Title: A Unified Tidy Interface to R's Machine Learning Ecosystem
Version: 0.1.0
Description: Provides a unified tidyverse-compatible interface to R's machine learning packages. Wraps established implementations from 'glmnet', 'randomForest', 'xgboost', 'e1071', 'rpart', 'gbm', 'nnet', 'cluster', 'dbscan', and others - providing consistent function signatures, tidy tibble output, and unified 'ggplot2'-based visualization. The underlying algorithms are unchanged; 'tidylearn' simply makes them easier to use together. Access raw model objects via the $fit slot for package-specific functionality. Methods include random forests Breiman (2001) <doi:10.1023/A:1010933404324>, LASSO regression Tibshirani (1996) <doi:10.1111/j.2517-6161.1996.tb02080.x>, elastic net Zou and Hastie (2005) <doi:10.1111/j.1467-9868.2005.00503.x>, support vector machines Cortes and Vapnik (1995) <doi:10.1007/BF00994018>, and gradient boosting Friedman (2001) <doi:10.1214/aos/1013203451>.
License: MIT + file LICENSE
Encoding: UTF-8
RoxygenNote: 7.3.2
Depends: R (≥ 3.6.0)
Imports: dplyr (≥ 1.0.0), ggplot2 (≥ 3.3.0), tibble (≥ 3.0.0), tidyr (≥ 1.0.0), purrr (≥ 0.3.0), rlang (≥ 0.4.0), magrittr, stats, e1071, gbm, glmnet, nnet, randomForest, rpart, rsample, ROCR, yardstick, cluster (≥ 2.1.0), dbscan (≥ 1.1.0), MASS, smacof (≥ 2.1.0)
Suggests: arules, arulesViz, car, caret, DT, GGally, ggforce, gridExtra, keras, knitr, lmtest, mclust, moments, NeuralNetTools, onnx, parsnip, recipes, reticulate, rmarkdown, rpart.plot, scales, shiny, shinydashboard, tensorflow, testthat (≥ 3.0.0), workflows, xgboost
Config/testthat/edition: 3
URL: https://github.com/ces0491/tidylearn
BugReports: https://github.com/ces0491/tidylearn/issues
VignetteBuilder: knitr
Collate: 'utils.R' 'core.R' 'preprocessing.R' 'supervised-classification.R' 'supervised-regression.R' 'supervised-regularization.R' 'supervised-trees.R' 'supervised-svm.R' 'supervised-neural-networks.R' 'supervised-deep-learning.R' 'supervised-xgboost.R' 'unsupervised-distance.R' 'unsupervised-pca.R' 'unsupervised-mds.R' 'unsupervised-clustering.R' 'unsupervised-hclust.R' 'unsupervised-dbscan.R' 'unsupervised-market-basket.R' 'unsupervised-validation.R' 'integration.R' 'pipeline.R' 'model-selection.R' 'tuning.R' 'interactions.R' 'diagnostics.R' 'metrics.R' 'visualization.R' 'workflows.R'
NeedsCompilation: no
Packaged: 2026-02-03 09:52:28 UTC; cesai_b8mratk
Author: Cesaire Tobias [aut, cre]
Maintainer: Cesaire Tobias <cesaire@sheetsolved.com>
Repository: CRAN
Date/Publication: 2026-02-06 13:50:02 UTC

Pipe operator

Description

See magrittr::%>% for details.

Usage

lhs %>% rhs

lhs %>% rhs

Arguments

lhs

A value or the magrittr placeholder.

rhs

A function call using the magrittr semantics.

Value

The result of applying rhs to lhs.


Augment Data with DBSCAN Cluster Assignments

Description

Augment Data with DBSCAN Cluster Assignments

Usage

augment_dbscan(dbscan_obj, data)

Arguments

dbscan_obj

A tidy_dbscan object

data

Original data frame

Value

Original data with cluster information added


Augment Data with Hierarchical Cluster Assignments

Description

Add cluster assignments to original data

Usage

augment_hclust(hclust_obj, data, k = NULL, h = NULL)

Arguments

hclust_obj

A tidy_hclust object

data

Original data frame

k

Number of clusters (optional)

h

Height at which to cut (optional)

Value

Original data with cluster column added


Augment Data with K-Means Cluster Assignments

Description

Augment Data with K-Means Cluster Assignments

Usage

augment_kmeans(kmeans_obj, data)

Arguments

kmeans_obj

A tidy_kmeans object

data

Original data frame

Value

Original data with cluster column added


Augment Data with PAM Cluster Assignments

Description

Augment Data with PAM Cluster Assignments

Usage

augment_pam(pam_obj, data)

Arguments

pam_obj

A tidy_pam object

data

Original data frame

Value

Original data with cluster column added


Augment Original Data with PCA Scores

Description

Add PC scores to the original dataset

Usage

augment_pca(pca_obj, data, n_components = NULL)

Arguments

pca_obj

A tidy_pca object

data

Original data frame

n_components

Number of PCs to add (default: all)

Value

Original data with PC scores added


Calculate Cluster Validation Metrics

Description

Comprehensive validation metrics for a clustering result

Usage

calc_validation_metrics(clusters, data = NULL, dist_mat = NULL)

Arguments

clusters

Vector of cluster assignments

data

Original data frame (for WSS calculation)

dist_mat

Distance matrix (for silhouette)

Value

A tibble with validation metrics


Calculate Within-Cluster Sum of Squares for Different k

Description

Used for elbow method to determine optimal k

Usage

calc_wss(data, max_k = 10, nstart = 25)

Arguments

data

A data frame or tibble

max_k

Maximum number of clusters to test (default: 10)

nstart

Number of random starts for each k (default: 25)

Value

A tibble with k and corresponding total within-cluster SS


Compare Multiple Clustering Results

Description

Compare Multiple Clustering Results

Usage

compare_clusterings(cluster_list, data, dist_mat = NULL)

Arguments

cluster_list

Named list of cluster assignment vectors

data

Original data

dist_mat

Distance matrix

Value

A tibble comparing all clustering results


Compare Distance Methods

Description

Compute distances using multiple methods for comparison

Usage

compare_distances(data, methods = c("euclidean", "manhattan", "maximum"))

Arguments

data

A data frame or tibble

methods

Character vector of methods to compare

Value

A list of dist objects named by method


Create Summary Dashboard

Description

Generate a multi-panel summary of clustering results

Usage

create_cluster_dashboard(
  data,
  cluster_col = "cluster",
  validation_metrics = NULL
)

Arguments

data

Data frame with cluster assignments

cluster_col

Cluster column name

validation_metrics

Optional tibble of validation metrics

Value

Combined plot grid


Explore DBSCAN Parameters

Description

Test multiple eps and minPts combinations

Usage

explore_dbscan_params(data, eps_values, minPts_values)

Arguments

data

A data frame or matrix

eps_values

Vector of eps values to test

minPts_values

Vector of minPts values to test

Value

A tibble with parameter combinations and resulting cluster counts


Filter Rules by Item

Description

Subset rules containing specific items

Usage

filter_rules_by_item(rules_obj, item, where = "both")

Arguments

rules_obj

A tidy_apriori object or tibble of rules

item

Character; item to filter by

where

Character; "lhs", "rhs", or "both" (default: "both")

Value

A tibble of filtered rules


Description

Find items frequently purchased with a given item

Usage

find_related_items(rules_obj, item, min_lift = 1.5, top_n = 10)

Arguments

rules_obj

A tidy_apriori object

item

Character; item to find associations for

min_lift

Minimum lift threshold (default: 1.5)

top_n

Number of top associations to return (default: 10)

Value

A tibble of related items with association metrics


Get PCA Loadings in Wide Format

Description

Get PCA Loadings in Wide Format

Usage

get_pca_loadings(pca_obj, n_components = NULL)

Arguments

pca_obj

A tidy_pca object

n_components

Number of components to include (default: all)

Value

A tibble with loadings in wide format


Get Variance Explained Summary

Description

Get Variance Explained Summary

Usage

get_pca_variance(pca_obj)

Arguments

pca_obj

A tidy_pca object

Value

A tibble with variance statistics


Inspect Association Rules

Description

View rules sorted by various quality measures

Usage

inspect_rules(rules_obj, by = "lift", n = 10, decreasing = TRUE)

Arguments

rules_obj

A tidy_apriori object or rules object

by

Sort by: "support", "confidence", "lift" (default), "count"

n

Number of rules to display (default: 10)

decreasing

Sort in decreasing order? (default: TRUE)

Value

A tibble of top rules


Find Optimal Number of Clusters

Description

Use multiple methods to suggest optimal k

Usage

optimal_clusters(data, max_k = 10, methods = c("silhouette", "gap", "wss"))

Arguments

data

A data frame or tibble

max_k

Maximum k to test (default: 10)

methods

Vector of methods: "silhouette", "gap", "wss" (default: all)

Value

A list with results from each method


Determine Optimal Number of Clusters for Hierarchical Clustering

Description

Use silhouette or gap statistic to find optimal k

Usage

optimal_hclust_k(hclust_obj, method = "silhouette", max_k = 10)

Arguments

hclust_obj

A tidy_hclust object

method

Character; "silhouette" (default) or "gap"

max_k

Maximum number of clusters to test (default: 10)

Value

A list with optimal k and evaluation results


Plot EDA results

Description

Plot EDA results

Usage

## S3 method for class 'tidylearn_eda'
plot(x, ...)

Arguments

x

A tidylearn_eda object

...

Additional arguments (ignored)

Value

Invisibly returns the input object x, called for side effects (plotting)


Plot method for tidylearn models

Description

Plot method for tidylearn models

Usage

## S3 method for class 'tidylearn_model'
plot(x, type = "auto", ...)

Arguments

x

A tidylearn model object

type

Plot type (default: "auto")

...

