This vignette describes the d-prime; a scoring method introduced by Miller (1996).
Load the included Go/No Go dataset and inspect its documentation.
data("ds_gng", package = "splithalfr")
?ds_gng
The columns used in this example are:
The variables condition
and stim
were
counterbalanced. Below we illustrate this for the first participant.
ds_1 <- subset(ds_gng, participant == 1)
table(ds_1$condition, ds_1$stim)
The scoring function receives the data from a single participant. For the proportion of hits and false alarms, it calculates their quantiles given a standard normal distribution. Extreme values are adjusted for via the log-linear approach (Hautus, 1995).
fn_score <- function(ds) {
n_hit <- sum(ds$condition == 0 & ds$response == 1)
n_miss <- sum(ds$condition == 0 & ds$response == 0)
n_cr <- sum(ds$condition == 2 & ds$response == 1)
n_fa <- sum(ds$condition == 2 & ds$response == 0)
p_hit <- (n_hit + 0.5) / ((n_hit + 0.5) + n_miss + 1)
p_fa <- (n_fa + 0.5) / ((n_fa + 0.5) + n_cr + 1)
return (qnorm(p_hit) - qnorm(p_fa))
}
Let’s calculate the d-prime score for the participant with UserID 1.
fn_score(subset(ds_gng, participant == 1))
To calculate the d-prime score for each participant, we will use R’s
native by
function and convert the result to a data
frame.
scores <- by(
ds_gng,
ds_gng$participant,
fn_score
)
data.frame(
participant = names(scores),
score = as.vector(scores)
)
To calculate split-half scores for each participant, use the function
by_split
. The first three arguments of this function are
the same as for by
. An additional set of arguments allow
you to specify how to split the data and how often. In this vignette we
will calculate scores of 1000 permutated splits. The trial properties
condition
and stim
were counterbalanced in the
Go/No Go design. We will stratify splits by these trial properties. See
the vignette on splitting methods for more ways to split the data.
The by_split
function returns a data frame with the
following columns:
participant
, which identifies participantsreplication
, which counts replicationsscore_1
and score_2
, which are the scores
calculated for each of the split datasetsCalculating the split scores may take a while. By default,
by_split
uses all available CPU cores, but no progress bar
is displayed. Setting ncores = 1
will display a progress
bar, but processing will be slower.
split_scores <- by_split(
ds_gng,
ds_gng$participant,
fn_score,
replications = 1000,
stratification = paste(ds_gng$condition, ds_gng$stim)
)
Next, the output of by_split
can be analyzed in order to
estimate reliability. By default, functions are provided that calculate
Spearman-Brown adjusted Pearson correlations
(spearman_brown
), Flanagan-Rulon
(flanagan_rulon
), Angoff-Feldt (angoff_feldt
),
and Intraclass Correlation (short_icc
) coefficients. Each
of these coefficient functions can be used with split_coef
to calculate the corresponding coefficients per split, which can then be
plotted or averaged via a simple mean
. A bias-corrected and
accelerated bootstrap confidence interval can be calculated via
split_ci
. Note that estimating the confidence interval
involves very intensive calculations, so it can take a long time to
complete.
# Spearman-Brown adjusted Pearson correlations per replication
coefs <- split_coefs(split_scores, spearman_brown)
# Distribution of coefficients
hist(coefs)
# Mean of coefficients
mean(coefs)
# Confidence interval of coefficients
split_ci(split_scores, spearman_brown)