analysis. Clinical Infectious Diseases, 2021; 73(12): 2344-2352.