Additional arguments passed to plotting functions

Value

A ggplot2 object or NULL, called primarily for side effects


Create Cluster Comparison Plot

Description

Compare multiple clustering results side-by-side

Usage

plot_cluster_comparison(data, cluster_cols, x_col, y_col)

Arguments

data

Data frame with multiple cluster columns

cluster_cols

Vector of cluster column names

x_col

X-axis variable

y_col

Y-axis variable

Value

A grid of ggplot objects


Plot Cluster Size Distribution

Description

Create bar plot of cluster sizes

Usage

plot_cluster_sizes(clusters, title = "Cluster Size Distribution")

Arguments

clusters

Vector of cluster assignments

title

Plot title (default: "Cluster Size Distribution")

Value

A ggplot object


Plot Clusters in 2D Space

Description

Visualize clustering results using first two dimensions or specified dimensions

Usage

plot_clusters(
  data,
  cluster_col = "cluster",
  x_col = NULL,
  y_col = NULL,
  centers = NULL,
  title = "Cluster Plot",
  color_noise_black = TRUE
)

Arguments

data

A data frame with cluster assignments

cluster_col

Name of cluster column (default: "cluster")

x_col

X-axis variable (if NULL, uses first numeric column)

y_col

Y-axis variable (if NULL, uses second numeric column)

centers

Optional data frame of cluster centers

title

Plot title

color_noise_black

If TRUE, color noise points (cluster 0) black

Value

A ggplot object


Plot Dendrogram with Cluster Highlights

Description

Enhanced dendrogram with colored cluster rectangles

Usage

plot_dendrogram(
  hclust_obj,
  k = NULL,
  title = "Hierarchical Clustering Dendrogram"
)

Arguments

hclust_obj

Hierarchical clustering object (hclust or tidy_hclust)

k

Number of clusters to highlight

title

Plot title

Value

Invisibly returns hclust object (plots as side effect)


Create Distance Heatmap

Description

Visualize distance matrix as heatmap

Usage

plot_distance_heatmap(
  dist_mat,
  cluster_order = NULL,
  title = "Distance Heatmap"
)

Arguments

dist_mat

Distance matrix (dist object)

cluster_order

Optional vector to reorder observations by cluster

title

Plot title

Value

A ggplot object


Create Elbow Plot for K-Means

Description

Plot total within-cluster sum of squares vs number of clusters

Usage

plot_elbow(wss_data, add_line = FALSE, suggested_k = NULL)

Arguments

wss_data

A tibble with columns k and tot_withinss (from calc_wss)

add_line

Add vertical line at suggested optimal k? (default: FALSE)

suggested_k

If add_line=TRUE, which k to highlight

Value

A ggplot object


Plot Gap Statistic

Description

Plot Gap Statistic

Usage

plot_gap_stat(gap_obj, show_methods = FALSE)

Arguments

gap_obj

A tidy_gap object

show_methods

Logical; show all three k selection methods? (default: FALSE)

Value

A ggplot object


Plot k-NN Distance Plot

Description

Visualize k-NN distances to help choose eps

Usage

plot_knn_dist(data, k = 4, add_suggestion = TRUE, percentile = 0.95)

Arguments

data

A data frame or tidy_knn_dist result

k

If data is a data frame, k for k-NN (default: 4)

add_suggestion

Add suggested eps line? (default: TRUE)

percentile

Percentile for suggestion (default: 0.95)

Value

A ggplot object


Plot MDS Configuration

Description

Visualize MDS results

Usage

plot_mds(mds_obj, color_by = NULL, label_points = TRUE, dim_x = 1, dim_y = 2)

Arguments

mds_obj

A tidy_mds object

color_by

Optional variable to color points by

label_points

Logical; add point labels? (default: TRUE)

dim_x

Which dimension for x-axis (default: 1)

dim_y

Which dimension for y-axis (default: 2)

Value

A ggplot object


Plot Silhouette Analysis

Description

Plot Silhouette Analysis

Usage

plot_silhouette(sil_obj)

Arguments

sil_obj

A tidy_silhouette object or tibble from tidy_silhouette_analysis

Value

A ggplot object


Plot Variance Explained (PCA)

Description

Create combined scree plot showing individual and cumulative variance

Usage

plot_variance_explained(variance_tbl, threshold = 0.8)

Arguments

variance_tbl

Variance tibble from tidy_pca

threshold

Horizontal line for variance threshold (default: 0.8 for 80%)

Value

A ggplot object


Predict using a tidylearn model

Description

Unified prediction interface for both supervised and unsupervised models

Usage

## S3 method for class 'tidylearn_model'
predict(object, new_data = NULL, type = "response", ...)

Arguments

object

A tidylearn model object

new_data

A data frame containing the new data. If NULL, uses training data.

type

Type of prediction. For supervised: "response" (default), "prob", "class". For unsupervised: "scores", "clusters", "transform" depending on method.

...

Additional arguments

Value

Predictions as a tibble


Predict from stratified models

Description

Predict from stratified models

Usage

## S3 method for class 'tidylearn_stratified'
predict(object, new_data = NULL, ...)

Arguments

object

A tidylearn_stratified model object

new_data

New data for predictions

...

Additional arguments

Value

A tibble of predictions with cluster assignments


Predict with transfer learning model

Description

Predict with transfer learning model

Usage

## S3 method for class 'tidylearn_transfer'
predict(object, new_data, ...)

Arguments

object

A tidylearn_transfer model object

new_data

New data for predictions

...

Additional arguments

Value

A tibble of predictions


Print Method for tidy_apriori

Description

Print Method for tidy_apriori

Usage

## S3 method for class 'tidy_apriori'
print(x, ...)

Arguments

x

A tidy_apriori object

...

Additional arguments (ignored)

Value

Invisibly returns the input object x


Print Method for tidy_dbscan

Description

Print Method for tidy_dbscan

Usage

## S3 method for class 'tidy_dbscan'
print(x, ...)

Arguments

x

A tidy_dbscan object

...

Additional arguments (ignored)

Value

Invisibly returns the input object x


Print Method for tidy_gap

Description

Print Method for tidy_gap

Usage

## S3 method for class 'tidy_gap'
print(x, ...)

Arguments

x

A tidy_gap object

...

Additional arguments (ignored)

Value

Invisibly returns the input object x


Print Method for tidy_hclust

Description

Print Method for tidy_hclust

Usage

## S3 method for class 'tidy_hclust'
print(x, ...)

Arguments

x

A tidy_hclust object

...

Additional arguments (ignored)

Value

Invisibly returns the input object x


Print Method for tidy_kmeans

Description

Print Method for tidy_kmeans

Usage

## S3 method for class 'tidy_kmeans'
print(x, ...)

Arguments

x

A tidy_kmeans object

...

Additional arguments (ignored)

Value

Invisibly returns the input object x


Print Method for tidy_mds

Description

Print Method for tidy_mds

Usage

## S3 method for class 'tidy_mds'
print(x, ...)

Arguments

x

A tidy_mds object

...

Additional arguments (ignored)

Value

Invisibly returns the input object x


Print Method for tidy_pam

Description

Print Method for tidy_pam

Usage

## S3 method for class 'tidy_pam'
print(x, ...)

Arguments

x

A tidy_pam object

...

Additional arguments (ignored)

Value

Invisibly returns the input object x


Print Method for tidy_pca

Description

Print Method for tidy_pca

Usage

## S3 method for class 'tidy_pca'
print(x, ...)

Arguments

x

A tidy_pca object

...

Additional arguments (ignored)

Value

Invisibly returns the input object x


Print Method for tidy_silhouette

Description

Print Method for tidy_silhouette

Usage

## S3 method for class 'tidy_silhouette'
print(x, ...)

Arguments

x

A tidy_silhouette object

...

Additional arguments (ignored)

Value

Invisibly returns the input object x


Print auto ML results

Description

Print auto ML results

Usage

## S3 method for class 'tidylearn_automl'
print(x, ...)

Arguments

x

A tidylearn_automl object

...

Additional arguments (ignored)

Value

Invisibly returns the input object x


Print EDA results

Description

Print EDA results

Usage

## S3 method for class 'tidylearn_eda'
print(x, ...)

Arguments

x

A tidylearn_eda object

...

Additional arguments (ignored)

Value

Invisibly returns the input object x


Print method for tidylearn models

Description

Print method for tidylearn models

Usage

## S3 method for class 'tidylearn_model'
print(x, ...)

Arguments

x

A tidylearn model object

...

Additional arguments (ignored)

Value

Invisibly returns the input object x


Print a tidylearn pipeline

Description

Print a tidylearn pipeline

Usage

## S3 method for class 'tidylearn_pipeline'
print(x, ...)

Arguments

x

A tidylearn pipeline object

...

Additional arguments (not used)

Value

Invisibly returns the pipeline


Generate Product Recommendations

Description

Get product recommendations based on basket contents

Usage

recommend_products(rules_obj, basket, top_n = 5, min_confidence = 0.5)

Arguments

rules_obj

A tidy_apriori object

basket

Character vector of items in current basket

top_n

Number of recommendations to return (default: 5)

min_confidence

Minimum confidence threshold (default: 0.5)

Value

A tibble with recommended items and metrics


Standardize Data

Description

Center and/or scale numeric variables

Usage

standardize_data(data, center = TRUE, scale = TRUE)

Arguments

data

A data frame or tibble

center

Logical; center variables? (default: TRUE)

scale

Logical; scale variables to unit variance? (default: TRUE)

Value

A tibble with standardized numeric variables


Suggest eps Parameter for DBSCAN

Description

Use k-NN distance plot to suggest eps value

Usage

suggest_eps(data, minPts = 5, method = "percentile", percentile = 0.95)

Arguments

data

A data frame or matrix

minPts

Minimum points parameter (used as k for k-NN)

method

Method to suggest eps: "knee" (default), "percentile"

percentile

If method="percentile", which percentile to use (default: 0.95)

Value

A list containing:

Examples

eps_info <- suggest_eps(iris, minPts = 5)
eps_info$eps


Summarize Association Rules

Description

Get summary statistics about rules

Usage

summarize_rules(rules_obj)

Arguments

rules_obj

A tidy_apriori object or rules tibble

Value

A list with summary statistics


Summary method for tidylearn models

Description

Summary method for tidylearn models

Usage

## S3 method for class 'tidylearn_model'
summary(object, ...)

Arguments

object

A tidylearn model object

...

Additional arguments (ignored)

Value

Invisibly returns the input object


Summarize a tidylearn pipeline

Description

Summarize a tidylearn pipeline

Usage

## S3 method for class 'tidylearn_pipeline'
summary(object, ...)

Arguments

object

A tidylearn pipeline object

...

