In this short tutorial, I show how to calculate a rolling regression on grouped time series data using tidyfit
. With very few lines of code, we will be able to estimate and analyze a large number of regressions. As usual, begin by loading necessary libraries:
library(dplyr); library(tidyr); library(purrr) # Data wrangling
library(ggplot2); library(stringr) # Plotting
library(lubridate) # Date calculations
library(tidyfit) # Model fitting
The data set consists monthly industry returns for 10 industries, as well as monthly factor returns for 5 Fama-French factors (data set is available here). The factors are:
Mkt-RF
SMB
(small minus big)HML
(high minus low)RMW
(robust minus weak)CMA
(conservative minus aggressive)Returns are provided for 10 industries, and excess returns are calculated by subtracting the risk free rate from the monthly industry returns:
data <- Factor_Industry_Returns
data <- data %>%
mutate(Date = ym(Date)) %>% # Parse dates
mutate(Return = Return - RF) %>% # Excess return
select(-RF)
data
#> # A tibble: 7,080 × 8
#> Date Industry Return `Mkt-RF` SMB HML RMW CMA
#> <date> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1963-07-01 NoDur -0.76 -0.39 -0.44 -0.89 0.68 -1.23
#> 2 1963-08-01 NoDur 4.64 5.07 -0.75 1.68 0.36 -0.34
#> 3 1963-09-01 NoDur -1.96 -1.57 -0.55 0.08 -0.71 0.29
#> 4 1963-10-01 NoDur 2.36 2.53 -1.37 -0.14 2.8 -2.02
#> 5 1963-11-01 NoDur -1.4 -0.85 -0.89 1.81 -0.51 2.31
#> 6 1963-12-01 NoDur 2.52 1.83 -2.07 -0.08 0.03 -0.04
#> 7 1964-01-01 NoDur 0.49 2.24 0.11 1.47 0.17 1.51
#> 8 1964-02-01 NoDur 1.61 1.54 0.3 2.74 -0.05 0.9
#> 9 1964-03-01 NoDur 2.77 1.41 1.36 3.36 -2.21 3.19
#> 10 1964-04-01 NoDur -0.77 0.1 -1.59 -0.58 -1.27 -1.04
#> # ℹ 7,070 more rows
The aim of the analysis is to calculate rolling window factor betas using a regression for each industry. To fit a regression for each industry, we simply group the data:
data <- data %>%
group_by(Industry)
Let’s verify that this fits individual regressions:
mod_frame <- data %>%
regress(Return ~ CMA + HML + `Mkt-RF` + RMW + SMB, m("lm"))
mod_frame
#> # A tibble: 10 × 7
#> Industry model estimator_fct `size (MB)` grid_id model_object settings
#> <chr> <chr> <chr> <dbl> <chr> <list> <list>
#> 1 Durbl lm stats::lm 0.496 #0010000 <tidyFit> <tibble>
#> 2 Enrgy lm stats::lm 0.496 #0010000 <tidyFit> <tibble>
#> 3 HiTec lm stats::lm 0.496 #0010000 <tidyFit> <tibble>
#> 4 Hlth lm stats::lm 0.496 #0010000 <tidyFit> <tibble>
#> 5 Manuf lm stats::lm 0.496 #0010000 <tidyFit> <tibble>
#> 6 NoDur lm stats::lm 0.496 #0010000 <tidyFit> <tibble>
#> 7 Other lm stats::lm 0.496 #0010000 <tidyFit> <tibble>
#> 8 Shops lm stats::lm 0.496 #0010000 <tidyFit> <tibble>
#> 9 Telcm lm stats::lm 0.496 #0010000 <tidyFit> <tibble>
#> 10 Utils lm stats::lm 0.496 #0010000 <tidyFit> <tibble>
The model frame now contains 10 regressions estimated using stats::lm
. We may want to fit the regression using a heteroscedasticity and autocorrelation consistent (HAC) estimate of the covariance matrix, since we are working with financial time series. This can be done by passing the additional argument to m(...)
