The stochastic volatility model, introduced by Taylor (1982), is defined by \[\begin{equation} \begin{aligned} y_t &= \sigma_y e^{h_t/2} \epsilon_t, \quad t = 1, \dots, T, \\ h_{t+1} &= \phi h_{t} + \sigma_h \eta_t, \quad t = 1, \dots, T-1, \\ \eta_t &\stackrel{\text{iid}}{\sim} \mathcal{N}(0,1), \\ \epsilon_t &\stackrel{\text{iid}} {\sim} F \end{aligned} \end{equation}\] where \(y_t\) is the observed log returns, \(h_t\) is the logarithm of the variance on day \(t\). The distribution of the innovations \(\epsilon_t\) is specified below. To ensure stationarity for \(h_t\), we assume \(|\phi| < 1\). It can be shown that the unconditional distribution of \(h_t\) is \(\mathcal{N}(0,\sigma_h^2/(1 - \phi^2))\), and we assume \(h_1 \sim \mathcal{N}(0,\sigma_h^2/(1-\phi^2))\). An interpretation of the latent process \(\{h_t\}\) is that is represents the random and uneven flow of new information into the marked. For different time points, the variance will be dependent of this unobserved ``flow’’ of information, i.e. conditioning on \(h_t\), \(\mathrm{Var}(y_t | h_t) = \sigma_x^2 e^{h_t}\).
The original SV model from Taylor (1982) assumed normally distributed innovations, but this is usually to strong of an assumption. Financial returns are usually heavy-tailed, might be asymmetric and the volatility can be correlated with the returns. The latter is called the leverage effect, where there is a negative correlation between a change in price and the volatility, meaning that a drop in price tend to lead to an increase in volatility To take these features of financial time series into account stochvolTMB
has implemented the following four distribution for the innovations:
stochvolTMB
is inspired by the package stochvol (Kastner (2016)), but stochvolTMB
obtain parameter estimates through maximum likelihood estimation and not Markov Chain Monte Carlo.
The main functions of stochvolTMB
are:
Function Name | Description |
---|---|
estimate_parameters |
Estimate parameters of a stochastic volatility model. |
sim_sv |
Simulate data from a stochastic volatility model. |
plot.stochvolTMB |
Plot estimated volatility and predicted (with confidence intervals). |
summary.stochvolTMB |
Extract parameter estimates and volatility with uncertainty. |
predict.stochvolTMB |
Predict future volatility and returns. |
estimate_parameters
returns an object of class stochvolTMB
. The summary
function returns a data.table
with estimated parameters, estimated log-volatility and transformed parameters along with standard errors, p-values and z-values. The argument report = "fixed"
returns the parameters on the scale they were estimated. This means that the standard deviations \(\sigma_y, \sigma_h\) are given on the log scale; the degrees of freedom is one the scale \(\log (\nu - 2)\) to ensure that \(\nu > 2\) (i.e. the variance exists); and lastly that the persistence parameter \(\phi\) and the correlation parameter \(\rho\) are estimated on a logit scale to ensure that they are between -1 and 1. If report = c("fixed", "transformed")
, parameter estimates transformed back to their original scale is also returned. If you want to extract the estimated log-volatility you can use report = "random"
.
Estimating parameters in a SV model is easy with stochvolTMB
. As an example we investigate the daily log-returns of the S&P500 from 2005 to 2018. A quick look at the data:
data(spy)
plot(spy$date, spy$log_return, type = "l", xlab = "", ylab = "", main = "Log-returns of S&P500")
We fit all four distributions:
gaussian = estimate_parameters(spy$log_return, model = "gaussian", silent = TRUE)
t_dist = estimate_parameters(spy$log_return, model = "t", silent = TRUE)
skew_gaussian = estimate_parameters(spy$log_return, model = "skew_gaussian", silent = TRUE)
leverage = estimate_parameters(spy$log_return, model = "leverage", silent = TRUE)
We can investigate the estimate for the degrees of freedom (df
) to see if the returns are heavy-tailed
summary(t_dist, report = "transformed")
#> parameter estimate std_error z_value p_value type
#> 1: sigma_y 0.008392879 0.0008689248 9.658924 4.505714e-22 transformed
#> 2: sigma_h 0.185766767 0.0182175649 10.197124 2.042308e-24 transformed
#> 3: phi 0.984924644 0.0039281816 250.732972 0.000000e+00 transformed
#> 4: df 10.086366735 2.1022434966 4.797906 1.603330e-06 transformed
Clearly the returns are more heavy tailed than Gaussian, even when controlling for the stochastic volatility. We can also check for asymmetric returns
summary(skew_gaussian, report = "fixed")
#> parameter estimate std_error z_value p_value type
#> 1: log_sigma_y -4.797828 0.09127165 -52.566466 0.000000e+00 fixed
#> 2: log_sigma_h -1.556355 0.08899553 -17.488015 1.768107e-68 fixed
#> 3: logit_phi 4.623512 0.23363755 19.789252 3.684695e-87 fixed
#> 4: alpha -1.088828 0.14275937 -7.627013 2.402559e-14 fixed
and leverage (rho
)
summary(leverage, report = "transformed")
#> parameter estimate std_error z_value p_value type
#> 1: sigma_y 0.008338412 0.0004163314 20.02830 3.121144e-89 transformed
#> 2: sigma_h 0.273443559 0.0182641070 14.97164 1.125191e-50 transformed
#> 3: phi 0.967721215 0.0043681868 221.53842 0.000000e+00 transformed
#> 4: rho -0.748695259 0.0322487815 -23.21623 3.121690e-119 transformed
There is clear evidence for both asymmetric returns and a negative correlation (of -0.74!) between log-returns and the volatility. To find the model that fits the data best, we can compare the AIC of our models and pick the smallest.