Additional arguments (not used)

Value

Invisibly returns the pipeline


Tidy Apriori Algorithm

Description

Mine association rules using the Apriori algorithm with tidy output

Usage

tidy_apriori(
  transactions,
  support = 0.01,
  confidence = 0.5,
  minlen = 2,
  maxlen = 10,
  target = "rules"
)

Arguments

transactions

A transactions object or data frame

support

Minimum support (default: 0.01)

confidence

Minimum confidence (default: 0.5)

minlen

Minimum rule length (default: 2)

maxlen

Maximum rule length (default: 10)

target

Type of association mined: "rules" (default), "frequent itemsets", "maximally frequent itemsets"

Value

A list of class "tidy_rules" containing:

Examples


data("Groceries", package = "arules")

# Basic apriori
rules <- tidy_apriori(Groceries, support = 0.001, confidence = 0.5)

# Access rules
rules$rules_tbl



Tidy CLARA (Clustering Large Applications)

Description

Performs CLARA clustering (scalable version of PAM)

Usage

tidy_clara(data, k, metric = "euclidean", samples = 50, sampsize = NULL)

Arguments

data

A data frame or tibble

k

Number of clusters

metric

Distance metric (default: "euclidean")

samples

Number of samples to draw (default: 50)

sampsize

Sample size (default: min(n, 40 + 2*k))

Value

A list of class "tidy_clara" containing clustering results

Examples


# CLARA for large datasets
large_data <- iris[rep(1:nrow(iris), 10), 1:4]
clara_result <- tidy_clara(large_data, k = 3, samples = 50)
print(clara_result)



Cut Hierarchical Clustering Tree

Description

Cut dendrogram to obtain cluster assignments

Usage

tidy_cutree(hclust_obj, k = NULL, h = NULL)

Arguments

hclust_obj

A tidy_hclust object or hclust object

k

Number of clusters (optional)

h

Height at which to cut (optional)

Value

A tibble with observation IDs and cluster assignments


Tidy DBSCAN Clustering

Description

Performs density-based clustering with tidy output

Usage

tidy_dbscan(data, eps, minPts = 5, cols = NULL, distance = "euclidean")

Arguments

data

A data frame, tibble, or distance matrix

eps

Neighborhood radius (epsilon)

minPts

Minimum number of points to form a dense region (default: 5)

cols

Columns to include (tidy select). If NULL, uses all numeric columns.

distance

Distance metric if data is not a dist object (default: "euclidean")

Value

A list of class "tidy_dbscan" containing:

Examples

# Basic DBSCAN
db_result <- tidy_dbscan(iris, eps = 0.5, minPts = 5)

# With suggested eps from k-NN distance plot
eps_suggestion <- suggest_eps(iris, minPts = 5)
db_result <- tidy_dbscan(iris, eps = eps_suggestion$eps, minPts = 5)


Plot Dendrogram

Description

Create dendrogram visualization

Usage

tidy_dendrogram(hclust_obj, k = NULL, hang = 0.01, cex = 0.7)

Arguments

hclust_obj

A tidy_hclust object or hclust object

k

Optional; number of clusters to highlight with rectangles

hang

Fraction of plot height to hang labels (default: 0.01)

cex

Label size (default: 0.7)

Value

Invisibly returns the hclust object (plots as side effect)


Tidy Distance Matrix Computation

Description

Compute distance matrices with tidy output

Usage

tidy_dist(data, method = "euclidean", cols = NULL, ...)

Arguments

data

A data frame or tibble

method

Character; distance method (default: "euclidean"). Options: "euclidean", "manhattan", "maximum", "gower"

cols

Columns to include (tidy select). If NULL, uses all numeric columns.

...

Additional arguments passed to distance functions

Value

A dist object with tidy attributes


Tidy Gap Statistic

Description

Compute gap statistic for determining optimal number of clusters

Usage

tidy_gap_stat(data, FUN_cluster = NULL, max_k = 10, B = 50, nstart = 25)

Arguments

data

A data frame or tibble

FUN_cluster

Clustering function (default: uses kmeans internally)

max_k

Maximum number of clusters (default: 10)

B

Number of bootstrap samples (default: 50)

nstart

If using kmeans, number of random starts (default: 25)

Value

A list of class "tidy_gap" containing gap statistics


Gower Distance Calculation

Description

Computes Gower distance for mixed data types (numeric, factor, ordered)

Usage

tidy_gower(data, weights = NULL)

Arguments

data

A data frame or tibble

weights

Optional named vector of variable weights (default: equal weights)

Details

Gower distance handles mixed data types:

Formula: d_ij = sum(w_k * d_ijk) / sum(w_k) where d_ijk is the dissimilarity for variable k between obs i and j

Value

A dist object containing Gower distances

Examples

# Create example data with mixed types
car_data <- data.frame(
  horsepower = c(130, 250, 180),
  weight = c(1200, 1650, 1420),
  color = factor(c("red", "black", "blue"))
)

# Compute Gower distance
gower_dist <- tidy_gower(car_data)


Tidy Hierarchical Clustering

Description

Performs hierarchical clustering with tidy output

Usage

tidy_hclust(data, method = "average", distance = "euclidean", cols = NULL)

Arguments

data

A data frame, tibble, or dist object

method

Agglomeration method: "ward.D2", "single", "complete", "average" (default), "mcquitty", "median", "centroid"

distance

Distance metric if data is not a dist object (default: "euclidean")

cols

Columns to include (tidy select). If NULL, uses all numeric columns.

Value

A list of class "tidy_hclust" containing:

Examples

# Basic hierarchical clustering
hc_result <- tidy_hclust(USArrests, method = "average")

# With specific distance
hc_result <- tidy_hclust(mtcars, method = "complete", distance = "manhattan")


Tidy K-Means Clustering

Description

Performs k-means clustering with tidy output

Usage

tidy_kmeans(
  data,
  k,
  cols = NULL,
  nstart = 25,
  iter_max = 100,
  algorithm = "Hartigan-Wong"
)

Arguments

data

A data frame or tibble

k

Number of clusters

cols

Columns to include (tidy select). If NULL, uses all numeric columns.

nstart

Number of random starts (default: 25)

iter_max

Maximum number of iterations (default: 100)

algorithm

K-means algorithm: "Hartigan-Wong" (default), "Lloyd", "Forgy", "MacQueen"

Value

A list of class "tidy_kmeans" containing:

Examples

# Basic k-means
km_result <- tidy_kmeans(iris, k = 3)


Compute k-NN Distances

Description

Calculate distances to k-th nearest neighbor for each point

Usage

tidy_knn_dist(data, k = 4, cols = NULL)

Arguments

data

A data frame or matrix

k

Number of nearest neighbors (default: 4)

cols

Columns to include (tidy select). If NULL, uses all numeric columns.

Value

A tibble with observation IDs and k-NN distances


Tidy Multidimensional Scaling

Description

Unified interface for MDS methods with tidy output

Usage

tidy_mds(data, method = "classical", ndim = 2, distance = "euclidean", ...)

Arguments

data

A data frame, tibble, or distance matrix

method

Character; "classical" (default), "metric", "nonmetric", "sammon", or "kruskal"

ndim

Number of dimensions for output (default: 2)

distance

Character; distance metric if data is not already a dist object (default: "euclidean")

...

Additional arguments passed to specific MDS functions

Value

A list of class "tidy_mds" containing:

Examples

# Classical MDS
mds_result <- tidy_mds(eurodist, method = "classical")
print(mds_result)


Classical (Metric) MDS

Description

Performs classical multidimensional scaling using cmdscale()

Usage

tidy_mds_classical(dist_mat, ndim = 2, add_rownames = TRUE)

Arguments

dist_mat

A distance matrix (dist object)

ndim

Number of dimensions (default: 2)

add_rownames

Preserve row names from distance matrix (default: TRUE)

Value

A tidy_mds object


Kruskal's Non-metric MDS

Description

Performs Kruskal's isoMDS

Usage

tidy_mds_kruskal(dist_mat, ndim = 2, ...)

Arguments

dist_mat

A distance matrix (dist object)

ndim

Number of dimensions (default: 2)

...

Additional arguments passed to MASS::isoMDS()

Value

A tidy_mds object


Sammon Mapping

Description

Performs Sammon's non-linear mapping

Usage

tidy_mds_sammon(dist_mat, ndim = 2, ...)

Arguments

dist_mat

A distance matrix (dist object)

ndim

Number of dimensions (default: 2)

...

Additional arguments passed to MASS::sammon()

Value

A tidy_mds object


SMACOF MDS (Metric or Non-metric)

Description

Performs MDS using SMACOF algorithm from the smacof package

Usage

tidy_mds_smacof(dist_mat, ndim = 2, type = "ratio", ...)

Arguments

dist_mat

A distance matrix (dist object)

ndim

Number of dimensions (default: 2)

type

Character; "ratio" for metric, "ordinal" for non-metric (default: "ratio")

...

Additional arguments passed to smacof::mds()

Value

A tidy_mds object


Tidy PAM (Partitioning Around Medoids)

Description

Performs PAM clustering with tidy output

Usage

tidy_pam(data, k, metric = "euclidean", cols = NULL)

Arguments

data

A data frame, tibble, or dist object

k

Number of clusters

metric

Distance metric (default: "euclidean"). Use "gower" for mixed data types.

cols

Columns to include (tidy select). If NULL, uses all columns.

Value

A list of class "tidy_pam" containing:

Examples

# PAM with Euclidean distance
pam_result <- tidy_pam(iris, k = 3)

# PAM with Gower distance for mixed data
pam_result <- tidy_pam(mtcars, k = 3, metric = "gower")


Tidy Principal Component Analysis

Description

Performs PCA on a dataset using tidyverse principles. Returns a tidy list containing scores, loadings, variance explained, and the original model.

Usage

tidy_pca(data, cols = NULL, scale = TRUE, center = TRUE, method = "prcomp")

Arguments

data

A data frame or tibble

cols

Columns to include in PCA (tidy select syntax). If NULL, uses all numeric columns.

scale

Logical; should variables be scaled to unit variance? Default TRUE.

center

Logical; should variables be centered? Default TRUE.

method

Character; "prcomp" (default, recommended) or "princomp"

Value

A list of class "tidy_pca" containing:

Examples

# Basic PCA
pca_result <- tidy_pca(USArrests)


# Access components
pca_result$scores
pca_result$loadings
pca_result$variance


Create PCA Biplot

Description

Visualize both observations and variables in PC space

Usage

tidy_pca_biplot(
  pca_obj,
  pc_x = 1,
  pc_y = 2,
  color_by = NULL,
  arrow_scale = 1,
  label_obs = FALSE,
  label_vars = TRUE
)

Arguments

pca_obj

A tidy_pca object

pc_x

Principal component for x-axis (default: 1)

pc_y

Principal component for y-axis (default: 2)

color_by

Optional column name to color points by

arrow_scale

Scaling factor for variable arrows (default: 1)

label_obs

Logical; label observations? (default: FALSE)

label_vars

Logical; label variables? (default: TRUE)

Value

A ggplot object


Create PCA Scree Plot

Description

Visualize variance explained by each principal component

Usage

tidy_pca_screeplot(pca_obj, type = "proportion", add_line = TRUE)

Arguments

pca_obj

A tidy_pca object

type

Character; "variance" or "proportion" (default)

add_line

Logical; add horizontal line at eigenvalue = 1? (for Kaiser criterion)

Value

A ggplot object


Convert Association Rules to Tidy Tibble

Description

Convert Association Rules to Tidy Tibble

Usage

tidy_rules(rules)

Arguments

rules

A rules object from arules

Value

A tibble with one row per rule


Tidy Silhouette Analysis

Description

Compute silhouette statistics for cluster validation

Usage

tidy_silhouette(clusters, dist_mat)

Arguments

clusters

Vector of cluster assignments

dist_mat

Distance matrix (dist object)

Value

A list of class "tidy_silhouette" containing:


Silhouette Analysis Across Multiple k Values

Description

Silhouette Analysis Across Multiple k Values

Usage

tidy_silhouette_analysis(
  data,
  max_k = 10,
  method = "kmeans",
  nstart = 25,
  dist_method = "euclidean",
  linkage_method = "average"
)

Arguments

data

A data frame or tibble

max_k

Maximum number of clusters to test (default: 10)

method

Clustering method: "kmeans" (default) or "hclust"

nstart

If kmeans, number of random starts (default: 25)

dist_method

Distance metric (default: "euclidean")

linkage_method

If hclust, linkage method (default: "average")

Value

A tibble with k and average silhouette widths


Classification Functions for tidylearn

Description

Logistic regression and classification metrics functionality


tidylearn: A Unified Tidy Interface to R's Machine Learning Ecosystem

Description

Core functionality for tidylearn. This package provides a unified tidyverse-compatible interface to established R machine learning packages including glmnet, randomForest, xgboost, e1071, rpart, gbm, nnet, cluster, and dbscan. The underlying algorithms are unchanged - tidylearn wraps them with consistent function signatures, tidy tibble output, and unified ggplot2-based visualization. Access raw model objects via model$fit.