:^[Note that the ...
in m()
passes arguments to the underlying method (i.e. stats::lm
). However in some cases tidyfit
adds convenience functions, such as the ability to pass a vcov.
argument as used in coeftest
for lm
.]
mod_frame_hac <- data %>%
regress(Return ~ CMA + HML + `Mkt-RF` + RMW + SMB, m("lm", vcov. = "HAC"))
mod_frame_hac
#> # A tibble: 10 × 7
#> Industry model estimator_fct `size (MB)` grid_id model_object settings
#> <chr> <chr> <chr> <dbl> <chr> <list> <list>
#> 1 Durbl lm stats::lm 0.496 #0010000 <tidyFit> <tibble>
#> 2 Enrgy lm stats::lm 0.496 #0010000 <tidyFit> <tibble>
#> 3 HiTec lm stats::lm 0.496 #0010000 <tidyFit> <tibble>
#> 4 Hlth lm stats::lm 0.496 #0010000 <tidyFit> <tibble>
#> 5 Manuf lm stats::lm 0.496 #0010000 <tidyFit> <tibble>
#> 6 NoDur lm stats::lm 0.496 #0010000 <tidyFit> <tibble>
#> 7 Other lm stats::lm 0.496 #0010000 <tidyFit> <tibble>
#> 8 Shops lm stats::lm 0.496 #0010000 <tidyFit> <tibble>
#> 9 Telcm lm stats::lm 0.496 #0010000 <tidyFit> <tibble>
#> 10 Utils lm stats::lm 0.496 #0010000 <tidyFit> <tibble>
A rolling window regression can be estimated by specifying an appropriate cross validation method. tidyfit
uses the rsample
package from the tidymodels
suite to create cross validation slices. Apart from the classic CV methods (vfold, loo, expanding window, train/test split), this also includes sliding functions (sliding_window
, sliding_index
and sliding_period
), as well as bootstraps
. The sliding functions do not generate a validation slice, but only create rolling window training slices. We will be using sliding_index
, which works well with date indices. See ?rsample::sliding_index
for specifics.^[It is important to note that sliding_index
can not be used to select hyperparameters since no test slices are produced. To perform time series CV, use the rolling_origin
setting, which is similar, but produces train and test splits.]
Since the method lm
has no hyperparameters, it is not passed to the cross validation loop by default, since this would create unnecessary computational overhead. To ensure that models are fitted on train slices, we need to add the additional argument .force_cv = TRUE
. Furthermore, the CV slices are typically not returned but only used to select optimal hyperparameters. To return slices set .return_slices = TRUE
:
mod_frame_rolling <- data %>%
regress(Return ~ CMA + HML + `Mkt-RF` + RMW + SMB,
m("lm", vcov. = "HAC"),
.cv = "sliding_index", .cv_args = list(lookback = years(5), step = 6, index = "Date"),
.force_cv = TRUE, .return_slices = TRUE)
The .cv_args
are arguments passed directly to rsample::sliding_index
. We are using a 5 year window (lookback = years(5)
), and skipping 6 months between each window to reduce the number of models fitted (step = 6
).
