spANOVA: Analysis of Field Trials with Geostatistics & Spatial AR Models
Perform analysis of variance when the experimental units are spatially correlated. There are two methods to deal with spatial dependence: Spatial autoregressive models (see Rossoni, D. F., & Lima, R. R. (2019) <doi:10.28951/rbb.v37i2.388>) and geostatistics (see Pontes, J. M., & Oliveira, M. S. D. (2004) <doi:10.1590/S1413-70542004000100018>). For both methods, there are three multicomparison procedure available: Tukey, multivariate T, and Scott-Knott.
Version: |
0.99.4 |
Depends: |
R (≥ 2.10), stats, utils, graphics, geoR, shiny |
Imports: |
MASS, Matrix, ScottKnott, car, gtools, multcomp, multcompView, mvtnorm, DT, shinyBS, xtable, shinythemes, rmarkdown, knitr, spdep, ape, spatialreg, shinycssloaders |
Published: |
2024-03-21 |
DOI: |
10.32614/CRAN.package.spANOVA |
Author: |
Castro L. R. [aut, cre, cph],
Renato R. R. [aut, ths],
Rossoni D. F. [aut],
Nogueira C.H. [aut] |
Maintainer: |
Castro L. R. <lucasroberto.castro at gmail.com> |
License: |
GPL-3 |
NeedsCompilation: |
no |
Materials: |
README NEWS |
CRAN checks: |
spANOVA results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=spANOVA
to link to this page.