Deep Learning for tidylearn

Description

Deep learning functionality using Keras/TensorFlow


Advanced Diagnostics Functions for tidylearn

Description

Functions for advanced model diagnostics, assumption checking, and outlier detection


Interaction Analysis Functions for tidylearn

Description

Functions for testing, visualizing, and analyzing interactions


Metrics Functionality for tidylearn

Description

Functions for calculating model evaluation metrics


Model Selection Functions for tidylearn

Description

Functions for stepwise model selection, cross-validation, and hyperparameter tuning


Neural Networks for tidylearn

Description

Neural network functionality for classification and regression


Model Pipeline Functions for tidylearn

Description

Functions for creating end-to-end model pipelines


Regression Functions for tidylearn

Description

Linear and polynomial regression functionality


Regularization Functions for tidylearn

Description

Ridge, Lasso, and Elastic Net regularization functionality


Support Vector Machines for tidylearn

Description

SVM functionality for classification and regression


Tree-based Methods for tidylearn

Description

Decision trees, random forests, and boosting functionality


Hyperparameter Tuning Functions for tidylearn

Description

Functions for automatic hyperparameter tuning and selection


Visualization Functions for tidylearn

Description

General visualization functions for tidylearn models


XGBoost Functions for tidylearn

Description

XGBoost-specific implementation for gradient boosting


Cluster-Based Features

Description

Add cluster assignments as features for supervised learning. This semi-supervised approach can capture non-linear patterns.

Usage

tl_add_cluster_features(data, response = NULL, method = "kmeans", ...)

Arguments

data

A data frame

response

Response variable name (will be excluded from clustering)

method

Clustering method: "kmeans", "pam", "hclust", "dbscan"

...

Additional arguments for clustering

Value

Original data with cluster assignment column(s) added

Examples


# Add cluster features before supervised learning
data_with_clusters <- tl_add_cluster_features(iris, response = "Species",
                                                method = "kmeans", k = 3)
model <- tl_model(data_with_clusters, Species ~ ., method = "forest")


Anomaly-Aware Supervised Learning

Description

Detect outliers using DBSCAN or other methods, then optionally remove them or down-weight them before supervised learning.

Usage

tl_anomaly_aware(
  data,
  formula,
  response,
  anomaly_method = "dbscan",
  action = "flag",
  supervised_method = "logistic",
  ...
)

Arguments

data

A data frame

formula

Model formula

response

Response variable name

anomaly_method

Method for anomaly detection: "dbscan", "isolation_forest"

action

Action to take: "remove", "flag", "downweight"

supervised_method

Supervised learning method

...

Additional arguments

Value

A tidylearn model or list with model and anomaly info

Examples


model <- tl_anomaly_aware(iris, Species ~ ., response = "Species",
                           anomaly_method = "dbscan", action = "flag")


Find important interactions automatically

Description

Find important interactions automatically

Usage

tl_auto_interactions(
  data,
  formula,
  top_n = 3,
  min_r2_change = 0.01,
  max_p_value = 0.05,
  exclude_vars = NULL
)

Arguments

data

A data frame containing the data

formula

A formula specifying the base model without interactions

top_n

Number of top interactions to return

min_r2_change

Minimum change in R-squared to consider

max_p_value

Maximum p-value for significance

exclude_vars

Character vector of variables to exclude from interaction testing

Value

A tidylearn model with important interactions


High-Level Workflows for Common Machine Learning Patterns

Description

These functions provide end-to-end workflows that showcase tidylearn's ability to seamlessly combine multiple learning paradigms Auto ML: Automated Machine Learning Workflow

Usage

tl_auto_ml(
  data,
  formula,
  task = "auto",
  use_reduction = TRUE,
  use_clustering = TRUE,
  time_budget = 300,
  cv_folds = 5,
  metric = NULL
)

Arguments

data

A data frame

formula

Model formula (for supervised learning)

task

Task type: "classification", "regression", or "auto" (default)

use_reduction

Whether to try dimensionality reduction (default: TRUE)

use_clustering

Whether to add cluster features (default: TRUE)

time_budget

Time budget in seconds (default: 300)

cv_folds

Number of cross-validation folds (default: 5)

metric

Evaluation metric (default: auto-selected based on task)

Details

Automatically explores multiple modeling approaches including dimensionality reduction, clustering, and various supervised methods. Returns the best performing model based on cross-validation.

Value

Best model with performance comparison

Examples


# Automated modeling
result <- tl_auto_ml(iris, Species ~ .)
best_model <- result$best_model
result$leaderboard


Calculate classification metrics

Description

Calculate classification metrics

Usage

tl_calc_classification_metrics(
  actuals,
  predicted,
  predicted_probs = NULL,
  metrics = c("accuracy", "precision", "recall", "f1", "auc"),
  thresholds = NULL,
  ...
)

Arguments

actuals

Actual values (ground truth)

predicted

Predicted class values

predicted_probs

Predicted probabilities (for metrics like AUC)

metrics

Character vector of metrics to compute

thresholds

Optional vector of thresholds to evaluate for threshold-dependent metrics

...

Additional arguments

Value

A tibble of evaluation metrics


Calculate the area under the precision-recall curve

Description

Calculate the area under the precision-recall curve

Usage

tl_calculate_pr_auc(perf)

Arguments

perf

A ROCR performance object

Value

The area under the PR curve


Check model assumptions

Description

Check model assumptions

Usage

tl_check_assumptions(model, test = TRUE, verbose = TRUE)

Arguments

model

A tidylearn model object

test

Logical; whether to perform statistical tests

verbose

Logical; whether to print test results and explanations

Value

A list with assumption check results


Compare models using cross-validation

Description

Compare models using cross-validation

Usage

tl_compare_cv(data, models, folds = 5, metrics = NULL, ...)

Arguments

data

A data frame containing the training data

models

A list of tidylearn model objects

folds

Number of cross-validation folds

metrics

Character vector of metrics to compute

...

Additional arguments

Value

A tibble with cross-validation results for all models


Compare models from a pipeline

Description

Compare models from a pipeline

Usage

tl_compare_pipeline_models(pipeline, metrics = NULL)

Arguments

pipeline

A tidylearn pipeline object with results

metrics

Character vector of metrics to compare (if NULL, uses all available)

Value

A comparison plot of model performance


Cross-validation for tidylearn models

Description

Cross-validation for tidylearn models

Usage

tl_cv(data, formula, method, folds = 5, ...)

Arguments

data

Data frame

formula

Model formula

method

Modeling method

folds

Number of cross-validation folds

...

Additional arguments

Value

Cross-validation results


Create interactive visualization dashboard for a model

Description

Create interactive visualization dashboard for a model

Usage

tl_dashboard(model, new_data = NULL, ...)

Arguments

model

A tidylearn model object

new_data

Optional data frame for evaluation (if NULL, uses training data)

...

Additional arguments

Value

A Shiny app object


Create pre-defined parameter grids for common models

Description

Create pre-defined parameter grids for common models

Usage

tl_default_param_grid(method, size = "medium", is_classification = TRUE)

Arguments

method

Model method ("tree", "forest", "boost", "svm", etc.)

size

Grid size: "small", "medium", "large"

is_classification

Whether the task is classification or regression

Value

A named list of parameter values to tune


Detect outliers in the data

Description

Detect outliers in the data

Usage

tl_detect_outliers(
  data,
  variables = NULL,
  method = "iqr",
  threshold = NULL,
  plot = TRUE
)

Arguments

data

A data frame containing the data

variables

Character vector of variables to check for outliers

method

Method for outlier detection: "boxplot", "z-score", "cook", "iqr", "mahalanobis"

threshold

Threshold for outlier detection

plot

Logical; whether to create a plot of outliers

Value

A list with outlier detection results


Create a comprehensive diagnostic dashboard

Description

Create a comprehensive diagnostic dashboard

Usage

tl_diagnostic_dashboard(
  model,
  include_influence = TRUE,
  include_assumptions = TRUE,
  include_performance = TRUE,
  arrange_plots = "grid"
)

Arguments

model

A tidylearn model object

include_influence

Logical; whether to include influence diagnostics

include_assumptions

Logical; whether to include assumption checks

include_performance

Logical; whether to include performance metrics

arrange_plots

Layout arrangement (e.g., "grid", "row", "column")

Value

A plot grid with diagnostic plots


Evaluate a tidylearn model

Description

Evaluate a tidylearn model

Usage

tl_evaluate(object, new_data = NULL, ...)

Arguments

object

A tidylearn model object

new_data

Optional new data for evaluation (if NULL, uses training data)

...