AIC(gaussian,
t_dist,
skew_gaussian,
leverage)
#> df AIC
#> gaussian 3 -23430.57
#> t_dist 4 -23451.69
#> skew_gaussian 4 -23440.87
#> leverage 4 -23608.85
Clearly the leverage model outperforms the others and is our preferred model for this dataset. Lastly, we can also plot the estimated log-volatility and volatility:
We can simulate future returns with predict
. This function returns three matrices of dimension \(\#\) steps \(\times\) #$ simulations: (1) the latent log-volatility h
; (2) one for the percentage volatility 100 * sigma_y * exp(0.5 * h)
and (3) future returns. If the argument include_parameters
is set to TRUE
, the fixed parameters are simulated from their asymptotic multivariate distribution. This usually leads to broader uncertainty bands. To summarize the output from predict
, we use the summary
function, that calculate the mean and different quantiles based on the sumulations. We use the leverage model as an example:
pred = predict(leverage, steps = 10, include_parameters = TRUE)
summary(pred)
#> $y
#> time quantile_0.025 quantile_0.975 mean
#> 1: 1 -0.03697127 0.03680939 -9.955825e-05
#> 2: 2 -0.03648798 0.03840502 1.568988e-04
#> 3: 3 -0.03730617 0.03762548 1.101025e-04
#> 4: 4 -0.03754075 0.03668388 -1.488216e-04
#> 5: 5 -0.03738328 0.03561644 -2.068317e-04
#> 6: 6 -0.03673173 0.03751472 -3.566262e-04
#> 7: 7 -0.03681117 0.03600734 -1.887601e-04
#> 8: 8 -0.03565664 0.03503671 5.997296e-05
#> 9: 9 -0.03554914 0.03611945 3.988628e-04
#> 10: 10 -0.03517953 0.03379153 -4.540136e-05
#>
#> $h
#> time quantile_0.025 quantile_0.975 mean
#> 1: 1 0.406543457 2.496289 1.452232
#> 2: 2 0.240709893 2.555045 1.404871
#> 3: 3 0.148866839 2.587771 1.359087
#> 4: 4 -0.007521566 2.602513 1.312440
#> 5: 5 -0.103075631 2.624392 1.273132
#> 6: 6 -0.220723063 2.659166 1.235431
#> 7: 7 -0.297637708 2.692436 1.199161
#> 8: 8 -0.391764255 2.712487 1.160312
#> 9: 9 -0.458938948 2.717130 1.124303
#> 10: 10 -0.573202451 2.724519 1.079538
#>
#> $h_exp
#> time quantile_0.025 quantile_0.975 mean
#> 1: 1 0.010133686 0.02928523 0.01790396
#> 2: 2 0.009362090 0.03009821 0.01758150
#> 3: 3 0.008854835 0.03063276 0.01732607
#> 4: 4 0.008231126 0.03099414 0.01703866
#> 5: 5 0.007801651 0.03150214 0.01673701
#> 6: 6 0.007537907 0.03199674 0.01659772
#> 7: 7 0.007156487 0.03236181 0.01638999
#> 8: 8 0.006906869 0.03250785 0.01614453
#> 9: 9 0.006583977 0.03235060 0.01584938
#> 10: 10 0.006211188 0.03258687 0.01558458
# plot the forecast
plot(leverage, forecast = 50) + ggplot2::xlim(3200, nrow(spy) + 50)
#> Warning: Removed 3199 row(s) containing missing values (geom_path).
#> Warning: Removed 3199 row(s) containing missing values (geom_path).
#> Warning: Removed 3199 row(s) containing missing values (geom_path).