The model frame now contains models for each slice for each industry. The slice_id
provides the valid date for the respective slices. Betas can be extracted using the built-in coef
function:
df_beta <- coef(mod_frame_rolling)
df_beta
#> # A tibble: 6,480 × 6
#> # Groups: Industry, model [10]
#> Industry model term estimate slice_id model_info
#> <chr> <chr> <chr> <dbl> <chr> <list>
#> 1 Durbl lm (Intercept) -0.434 1968-07-01 <tibble [1 × 3]>
#> 2 Durbl lm CMA 0.0258 1968-07-01 <tibble [1 × 3]>
#> 3 Durbl lm HML 0.661 1968-07-01 <tibble [1 × 3]>
#> 4 Durbl lm Mkt-RF 1.28 1968-07-01 <tibble [1 × 3]>
#> 5 Durbl lm RMW 0.898 1968-07-01 <tibble [1 × 3]>
#> 6 Durbl lm SMB -0.150 1968-07-01 <tibble [1 × 3]>
#> 7 Durbl lm (Intercept) -0.423 1969-01-01 <tibble [1 × 3]>
#> 8 Durbl lm CMA 0.235 1969-01-01 <tibble [1 × 3]>
#> 9 Durbl lm HML 0.569 1969-01-01 <tibble [1 × 3]>
#> 10 Durbl lm Mkt-RF 1.25 1969-01-01 <tibble [1 × 3]>
#> # ℹ 6,470 more rows
In order to plot the betas, we will add confidence bands. HAC standard errors are nested in model_info
in the coefficients frame:
df_beta <- df_beta %>%
unnest(model_info) %>%
mutate(upper = estimate + 2 * std.error, lower = estimate - 2 * std.error)
df_beta
#> # A tibble: 6,480 × 10
#> # Groups: Industry, model [10]
#> Industry model term estimate slice_id std.error statistic p.value upper
#> <chr> <chr> <chr> <dbl> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 Durbl lm (Interce… -0.434 1968-07… 0.383 -1.13 2.62e- 1 0.332
#> 2 Durbl lm CMA 0.0258 1968-07… 0.262 0.0985 9.22e- 1 0.550
#> 3 Durbl lm HML 0.661 1968-07… 0.239 2.77 7.68e- 3 1.14
#> 4 Durbl lm Mkt-RF 1.28 1968-07… 0.124 10.3 2.00e-14 1.52
#> 5 Durbl lm RMW 0.898 1968-07… 0.378 2.37 2.11e- 2 1.65
#> 6 Durbl lm SMB -0.150 1968-07… 0.133 -1.13 2.65e- 1 0.116
#> 7 Durbl lm (Interce… -0.423 1969-01… 0.396 -1.07 2.90e- 1 0.369
#> 8 Durbl lm CMA 0.235 1969-01… 0.264 0.889 3.78e- 1 0.764
#> 9 Durbl lm HML 0.569 1969-01… 0.243 2.34 2.29e- 2 1.06
#> 10 Durbl lm Mkt-RF 1.25 1969-01… 0.150 8.33 2.52e-11 1.55
#> # ℹ 6,470 more rows
#> # ℹ 1 more variable: lower <dbl>
Now, with all the pieces in place, we can plot the results. Let’s begin by examining the market beta for each industry using ggplot2
:
df_beta %>%
mutate(slice_id = as.Date(slice_id)) %>%
filter(term == "Mkt-RF") %>%
ggplot(aes(slice_id)) +
geom_hline(yintercept = 1) +
facet_wrap("Industry", scales = "free") +
geom_ribbon(aes(ymax = upper, ymin = lower), alpha = 0.25) +
geom_line(aes(y = estimate)) +
theme_bw(8)
Or plotting risk-adjusted return (alpha) given by the intercept:
df_beta %>%
mutate(slice_id = as.Date(slice_id)) %>%
filter(term == "(Intercept)") %>%
ggplot(aes(slice_id)) +
geom_hline(yintercept = 0) +
facet_wrap("Industry", scales = "free") +
geom_ribbon(aes(ymax = upper, ymin = lower), alpha = 0.25) +
geom_line(aes(y = estimate)) +
theme_bw(8)
Or plotting all parameters for the HiTec industry:
df_beta %>%
mutate(slice_id = as.Date(slice_id)) %>%
filter(Industry == "HiTec") %>%
ggplot(aes(slice_id)) +
geom_hline(yintercept = 0) +
facet_wrap("term", scales = "free") +
geom_ribbon(aes(ymax = upper, ymin = lower), alpha = 0.25) +
geom_line(aes(y = estimate)) +
theme_bw(8)
While there are certainly very interesting insights to be had here, the aim of this walk-through is not to interpret these results, but rather to demonstrate how a complex piece of analysis can be done very efficiently using the tidyfit
package.
In a follow-up article found here, I compare the results in the plot above to a time-varying parameter regression to show how more robust methods can be used to avoid window effects in the rolling sample and to shrink some coefficients to constant values.