Additional arguments

Value

A tibble of evaluation metrics


Evaluate metrics at different thresholds

Description

Evaluate metrics at different thresholds

Usage

tl_evaluate_thresholds(actuals, probs, thresholds, pos_class)

Arguments

actuals

Actual values (ground truth)

probs

Predicted probabilities

thresholds

Vector of thresholds to evaluate

pos_class

The positive class

Value

A tibble of metrics at different thresholds


Exploratory Data Analysis Workflow

Description

Comprehensive EDA combining unsupervised learning techniques to understand data structure before modeling

Usage

tl_explore(data, response = NULL, max_components = 5, k_range = 2:6)

Arguments

data

A data frame

response

Optional response variable for colored visualizations

max_components

Maximum PCA components to compute (default: 5)

k_range

Range of k values for clustering (default: 2:6)

Value

An EDA object with multiple analyses

Examples


eda <- tl_explore(iris, response = "Species")
plot(eda)


Extract importance from a tree-based model

Description

Extract importance from a tree-based model

Usage

tl_extract_importance(model)

Arguments

model

A tidylearn model object

Value

A data frame with feature importance values


Extract importance from a regularized regression model

Description

Extract importance from a regularized regression model

Usage

tl_extract_importance_regularized(model, lambda = "1se")

Arguments

model

A tidylearn regularized model object

lambda

Which lambda to use ("1se" or "min", default: "1se")

Value

A data frame with feature importance values


Fit a gradient boosting model

Description

Fit a gradient boosting model

Usage

tl_fit_boost(
  data,
  formula,
  is_classification = FALSE,
  n.trees = 100,
  interaction.depth = 3,
  shrinkage = 0.1,
  n.minobsinnode = 10,
  cv.folds = 0,
  ...
)

Arguments

data

A data frame containing the training data

formula

A formula specifying the model

is_classification

Logical indicating if this is a classification problem

n.trees

Number of trees (default: 100)

interaction.depth

Depth of interactions (default: 3)

shrinkage

Learning rate (default: 0.1)

n.minobsinnode

Minimum number of observations in terminal nodes (default: 10)

cv.folds

Number of cross-validation folds (default: 0, no CV)

...

Additional arguments to pass to gbm()

Value

A fitted gradient boosting model


Fit a deep learning model

Description

Fit a deep learning model

Usage

tl_fit_deep(
  data,
  formula,
  is_classification = FALSE,
  hidden_layers = c(32, 16),
  activation = "relu",
  dropout = 0.2,
  epochs = 30,
  batch_size = 32,
  validation_split = 0.2,
  verbose = 0,
  ...
)

Arguments

data

A data frame containing the training data

formula

A formula specifying the model

is_classification

Logical indicating if this is a classification problem

hidden_layers

Vector of units in each hidden layer (default: c(32, 16))

activation

Activation function for hidden layers (default: "relu")

dropout

Dropout rate for regularization (default: 0.2)

epochs

Number of training epochs (default: 30)

batch_size

Batch size for training (default: 32)

validation_split

Proportion of data for validation (default: 0.2)

verbose

Verbosity mode (0 = silent, 1 = progress bar, 2 = one line per epoch) (default: 0)

...

Additional arguments

Value

A fitted deep learning model


Fit an Elastic Net regression model

Description

Fit an Elastic Net regression model

Usage

tl_fit_elastic_net(
  data,
  formula,
  is_classification = FALSE,
  alpha = 0.5,
  lambda = NULL,
  cv_folds = 5,
  ...
)

Arguments

data

A data frame containing the training data

formula

A formula specifying the model

is_classification

Logical indicating if this is a classification problem

alpha

Mixing parameter (default: 0.5 for Elastic Net)

lambda

Regularization parameter (if NULL, uses cross-validation to select)

cv_folds

Number of folds for cross-validation (default: 5)

...

Additional arguments to pass to glmnet()

Value

A fitted Elastic Net regression model


Fit a random forest model

Description

Fit a random forest model

Usage

tl_fit_forest(
  data,
  formula,
  is_classification = FALSE,
  ntree = 500,
  mtry = NULL,
  importance = TRUE,
  ...
)

Arguments

data

A data frame containing the training data

formula

A formula specifying the model

is_classification

Logical indicating if this is a classification problem

ntree

Number of trees to grow (default: 500)

mtry

Number of variables randomly sampled at each split

importance

Whether to compute variable importance (default: TRUE)

...

Additional arguments to pass to randomForest()

Value

A fitted random forest model


Fit a Lasso regression model

Description

Fit a Lasso regression model

Usage

tl_fit_lasso(
  data,
  formula,
  is_classification = FALSE,
  alpha = 1,
  lambda = NULL,
  cv_folds = 5,
  ...
)

Arguments

data

A data frame containing the training data

formula

A formula specifying the model

is_classification

Logical indicating if this is a classification problem

alpha

Mixing parameter (0 for Ridge, 1 for Lasso, between 0-1 for Elastic Net)

lambda

Regularization parameter (if NULL, uses cross-validation to select)

cv_folds

Number of folds for cross-validation (default: 5)

...

Additional arguments to pass to glmnet()

Value

A fitted Lasso regression model


Fit a linear regression model

Description

Fit a linear regression model

Usage

tl_fit_linear(data, formula, ...)

Arguments

data

A data frame containing the training data

formula

A formula specifying the model

...

Additional arguments to pass to lm()

Value

A fitted linear regression model


Fit a logistic regression model

Description

Fit a logistic regression model

Usage

tl_fit_logistic(data, formula, ...)

Arguments

data

A data frame containing the training data

formula

A formula specifying the model

...

Additional arguments to pass to glm()

Value

A fitted logistic regression model


Fit a neural network model

Description

Fit a neural network model

Usage

tl_fit_nn(
  data,
  formula,
  is_classification = FALSE,
  size = 5,
  decay = 0,
  maxit = 100,
  trace = FALSE,
  ...
)

Arguments

data

A data frame containing the training data

formula

A formula specifying the model

is_classification

Logical indicating if this is a classification problem

size

Number of units in the hidden layer (default: 5)

decay

Weight decay parameter (default: 0)

maxit

Maximum number of iterations (default: 100)

trace

Logical; whether to print progress (default: FALSE)

...

Additional arguments to pass to nnet()

Value

A fitted neural network model


Fit a polynomial regression model

Description

Fit a polynomial regression model

Usage

tl_fit_polynomial(data, formula, degree = 2, ...)

Arguments

data

A data frame containing the training data

formula

A formula specifying the model

degree

Degree of the polynomial (default: 2)

...

Additional arguments to pass to lm()

Value

A fitted polynomial regression model


Fit a regularized regression model (Ridge, Lasso, or Elastic Net)

Description

Fit a regularized regression model (Ridge, Lasso, or Elastic Net)

Usage

tl_fit_regularized(
  data,
  formula,
  is_classification = FALSE,
  alpha = 0,
  lambda = NULL,
  cv_folds = 5,
  ...
)

Arguments

data

A data frame containing the training data

formula

A formula specifying the model

is_classification

Logical indicating if this is a classification problem

alpha

Mixing parameter (0 for Ridge, 1 for Lasso, between 0-1 for Elastic Net)

lambda

Regularization parameter (if NULL, uses cross-validation to select)

cv_folds

Number of folds for cross-validation (default: 5)

...

Additional arguments to pass to glmnet()

Value

A fitted regularized regression model


Fit a Ridge regression model

Description

Fit a Ridge regression model

Usage

tl_fit_ridge(
  data,
  formula,
  is_classification = FALSE,
  alpha = 0,
  lambda = NULL,
  cv_folds = 5,
  ...
)

Arguments

data

A data frame containing the training data

formula

A formula specifying the model

is_classification

Logical indicating if this is a classification problem

alpha

Mixing parameter (0 for Ridge, 1 for Lasso, between 0-1 for Elastic Net)

lambda

Regularization parameter (if NULL, uses cross-validation to select)

cv_folds

Number of folds for cross-validation (default: 5)

...

Additional arguments to pass to glmnet()

Value

A fitted Ridge regression model


Fit a support vector machine model

Description

Fit a support vector machine model

Usage

tl_fit_svm(
  data,
  formula,
  is_classification = FALSE,
  kernel = "radial",
  cost = 1,
  gamma = NULL,
  degree = 3,
  tune = FALSE,
  tune_folds = 5,
  ...
)

Arguments

data

A data frame containing the training data

formula

A formula specifying the model

is_classification

Logical indicating if this is a classification problem

kernel

Kernel function ("linear", "polynomial", "radial", "sigmoid")

cost

Cost parameter (default: 1)

gamma

Gamma parameter for kernels (default: 1/ncol(data))

degree

Degree for polynomial kernel (default: 3)

tune

Logical indicating whether to tune hyperparameters (default: FALSE)

tune_folds

Number of folds for cross-validation during tuning (default: 5)

...

Additional arguments to pass to svm()

Value

A fitted SVM model


Fit a decision tree model

Description

Fit a decision tree model

Usage

tl_fit_tree(
  data,
  formula,
  is_classification = FALSE,
  cp = 0.01,
  minsplit = 20,
  maxdepth = 30,
  ...
)

Arguments

data

A data frame containing the training data

formula

A formula specifying the model

is_classification

Logical indicating if this is a classification problem

cp

Complexity parameter (default: 0.01)

minsplit

Minimum number of observations in a node for a split

maxdepth

Maximum depth of the tree

...

Additional arguments to pass to rpart()

Value

A fitted decision tree model


Fit an XGBoost model

Description

Fit an XGBoost model

Usage

tl_fit_xgboost(
  data,
  formula,
  is_classification = FALSE,
  nrounds = 100,
  max_depth = 6,
  eta = 0.3,
  subsample = 1,
  colsample_bytree = 1,
  min_child_weight = 1,
  gamma = 0,
  alpha = 0,
  lambda = 1,
  early_stopping_rounds = NULL,
  nthread = NULL,
  verbose = 0,
  ...
)

Arguments

data

A data frame containing the training data

formula

A formula specifying the model

is_classification

Logical indicating if this is a classification problem

nrounds

Number of boosting rounds (default: 100)

max_depth

Maximum depth of trees (default: 6)

eta

Learning rate (default: 0.3)

subsample

Subsample ratio of observations (default: 1)

colsample_bytree

Subsample ratio of columns (default: 1)

min_child_weight

Minimum sum of instance weight needed in a child (default: 1)

gamma

Minimum loss reduction to make a further partition (default: 0)

alpha

L1 regularization term (default: 0)

lambda

L2 regularization term (default: 1)

early_stopping_rounds

Early stopping rounds (default: NULL)

nthread

Number of threads (default: max available)

verbose

Verbose output (default: 0)

...