The R-package stochvol
(Kastner (2016)) provides a Bayesian framework for inference using Markov Chain Monte Carlo. An advantage of stochvolTMB
is that optimization can be a lot faster than MCMC. We here compare the leverage and the gaussian model. Depending on your machine you can expect a speed up of 20-200x.
library(stochvol)
stochvol_gauss <- svsample(spy$log_return, quiet = T)
stochvolTMB_gauss <- estimate_parameters(spy$log_return, "gaussian", silent = TRUE)
stochvol_lev <- svlsample(spy$log_return, quiet = T)
stochvolTMB_lev <- estimate_parameters(spy$log_return, "leverage", silent = TRUE)
We can compare the parameter estimates of the two methods. Note that the parameter exp(mu/2)
and sigma
from stochvol
is the same as sigma_y
and sigma_h
from stochvolTMB
. Both methods give almost identical results.
stochvol_gauss$para
#> mean sd 5% 50% 95%
#> mu -9.611533785 0.1854455626 -9.91175182 -9.611774497 -9.304678419
#> phi 0.978189757 0.0049148914 0.96968612 0.978414831 0.985836137
#> sigma 0.229775055 0.0203786934 0.19733459 0.228942708 0.264098047
#> exp(mu/2) 0.008217761 0.0007671236 0.00704191 0.008181439 0.009539261
#> sigma^2 0.053211825 0.0094502446 0.03894094 0.052414764 0.069747778
#> ESS
#> mu 6230.1953
#> phi 327.9347
#> sigma 152.4001
#> exp(mu/2) 6230.1953
#> sigma^2 152.4001
summary(stochvolTMB_gauss, report = "transformed")
#> parameter estimate std_error z_value p_value type
#> 1: sigma_y 0.008185162 0.0007314791 11.18988 4.570586e-29 transformed
#> 2: sigma_h 0.222440223 0.0190056672 11.70389 1.217431e-31 transformed
#> 3: phi 0.979034243 0.0046595769 210.11226 0.000000e+00 transformed
stochvol_lev$para
#> mean sd 5% 50% 95%
#> mu -9.569375399 0.1053851888 -9.739817718 -9.571446103 -9.400002030
#> phi 0.966952934 0.0041187166 0.960195391 0.966853189 0.973557574
#> sigma 0.276351629 0.0172514582 0.248100974 0.277044222 0.304057250
#> rho -0.724949416 0.0328632332 -0.775144574 -0.726905055 -0.667578807
#> exp(mu/2) 0.008368349 0.0004417329 0.007674065 0.008348085 0.009095268
#> sigma^2 0.076667806 0.0095068932 0.061554093 0.076753501 0.092450811
#> ESS
#> mu 368.69311
#> phi 140.52279
#> sigma 42.20112
#> rho 26.56514
#> exp(mu/2) 368.69311
#> sigma^2 42.20112
summary(stochvolTMB_lev, report = "transformed")
#> parameter estimate std_error z_value p_value type
#> 1: sigma_y 0.008338412 0.0004163314 20.02830 3.121144e-89 transformed
#> 2: sigma_h 0.273443559 0.0182641070 14.97164 1.125191e-50 transformed
#> 3: phi 0.967721215 0.0043681868 221.53842 0.000000e+00 transformed
#> 4: rho -0.748695259 0.0322487815 -23.21623 3.121690e-119 transformed
The R-package TMB
(Kristensen et al. (2016)) is used to implement our models for maximum likelihood estimation, since TMB
lets us estimate parameters in models with a high number of latent variables.
Parameter estimation of stochastic volatility models is hard due to the fact the likelihood function is expressed as a high dimensional integral over the latent variables that cannot be evaluated analytically. If \(\boldsymbol{y} = (y_1, \ldots, y_T)\) denotes our observations, \(\boldsymbol{h} = (h_1, \ldots, h_T)\) our latent variables and \(\boldsymbol{\theta}\) the parameters of interest, the likelihood of \(\boldsymbol{\theta}\) is given by
\[\begin{equation} \mathcal{L}(\boldsymbol{\theta}) = \int f_{\boldsymbol{y}}(\boldsymbol{y}|\boldsymbol{h})f_{\boldsymbol{h}}(\boldsymbol{h}) \, d\boldsymbol{h}, \end{equation}\]
The conditional density of our observations given \(\boldsymbol{h}\) is denoted by \(f_{\boldsymbol{y}}(\boldsymbol{y|u})\), and \(f_{\boldsymbol{h}}(\boldsymbol{h})\) denotes the marginal density of \(\boldsymbol{h}\). To approximate this integral we apply the Laplace approximation.
