stdReg2: Regression Standardization for Causal Inference

Contains more modern tools for causal inference using regression standardization. Four general classes of models are implemented; generalized linear models, conditional generalized estimating equation models, Cox proportional hazards models, and shared frailty gamma-Weibull models. Methodological details are described in Sjölander, A. (2016) <doi:10.1007/s10654-016-0157-3>. Also includes functionality for doubly robust estimation for generalized linear models in some special cases, and the ability to implement custom models.

Version: 1.0.1
Depends: R (≥ 2.10)
Imports: data.table, drgee, generics, survival
Suggests: causaldata, AF, knitr, nnet, rmarkdown, testthat (≥ 3.0.0)
Published: 2024-09-13
DOI: 10.32614/CRAN.package.stdReg2
Author: Michael C Sachs [aut, cre], Arvid Sjölander [aut], Erin E Gabriel [aut], Johan Sebastian Ohlendorff [aut], Adam Brand [aut]
Maintainer: Michael C Sachs <sachsmc at gmail.com>
BugReports: https://github.com/sachsmc/stdReg2/issues/
License: AGPL (≥ 3)
URL: https://sachsmc.github.io/stdReg2/
NeedsCompilation: no
Materials: README NEWS
CRAN checks: stdReg2 results

Documentation:

Reference manual: stdReg2.pdf
Vignettes: Implementing custom and new methods for standardization (source, R code)
Estimation of causal effects using stdReg2 (source, R code)

Downloads:

Package source: stdReg2_1.0.1.tar.gz
Windows binaries: r-devel: stdReg2_1.0.1.zip, r-release: stdReg2_1.0.1.zip, r-oldrel: stdReg2_1.0.1.zip
macOS binaries: r-release (arm64): stdReg2_1.0.1.tgz, r-oldrel (arm64): stdReg2_1.0.1.tgz, r-release (x86_64): stdReg2_1.0.1.tgz, r-oldrel (x86_64): stdReg2_1.0.1.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=stdReg2 to link to this page.