Additional arguments to pass to xgb.train()

Value

A fitted XGBoost model


Get the best model from a pipeline

Description

Get the best model from a pipeline

Usage

tl_get_best_model(pipeline)

Arguments

pipeline

A tidylearn pipeline object with results

Value

The best tidylearn model


Calculate influence measures for a linear model

Description

Calculate influence measures for a linear model

Usage

tl_influence_measures(
  model,
  threshold_cook = NULL,
  threshold_leverage = NULL,
  threshold_dffits = NULL
)

Arguments

model

A tidylearn model object

threshold_cook

Cook's distance threshold (default: 4/n)

threshold_leverage

Leverage threshold (default: 2*(p+1)/n)

threshold_dffits

DFFITS threshold (default: 2*sqrt((p+1)/n))

Value

A data frame with influence measures


Calculate partial effects based on a model with interactions

Description

Calculate partial effects based on a model with interactions

Usage

tl_interaction_effects(model, var, by_var, at_values = NULL, intervals = TRUE)

Arguments

model

A tidylearn model object

var

Variable to calculate effects for

by_var

Variable to calculate effects by (interaction variable)

at_values

Named list of values at which to hold other variables

intervals

Logical; whether to include confidence intervals

Value

A data frame with marginal effects


Load a pipeline from disk

Description

Load a pipeline from disk

Usage

tl_load_pipeline(file)

Arguments

file

Path to the pipeline file

Value

A tidylearn pipeline object


Create a tidylearn model

Description

Unified interface for creating machine learning models by wrapping established R packages. This function dispatches to the appropriate underlying package based on the method specified.

Usage

tl_model(data, formula = NULL, method = "linear", ...)

Arguments

data

A data frame containing the training data

formula

A formula specifying the model. For unsupervised methods, use ~ vars or NULL.

method

The modeling method. Supervised: "linear" (stats::lm), "logistic" (stats::glm), "tree" (rpart), "forest" (randomForest), "boost" (gbm), "ridge"/"lasso"/"elastic_net" (glmnet), "svm" (e1071), "nn" (nnet), "deep" (keras), "xgboost" (xgboost). Unsupervised: "pca" (stats::prcomp), "mds" (stats/MASS/smacof), "kmeans" (stats::kmeans), "pam"/"clara" (cluster), "hclust" (stats::hclust), "dbscan" (dbscan).

...

Additional arguments passed to the underlying model function

Details

The wrapped packages include: stats (lm, glm, prcomp, kmeans, hclust), glmnet, randomForest, xgboost, gbm, e1071, nnet, rpart, cluster, and dbscan. The underlying algorithms are unchanged - this function provides a consistent interface and returns tidy output.

Access the raw model object from the underlying package via model$fit.

Value

A tidylearn model object containing the fitted model ($fit), specification, and training data

Examples


# Classification -> wraps randomForest::randomForest()
model <- tl_model(iris, Species ~ ., method = "forest")
model$fit  # Access the raw randomForest object

# Regression -> wraps stats::lm()
model <- tl_model(mtcars, mpg ~ wt + hp, method = "linear")
model$fit  # Access the raw lm object

# PCA -> wraps stats::prcomp()
model <- tl_model(iris, ~ ., method = "pca")
model$fit  # Access the raw prcomp object

# Clustering -> wraps stats::kmeans()
model <- tl_model(iris, method = "kmeans", k = 3)
model$fit  # Access the raw kmeans object


Create a modeling pipeline

Description

Create a modeling pipeline

Usage

tl_pipeline(
  data,
  formula,
  preprocessing = NULL,
  models = NULL,
  evaluation = NULL,
  ...
)

Arguments

data

A data frame containing the data

formula

A formula specifying the model

preprocessing

A list of preprocessing steps

models

A list of models to train

evaluation

A list of evaluation criteria

...

Additional arguments

Value

A tidylearn pipeline object


Plot actual vs predicted values for a regression model

Description

Plot actual vs predicted values for a regression model

Usage

tl_plot_actual_predicted(model, new_data = NULL, ...)

Arguments

model

A tidylearn regression model object

new_data

Optional data frame for evaluation (if NULL, uses training data)

...

Additional arguments

Value

A ggplot object


Plot calibration curve for a classification model

Description

Plot calibration curve for a classification model

Usage

tl_plot_calibration(model, new_data = NULL, bins = 10, ...)

Arguments

model

A tidylearn classification model object

new_data

Optional data frame for evaluation (if NULL, uses training data)

bins

Number of bins for grouping predictions (default: 10)

...

Additional arguments

Value

A ggplot object with calibration curve


Plot confusion matrix for a classification model

Description

Plot confusion matrix for a classification model

Usage

tl_plot_confusion(model, new_data = NULL, ...)

Arguments

model

A tidylearn classification model object

new_data

Optional data frame for evaluation (if NULL, uses training data)

...

Additional arguments

Value

A ggplot object with confusion matrix


Plot comparison of cross-validation results

Description

Plot comparison of cross-validation results

Usage

tl_plot_cv_comparison(cv_results, metrics = NULL)

Arguments

cv_results

Results from tl_compare_cv function

metrics

Character vector of metrics to plot (if NULL, plots all metrics)

Value

A ggplot object


Plot cross-validation results

Description

Plot cross-validation results

Usage

tl_plot_cv_results(cv_results, metrics = NULL)

Arguments

cv_results

Cross-validation results from tl_cv function

metrics

Character vector of metrics to plot (if NULL, plots all metrics)

Value

A ggplot object with cross-validation results


Plot deep learning model architecture

Description

Plot deep learning model architecture

Usage

tl_plot_deep_architecture(model, ...)

Arguments

model

A tidylearn deep learning model object

...

Additional arguments

Value

A plot of the deep learning model architecture


Plot deep learning model training history

Description

Plot deep learning model training history

Usage

tl_plot_deep_history(model, metrics = c("loss", "val_loss"), ...)

Arguments

model

A tidylearn deep learning model object

metrics

Which metrics to plot (default: c("loss", "val_loss"))

...

Additional arguments

Value

A ggplot object with training history


Plot diagnostics for a regression model

Description

Plot diagnostics for a regression model

Usage

tl_plot_diagnostics(model, which = 1:4, ...)

Arguments

model

A tidylearn regression model object

which

Which plots to create (1:4)

...

Additional arguments

Value

A ggplot object (or list of ggplot objects)


Plot gain chart for a classification model

Description

Plot gain chart for a classification model

Usage

tl_plot_gain(model, new_data = NULL, bins = 10, ...)

Arguments

model

A tidylearn classification model object

new_data

Optional data frame for evaluation (if NULL, uses training data)

bins

Number of bins for grouping predictions (default: 10)

...

Additional arguments

Value

A ggplot object with gain chart


Plot variable importance for tree-based models

Description

Plot variable importance for tree-based models

Usage

tl_plot_importance(model, top_n = 20, ...)

Arguments

model

A tidylearn tree-based model object

top_n

Number of top features to display (default: 20)

...

Additional arguments

Value

A ggplot object


Plot feature importance across multiple models

Description

Plot feature importance across multiple models

Usage

tl_plot_importance_comparison(..., top_n = 10, names = NULL)

Arguments

...

tidylearn model objects to compare

top_n

Number of top features to display (default: 10)

names

Optional character vector of model names

Value

A ggplot object with feature importance comparison


Plot variable importance for a regularized regression model

Description

Plot variable importance for a regularized regression model

Usage

tl_plot_importance_regularized(model, lambda = "1se", top_n = 20, ...)

Arguments

model

A tidylearn regularized model object

lambda

Which lambda to use ("1se" or "min", default: "1se")

top_n

Number of top features to display (default: 20)

...

Additional arguments

Value

A ggplot object


Plot influence diagnostics

Description

Plot influence diagnostics

Usage

tl_plot_influence(
  model,
  plot_type = "cook",
  threshold_cook = NULL,
  threshold_leverage = NULL,
  threshold_dffits = NULL,
  n_labels = 3,
  label_size = 3
)

Arguments

model

A tidylearn model object

plot_type

Type of influence plot: "cook", "leverage", "index"

threshold_cook

Cook's distance threshold (default: 4/n)

threshold_leverage

Leverage threshold (default: 2*(p+1)/n)

threshold_dffits

DFFITS threshold (default: 2*sqrt((p+1)/n))

n_labels

Number of points to label (default: 3)

label_size

Text size for labels (default: 3)

Value

A ggplot object


Plot interaction effects

Description

Plot interaction effects

Usage

tl_plot_interaction(
  model,
  var1,
  var2,
  n_points = 100,
  fixed_values = NULL,
  confidence = TRUE,
  ...
)

Arguments

model

A tidylearn model object

var1

First variable in the interaction

var2

Second variable in the interaction

n_points

Number of points to use for continuous variables

fixed_values

Named list of values for other variables in the model

confidence

Logical; whether to show confidence intervals

...

Additional arguments to pass to predict()

Value

A ggplot object


Create confidence and prediction interval plots

Description

Create confidence and prediction interval plots

Usage

tl_plot_intervals(model, new_data = NULL, level = 0.95, ...)

Arguments

model

A tidylearn regression model object

new_data

Optional data frame for prediction (if NULL, uses training data)

level

Confidence level (default: 0.95)

...

Additional arguments

Value

A ggplot object


Plot lift chart for a classification model

Description

Plot lift chart for a classification model

Usage

tl_plot_lift(model, new_data = NULL, bins = 10, ...)

Arguments

model

A tidylearn classification model object

new_data

Optional data frame for evaluation (if NULL, uses training data)

bins

Number of bins for grouping predictions (default: 10)

...

Additional arguments

Value

A ggplot object with lift chart


Plot model comparison

Description

Plot model comparison

Usage

tl_plot_model_comparison(..., new_data = NULL, metrics = NULL, names = NULL)

Arguments

...

tidylearn model objects to compare

new_data

Optional data frame for evaluation (if NULL, uses training data)

metrics

Character vector of metrics to compute

names

Optional character vector of model names

Value

A ggplot object with model comparison


Plot neural network architecture

Description

Plot neural network architecture

Usage

tl_plot_nn_architecture(model, ...)

Arguments

model

A tidylearn neural network model object

...

Additional arguments

Value

A ggplot object with neural network architecture


Plot neural network training history

Description

Plot neural network training history

Usage

tl_plot_nn_tuning(model, ...)

Arguments

model

A tidylearn neural network model object

...

Additional arguments

Value

A ggplot object with training history


Plot partial dependence for tree-based models

Description

Plot partial dependence for tree-based models

Usage

tl_plot_partial_dependence(model, var, n.pts = 20, ...)

Arguments

model

A tidylearn tree-based model object

var

Variable name to plot

n.pts

Number of points for continuous variables (default: 20)

...

Additional arguments

Value

A ggplot object


Plot precision-recall curve for a classification model

Description

Plot precision-recall curve for a classification model

Usage

tl_plot_precision_recall(model, new_data = NULL, ...)

Arguments

model

A tidylearn classification model object

new_data

Optional data frame for evaluation (if NULL, uses training data)

...

Additional arguments

Value

A ggplot object with precision-recall curve


Plot cross-validation results for a regularized regression model

Description

Shows the cross-validation error as a function of lambda for ridge, lasso, or elastic net models fitted with cv.glmnet.