Let \(\boldsymbol{y}\) be a vector of observations, \(\boldsymbol{\theta}\) our parameters of interest and \(\boldsymbol{h}\) be a random vector of latent variables. Let \(g(\boldsymbol{h},\boldsymbol{\theta})\) denote the negative joint log-likelihood. The likelihood of \(\boldsymbol{\theta}\) is given by
\[\begin{equation} \mathcal{L}(\boldsymbol{\theta}) = \int f(\boldsymbol{y},\boldsymbol{h}) \, d\boldsymbol{h} = \int f_{\boldsymbol{y}}(\boldsymbol{y|u}) f_{\boldsymbol{h}}(\boldsymbol{h}) \, d\boldsymbol{h} = \int \exp \{-g(\boldsymbol{h},\boldsymbol{\theta})\} \, d\boldsymbol{h}. \end{equation}\]
We assume that \(g\) has a global minimum at \(\boldsymbol{\hat{h}}\) for a given \(\boldsymbol{\theta}\), i.e. \(\boldsymbol{\hat{h}} = \text{argmin}_{\boldsymbol{h}} g(\boldsymbol{h},\boldsymbol{\theta})\), and that \(g\) is twice differentiable. The solution \(\hat{\boldsymbol{h}}\) is known as the Empirical Bayes (EB) estimate. A second order Taylor expansion around \(\boldsymbol{\hat{h}}\) yields
\[\begin{equation} g(\boldsymbol{h},\boldsymbol{\theta}) \approx g(\boldsymbol{\hat{h}},\boldsymbol{\theta}) + \nabla g(\boldsymbol{\hat{h}},\boldsymbol{\theta})(\boldsymbol{h} - \boldsymbol{\hat{h}}) + \frac{1}{2}(\boldsymbol{h} - \boldsymbol{\hat{h}})^T\mathbb{H}(\boldsymbol{h} - \boldsymbol{\hat{h}}) \end{equation}\]
Since \(\boldsymbol{\hat{h}}\) is a minimum, \(\nabla g(\boldsymbol{\hat{h}},\boldsymbol{\theta}) = 0\). Therefore
\[\begin{equation} \mathcal{L}(\boldsymbol{\theta}) \approx \exp \{-g(\boldsymbol{\hat{h}},\boldsymbol{\theta})\} \int \exp \bigg \{-\frac{1}{2}(\boldsymbol{h} - \boldsymbol{\hat{h}})^T\mathbb{H}(\boldsymbol{h} - \boldsymbol{\hat{h}}) \bigg \} d\boldsymbol{h} \end{equation}\]
We can observe that the integrand is the kernel of a multivariate normal density with covariance matrix \(\mathbb{H}^{-1}\). The approximation is therefore given by
\[\begin{equation} \mathcal{L}(\boldsymbol{\theta}) \approx \exp \{-g(\boldsymbol{\hat{h}},\boldsymbol{\theta})\} (2\pi)^{\text{dim}(\boldsymbol{h})/2} \text{det}(\mathbb{H})^{-1/2}, \end{equation}\]
where we have used the fact that \(\text{det}(\mathbb{H}^{-1}) = \text{det}(\mathbb{H})^{-1}\). The corresponding negative log-likelihood is
\[\begin{equation} -l(\boldsymbol{\theta}) = -\frac{\text{dim}(\boldsymbol{h})}{2} \log (2\pi) + \frac{1}{2} \log \text{det}(\mathbb{H}) + g(\boldsymbol{\hat{h}},\boldsymbol{\theta}). \end{equation}\]
Finding the optimal value of \(\boldsymbol{\theta}\) can be viewed as a nested optimization problem. To find \(\boldsymbol{h} (\boldsymbol{\theta})\) and \(\mathbb{H}(\boldsymbol{\theta})\) we fix \(\boldsymbol{\theta}\) and optimize using a quasi-Newton algorithm or a limited memory Newton method. The Laplace approximation is then optimized w.r.t. \(\boldsymbol{\theta}\) using the quasi-Newton algorithm.
Kastner, Gregor. 2016. “Dealing with Stochastic Volatility in Time Series Using the R Package stochvol.” Journal of Statistical Software 69 (5): 1–30. https://doi.org/10.18637/jss.v069.i05.
Kristensen, Kasper, Anders Nielsen, Casper Berg, Hans Skaug, and Bradley Bell. 2016. “TMB: Automatic Differentiation and Laplace Approximation.” Journal of Statistical Software, Articles 70 (5): 1–21. https://doi.org/10.18637/jss.v070.i05.
Taylor, S. J. 1982. “Financial Returns Modelled by the Product of Two Stochastic Processes-a Study of the Daily Sugar Prices 1961-75.” Time Series Analysis : Theory and Practice 1: 203–26. https://ci.nii.ac.jp/naid/10018822959/en/.