Usage

tl_plot_regularization_cv(model, ...)

Arguments

model

A tidylearn regularized model object (ridge, lasso, or elastic_net)

...

Additional arguments (currently unused)

Value

A ggplot object showing CV error vs lambda


Plot regularization path for a regularized regression model

Description

Plot regularization path for a regularized regression model

Usage

tl_plot_regularization_path(model, label_n = 5, ...)

Arguments

model

A tidylearn regularized model object

label_n

Number of top features to label (default: 5)

...

Additional arguments

Value

A ggplot object


Plot residuals for a regression model

Description

Plot residuals for a regression model

Usage

tl_plot_residuals(model, type = "fitted", ...)

Arguments

model

A tidylearn regression model object

type

Type of residual plot: "fitted" (default), "histogram", "predicted"

...

Additional arguments

Value

A ggplot object


Plot ROC curve for a classification model

Description

Plot ROC curve for a classification model

Usage

tl_plot_roc(model, new_data = NULL, ...)

Arguments

model

A tidylearn classification model object

new_data

Optional data frame for evaluation (if NULL, uses training data)

...

Additional arguments

Value

A ggplot object with ROC curve


Plot SVM decision boundary

Description

Plot SVM decision boundary

Usage

tl_plot_svm_boundary(model, x_var = NULL, y_var = NULL, grid_size = 100, ...)

Arguments

model

A tidylearn SVM model object

x_var

Name of the x-axis variable

y_var

Name of the y-axis variable

grid_size

Number of points in each dimension for the grid (default: 100)

...

Additional arguments

Value

A ggplot object with decision boundary


Plot SVM tuning results

Description

Plot SVM tuning results

Usage

tl_plot_svm_tuning(model, ...)

Arguments

model

A tidylearn SVM model object

...

Additional arguments

Value

A ggplot object with tuning results


Plot a decision tree

Description

Plot a decision tree

Usage

tl_plot_tree(model, ...)

Arguments

model

A tidylearn tree model object

...

Additional arguments to pass to rpart.plot()

Value

A plot of the decision tree


Plot hyperparameter tuning results

Description

Plot hyperparameter tuning results

Usage

tl_plot_tuning_results(
  model,
  top_n = 5,
  param1 = NULL,
  param2 = NULL,
  plot_type = "scatter"
)

Arguments

model

A tidylearn model object with tuning results

top_n

Number of top parameter sets to highlight

param1

First parameter to plot (for 2D grid or scatter plots)

param2

Second parameter to plot (for 2D grid or scatter plots)

plot_type

Type of plot: "scatter", "grid", "parallel", "importance"

Value

A ggplot object


Plot feature importance for an XGBoost model

Description

Plot feature importance for an XGBoost model

Usage

tl_plot_xgboost_importance(model, top_n = 10, importance_type = "gain", ...)

Arguments

model

A tidylearn XGBoost model object

top_n

Number of top features to display (default: 10)

importance_type

Type of importance: "gain", "cover", "frequency"

...

Additional arguments

Value

A ggplot object


Plot SHAP dependence for a specific feature

Description

Plot SHAP dependence for a specific feature

Usage

tl_plot_xgboost_shap_dependence(
  model,
  feature,
  interaction_feature = NULL,
  data = NULL,
  n_samples = 100
)

Arguments

model

A tidylearn XGBoost model object

feature

Feature name to plot

interaction_feature

Feature to use for coloring (default: NULL)

data

Data for SHAP value calculation (default: NULL, uses training data)

n_samples

Number of samples to use (default: 100, NULL for all)

Value

A ggplot object with SHAP dependence plot


Plot SHAP summary for XGBoost model

Description

Plot SHAP summary for XGBoost model

Usage

tl_plot_xgboost_shap_summary(model, data = NULL, top_n = 10, n_samples = 100)

Arguments

model

A tidylearn XGBoost model object

data

Data for SHAP value calculation (default: NULL, uses training data)

top_n

Number of top features to display (default: 10)

n_samples

Number of samples to use (default: 100, NULL for all)

Value

A ggplot object with SHAP summary


Plot XGBoost tree visualization

Description

Plot XGBoost tree visualization

Usage

tl_plot_xgboost_tree(model, tree_index = 0, ...)

Arguments

model

A tidylearn XGBoost model object

tree_index

Index of the tree to plot (default: 0, first tree)

...

Additional arguments

Value

Tree visualization


Predict using a gradient boosting model

Description

Predict using a gradient boosting model

Usage

tl_predict_boost(model, new_data, type = "response", n.trees = NULL, ...)

Arguments

model

A tidylearn boost model object

new_data

A data frame containing the new data

type

Type of prediction: "response" (default), "prob" (for classification)

n.trees

Number of trees to use for prediction (if NULL, uses optimal number)

...

Additional arguments

Value

Predictions


Predict using a deep learning model

Description

Predict using a deep learning model

Usage

tl_predict_deep(model, new_data, type = "response", ...)

Arguments

model

A tidylearn deep learning model object

new_data

A data frame containing the new data

type

Type of prediction: "response" (default), "prob" (for classification), "class" (for classification)

...

Additional arguments

Value

Predictions


Predict using an Elastic Net regression model

Description

Predict using an Elastic Net regression model

Usage

tl_predict_elastic_net(model, new_data, type = "response", ...)

Arguments

model

A tidylearn Elastic Net model object

new_data

A data frame containing the new data

type

Type of prediction

...

Additional arguments

Value

Predictions


Predict using a random forest model

Description

Predict using a random forest model

Usage

tl_predict_forest(model, new_data, type = "response", ...)

Arguments

model

A tidylearn forest model object

new_data

A data frame containing the new data

type

Type of prediction: "response" (default), "prob" (for classification)

...

Additional arguments

Value

Predictions


Predict using a Lasso regression model

Description

Predict using a Lasso regression model

Usage

tl_predict_lasso(model, new_data, type = "response", ...)

Arguments

model

A tidylearn Lasso model object

new_data

A data frame containing the new data

type

Type of prediction

...

Additional arguments

Value

Predictions


Predict using a linear regression model

Description

Predict using a linear regression model

Usage

tl_predict_linear(model, new_data, type = "response", level = 0.95, ...)

Arguments

model

A tidylearn linear model object

new_data

A data frame containing the new data

type

Type of prediction: "response" (default), "confidence", "prediction"

level

Confidence level for intervals (default: 0.95)

...

Additional arguments

Value

Predictions


Predict using a logistic regression model

Description

Predict using a logistic regression model

Usage

tl_predict_logistic(model, new_data, type = "prob", ...)

Arguments

model

A tidylearn logistic model object

new_data

A data frame containing the new data

type

Type of prediction: "prob" (default), "class", "response"

...

Additional arguments

Value

Predictions


Predict using a neural network model

Description

Predict using a neural network model

Usage

tl_predict_nn(model, new_data, type = "response", ...)

Arguments

model

A tidylearn neural network model object

new_data

A data frame containing the new data

type

Type of prediction: "response" (default), "prob" (for classification), "class" (for classification)

...

Additional arguments

Value

Predictions


Make predictions using a pipeline

Description

Make predictions using a pipeline

Usage

tl_predict_pipeline(
  pipeline,
  new_data,
  type = "response",
  model_name = NULL,
  ...
)

Arguments

pipeline

A tidylearn pipeline object with results

new_data

A data frame containing the new data

type

Type of prediction (default: "response")

model_name

Name of model to use (if NULL, uses the best model)

...

Additional arguments passed to predict

Value

Predictions


Predict using a polynomial regression model

Description

Predict using a polynomial regression model

Usage

tl_predict_polynomial(model, new_data, type = "response", level = 0.95, ...)

Arguments

model

A tidylearn polynomial model object

new_data

A data frame containing the new data

type

Type of prediction: "response" (default), "confidence", "prediction"

level

Confidence level for intervals (default: 0.95)

...

Additional arguments

Value

Predictions


Predict using a regularized regression model

Description

Predict using a regularized regression model

Usage

tl_predict_regularized(model, new_data, type = "response", lambda = "1se", ...)

Arguments

model

A tidylearn regularized model object

new_data

A data frame containing the new data

type

Type of prediction: "response" (default), "class" (for classification), "prob" (for classification)

lambda

Which lambda to use for prediction ("1se" or "min", default: "1se")

...

Additional arguments

Value

Predictions


Predict using a Ridge regression model

Description

Predict using a Ridge regression model

Usage

tl_predict_ridge(model, new_data, type = "response", ...)

Arguments

model

A tidylearn Ridge model object

new_data

A data frame containing the new data

type

Type of prediction

...

Additional arguments

Value

Predictions


Predict using a support vector machine model

Description

Predict using a support vector machine model

Usage

tl_predict_svm(model, new_data, type = "response", ...)

Arguments

model

A tidylearn SVM model object

new_data

A data frame containing the new data

type

Type of prediction: "response" (default), "prob" (for classification)

...

Additional arguments

Value

Predictions


Predict using a decision tree model

Description

Predict using a decision tree model

Usage

tl_predict_tree(model, new_data, type = "response", ...)

Arguments

model

A tidylearn tree model object

new_data

A data frame containing the new data

type

Type of prediction: "response" (default), "prob" (for classification), "class" (for classification)

...

Additional arguments

Value

Predictions


Predict using an XGBoost model

Description

Predict using an XGBoost model

Usage

tl_predict_xgboost(model, new_data, type = "response", ntreelimit = NULL, ...)

Arguments

model

A tidylearn XGBoost model object

new_data

A data frame containing the new data

type

Type of prediction: "response" (default), "prob" (for classification), "class" (for classification)

ntreelimit

Limit number of trees used for prediction (default: NULL, uses all trees)

...

Additional arguments

Value

Predictions


Data Preprocessing for tidylearn

Description

Unified preprocessing functions that work with both supervised and unsupervised workflows Prepare Data for Machine Learning

Usage

tl_prepare_data(
  data,
  formula = NULL,
  impute_method = "mean",
  scale_method = "standardize",
  encode_categorical = TRUE,
  remove_zero_variance = TRUE,
  remove_correlated = FALSE,
  correlation_cutoff = 0.95
)

Arguments

data

A data frame

formula

Optional formula (for supervised learning)

impute_method

Method for missing value imputation: "mean", "median", "mode", "knn"

scale_method

Scaling method: "standardize", "normalize", "robust", "none"

encode_categorical

Whether to encode categorical variables (default: TRUE)

remove_zero_variance

Remove zero-variance features (default: TRUE)

remove_correlated

Remove highly correlated features (default: FALSE)

correlation_cutoff

Correlation threshold for removal (default: 0.95)

Details

Comprehensive preprocessing pipeline including imputation, scaling, encoding, and feature engineering

Value

A list containing processed data and preprocessing metadata

Examples


processed <- tl_prepare_data(iris, Species ~ ., scale_method = "standardize")
model <- tl_model(processed$data, Species ~ ., method = "logistic")


Integration Functions: Combining Supervised and Unsupervised Learning

Description

These functions demonstrate the power of tidylearn's unified approach by seamlessly integrating supervised and unsupervised learning techniques. Feature Engineering via Dimensionality Reduction

Usage

tl_reduce_dimensions(
  data,
  response = NULL,
  method = "pca",
  n_components = NULL,
  ...
)

Arguments

data

A data frame

response

Response variable name (will be preserved)

method

Dimensionality reduction method: "pca", "mds"

n_components

Number of components to retain

...

Additional arguments for the dimensionality reduction method

Details

Use PCA, MDS, or other dimensionality reduction as a preprocessing step for supervised learning. This can improve model performance and interpretability.

Value

A list containing the transformed data and the reduction model

Examples


# Reduce dimensions before classification
reduced <- tl_reduce_dimensions(iris, response = "Species", method = "pca", n_components = 3)
model <- tl_model(reduced$data, Species ~ ., method = "logistic")


Run a tidylearn pipeline

Description

Run a tidylearn pipeline

Usage

tl_run_pipeline(pipeline, verbose = TRUE)

Arguments

pipeline

A tidylearn pipeline object

verbose

Logical; whether to print progress

Value

A tidylearn pipeline with results


Save a pipeline to disk

Description

Save a pipeline to disk

Usage

tl_save_pipeline(pipeline, file)

Arguments

pipeline

A tidylearn pipeline object

file

Path to save the pipeline

Value

Invisible NULL


Semi-Supervised Learning via Clustering

Description

Train a supervised model with limited labels by first clustering the data and propagating labels within clusters.

Usage

tl_semisupervised(
  data,
  formula,
  labeled_indices,
  cluster_method = "kmeans",
  supervised_method = "logistic",
  ...
)

Arguments

data

A data frame

formula

Model formula

labeled_indices

Indices of labeled observations

cluster_method

Clustering method for label propagation

supervised_method

Supervised learning method for final model

...

Additional arguments

Value

A tidylearn model trained on pseudo-labeled data

Examples


# Use only 10% of labels
labeled_idx <- sample(nrow(iris), size = 15)
model <- tl_semisupervised(iris, Species ~ ., labeled_indices = labeled_idx,
                           cluster_method = "kmeans", supervised_method = "logistic")


Split data into train and test sets

Description

Split data into train and test sets

Usage

tl_split(data, prop = 0.8, stratify = NULL, seed = NULL)

Arguments

data

A data frame

prop

Proportion for training set (default: 0.8)

stratify

Column name for stratified splitting

seed

Random seed for reproducibility

Value

A list with train and test data frames

Examples


split_data <- tl_split(iris, prop = 0.7, stratify = "Species")
train <- split_data$train
test <- split_data$test


Perform stepwise selection on a linear model

Description

Perform stepwise selection on a linear model

Usage

tl_step_selection(
  data,
  formula,
  direction = "backward",
  criterion = "AIC",
  trace = FALSE,
  steps = 1000,
  ...
)

Arguments

data

A data frame containing the training data

formula

A formula specifying the initial model

direction

Direction of stepwise selection: "forward", "backward", or "both"

criterion

Criterion for selection: "AIC" or "BIC"

trace

Logical; whether to print progress

steps

Maximum number of steps to take

...

Additional arguments to pass to step()

Value

A selected model


Stratified Features via Clustering

Description

Create cluster-specific supervised models for heterogeneous data

Usage

tl_stratified_models(
  data,
  formula,
  cluster_method = "kmeans",
  k = 3,
  supervised_method = "linear",
  ...
)

Arguments

data

A data frame

formula

Model formula

cluster_method

Clustering method

k

Number of clusters

supervised_method

Supervised learning method

...

Additional arguments

Value

A list of models (one per cluster) plus cluster assignments

Examples


models <- tl_stratified_models(mtcars, mpg ~ ., cluster_method = "kmeans",
                                k = 3, supervised_method = "linear")


Test for significant interactions between variables

Description

Test for significant interactions between variables

Usage

tl_test_interactions(
  data,
  formula,
  var1 = NULL,
  var2 = NULL,
  all_pairs = FALSE,
  categorical_only = FALSE,
  numeric_only = FALSE,
  mixed_only = FALSE,
  alpha = 0.05
)

Arguments

data

A data frame containing the data

formula

A formula specifying the base model without interactions

var1

First variable to test for interactions

var2

Second variable to test for interactions (if NULL, tests var1 with all others)

all_pairs

Logical; whether to test all variable pairs

categorical_only

Logical; whether to only test categorical variables

numeric_only

Logical; whether to only test numeric variables

mixed_only

Logical; whether to only test numeric-categorical pairs

alpha

Significance level for interaction tests

Value

A data frame with interaction test results


Perform statistical comparison of models using cross-validation

Description

Perform statistical comparison of models using cross-validation

Usage

tl_test_model_difference(
  cv_results,
  baseline_model = NULL,
  test = "t.test",
  metric = NULL
)

Arguments

cv_results

Results from tl_compare_cv function

baseline_model

Name of the model to use as baseline for comparison

test

Type of statistical test: "t.test" or "wilcox"

metric

Name of the metric to compare

Value

A data frame with statistical test results


Transfer Learning Workflow

Description

Use unsupervised pre-training (e.g., autoencoder features) before supervised learning

Usage

tl_transfer_learning(
  data,
  formula,
  pretrain_method = "pca",
  supervised_method = "logistic",
  ...
)

Arguments

data

Training data

formula

Model formula

pretrain_method

Pre-training method: "pca", "autoencoder"

supervised_method

Supervised learning method

...

Additional arguments

Value

A transfer learning model

Examples


model <- tl_transfer_learning(iris, Species ~ ., pretrain_method = "pca")


Tune a deep learning model

Description

Tune a deep learning model

Usage

tl_tune_deep(
  data,
  formula,
  is_classification = FALSE,
  hidden_layers_options = list(c(32), c(64, 32), c(128, 64, 32)),
  learning_rates = c(0.01, 0.001, 1e-04),
  batch_sizes = c(16, 32, 64),
  epochs = 30,
  validation_split = 0.2,
  ...
)

Arguments

data

A data frame containing the training data

formula

A formula specifying the model

is_classification

Logical indicating if this is a classification problem

hidden_layers_options

List of vectors defining hidden layer configurations to try

learning_rates

Learning rates to try (default: c(0.01, 0.001, 0.0001))

batch_sizes

Batch sizes to try (default: c(16, 32, 64))

epochs

Number of training epochs (default: 30)

validation_split

Proportion of data for validation (default: 0.2)

...

Additional arguments

Value

A list with the best model and tuning results


Tune hyperparameters for a model using grid search

Description

Tune hyperparameters for a model using grid search

Usage

tl_tune_grid(
  data,
  formula,
  method,
  param_grid,
  folds = 5,
  metric = NULL,
  maximize = NULL,
  verbose = TRUE,
  ...
)

Arguments

data

A data frame containing the training data

formula

A formula specifying the model

method

The modeling method to tune

param_grid

A named list of parameter values to tune

folds

Number of cross-validation folds

metric

Metric to optimize

maximize

Logical; whether to maximize (TRUE) or minimize (FALSE) the metric

verbose

Logical; whether to print progress

...

Additional arguments passed to tl_model

Value

A list with the best model and tuning results


Tune a neural network model

Description

Tune a neural network model

Usage

tl_tune_nn(
  data,
  formula,
  is_classification = FALSE,
  sizes = c(1, 2, 5, 10),
  decays = c(0, 0.001, 0.01, 0.1),
  folds = 5,
  ...
)

Arguments

data

A data frame containing the training data

formula

A formula specifying the model

is_classification

Logical indicating if this is a classification problem

sizes

Vector of hidden layer sizes to try

decays

Vector of weight decay parameters to try

folds

Number of cross-validation folds (default: 5)

...

Additional arguments to pass to nnet()

Value

A list with the best model and tuning results


Tune hyperparameters for a model using random search

Description

Tune hyperparameters for a model using random search

Usage

tl_tune_random(
  data,
  formula,
  method,
  param_space,
  n_iter = 10,
  folds = 5,
  metric = NULL,
  maximize = NULL,
  verbose = TRUE,
  seed = NULL,
  ...
)

Arguments

data

A data frame containing the training data

formula

A formula specifying the model

method

The modeling method to tune

param_space

A named list of parameter spaces to sample from

n_iter

Number of random parameter combinations to try

folds

Number of cross-validation folds

metric

Metric to optimize

maximize

Logical; whether to maximize (TRUE) or minimize (FALSE) the metric

verbose

Logical; whether to print progress

seed

Random seed for reproducibility

...

Additional arguments passed to tl_model

Value

A list with the best model and tuning results


Tune XGBoost hyperparameters

Description

Tune XGBoost hyperparameters

Usage

tl_tune_xgboost(
  data,
  formula,
  is_classification = FALSE,
  param_grid = NULL,
  cv_folds = 5,
  early_stopping_rounds = 10,
  verbose = TRUE,
  ...
)

Arguments

data

A data frame containing the training data

formula

A formula specifying the model

is_classification

Logical indicating if this is a classification problem

param_grid

Named list of parameter values to try

cv_folds

Number of cross-validation folds (default: 5)

early_stopping_rounds

Early stopping rounds (default: 10)

verbose

Logical indicating whether to print progress (default: TRUE)

...

Additional arguments

Value

A list with the best model and tuning results


Get tidylearn version information

Description

Get tidylearn version information

Usage

tl_version()

Value

A package_version object containing the version number


Generate SHAP values for XGBoost model interpretation

Description

Generate SHAP values for XGBoost model interpretation

Usage

tl_xgboost_shap(model, data = NULL, n_samples = 100, trees_idx = NULL)

Arguments

model

A tidylearn XGBoost model object

data

Data for SHAP value calculation (default: NULL, uses training data)

n_samples

Number of samples to use (default: 100, NULL for all)

trees_idx

Trees to include (default: NULL, uses all trees)

Value

A data frame with SHAP values


Visualize Association Rules

Description

Create visualizations of association rules

Usage

visualize_rules(rules_obj, method = "scatter", top_n = 50, ...)

Arguments

rules_obj

A tidy_apriori object, rules object, or rules tibble

method

Visualization method: "scatter" (default), "graph", "grouped", "paracoord"

top_n

Number of top rules to visualize (default: 50)

...

Additional arguments passed to plot() for rules visualization

Value

Visualization (side effect) or ggplot object