TQ02-quant-integrations-in-tidyquant.R
Functions that leverage the quantitative analysis functionality of
xts
,zoo
,quantmod
,TTR
, andPerformanceAnalytics
There’s a wide range of useful quantitative analysis functions that
work with time-series objects. The problem is that many of these
wonderful functions don’t work with data frames or the
tidyverse
workflow. That is until now! The
tidyquant
package integrates the most useful functions from
the xts
, zoo
, quantmod
,
TTR
, and PerformanceAnalytics
packages. This
vignette focuses on the following core functions to demonstrate
how the integration works with the quantitative finance packages:
tq_transmute()
: Returns a new tidy data
frame typically in a different periodicity than the input.tq_mutate()
: Adds columns to the existing tidy
data frame.Refer to Performance
Analysis with tidyquant for a full discussion on performance
analysis and portfolio attribution with tidyquant
.
Load the tidyquant
package to get started.
tq_transmute_fun_options()
returns a list the
compatible mutate functions by each package. We’ll
discuss these options by package briefly.
## List of 5
## $ zoo : chr [1:14] "rollapply" "rollapplyr" "rollmax" "rollmax.default" ...
## $ xts : chr [1:27] "apply.daily" "apply.monthly" "apply.quarterly" "apply.weekly" ...
## $ quantmod : chr [1:25] "allReturns" "annualReturn" "ClCl" "dailyReturn" ...
## $ TTR : chr [1:64] "adjRatios" "ADX" "ALMA" "aroon" ...
## $ PerformanceAnalytics: chr [1:7] "Return.annualized" "Return.annualized.excess" "Return.clean" "Return.cumulative" ...
TQ02-quant-integrations-in-tidyquant.R
## [1] "rollapply" "rollapplyr" "rollmax"
## [4] "rollmax.default" "rollmaxr" "rollmean"
## [7] "rollmean.default" "rollmeanr" "rollmedian"
## [10] "rollmedian.default" "rollmedianr" "rollsum"
## [13] "rollsum.default" "rollsumr"
TQ02-quant-integrations-in-tidyquant.R
The zoo
functions that are compatible are listed above.
Generally speaking, these are the:
rollapply(data, width, FUN, ..., by = 1, by.column = TRUE, fill = if (na.pad) NA, na.pad = FALSE, partial = FALSE, align = c("center", "left", "right"), coredata = TRUE)
.rollmax
, rollmean
,
rollmedian
, rollsum
, etc.## [1] "apply.daily" "apply.monthly" "apply.quarterly" "apply.weekly"
## [5] "apply.yearly" "diff.xts" "lag.xts" "period.apply"
## [9] "period.max" "period.min" "period.prod" "period.sum"
## [13] "periodicity" "to.daily" "to.hourly" "to.minutes"
## [17] "to.minutes10" "to.minutes15" "to.minutes3" "to.minutes30"
## [21] "to.minutes5" "to.monthly" "to.period" "to.quarterly"
## [25] "to.weekly" "to.yearly" "to_period"
TQ02-quant-integrations-in-tidyquant.R
The xts
functions that are compatible are listed above.
Generally speaking, these are the:
max
,
min
, mean
, etc).apply.daily(x, FUN, ...)
.apply.daily
, weekly
,
monthly
, quarterly
, yearly
.to.period(x, period = 'months', k = 1, indexAt, name = NULL, OHLC = TRUE, ...)
.to.minutes
, hourly
,
daily
, weekly
, monthly
,
quarterly
, yearly
.to.period
and the to.monthly
(to.weekly
, to.quarterly
, etc) forms.
to.period
returns a date, while to.months
returns a character MON YYYY. Best to use to.period
if you
want to work with time-series via lubridate
.# Get quantmod functions that work with tq_transmute and tq_mutate
tq_transmute_fun_options()$quantmod
## [1] "allReturns" "annualReturn" "ClCl" "dailyReturn"
## [5] "Delt" "HiCl" "Lag" "LoCl"
## [9] "LoHi" "monthlyReturn" "Next" "OpCl"
## [13] "OpHi" "OpLo" "OpOp" "periodReturn"
## [17] "quarterlyReturn" "seriesAccel" "seriesDecel" "seriesDecr"
## [21] "seriesHi" "seriesIncr" "seriesLo" "weeklyReturn"
## [25] "yearlyReturn"
TQ02-quant-integrations-in-tidyquant.R
The quantmod
functions that are compatible are listed
above. Generally speaking, these are the:
Delt(x1, x2 = NULL, k = 0, type = c("arithmetic", "log"))
OpCl(OHLC)
Lag(x, k = 1)
/ Next: Next(x, k = 1)
(Can also use dplyr::lag
and dplyr::lead
)periodReturn(x, period = 'monthly', subset = NULL, type = 'arithmetic', leading = TRUE, ...)
seriesHi(x)
,
seriesIncr(x, thresh = 0, diff. = 1L)
,
seriesAccel(x)
## [1] "adjRatios" "ADX" "ALMA"
## [4] "aroon" "ATR" "BBands"
## [7] "CCI" "chaikinAD" "chaikinVolatility"
## [10] "CLV" "CMF" "CMO"
## [13] "CTI" "DEMA" "DonchianChannel"
## [16] "DPO" "DVI" "EMA"
## [19] "EMV" "EVWMA" "GMMA"
## [22] "growth" "HMA" "keltnerChannels"
## [25] "KST" "lags" "MACD"
## [28] "MFI" "momentum" "OBV"
## [31] "PBands" "ROC" "rollSFM"
## [34] "RSI" "runCor" "runCov"
## [37] "runMAD" "runMax" "runMean"
## [40] "runMedian" "runMin" "runPercentRank"
## [43] "runSD" "runSum" "runVar"
## [46] "SAR" "SMA" "SMI"
## [49] "SNR" "stoch" "TDI"
## [52] "TRIX" "ultimateOscillator" "VHF"
## [55] "VMA" "volatility" "VWAP"
## [58] "VWMA" "wilderSum" "williamsAD"
## [61] "WMA" "WPR" "ZigZag"
## [64] "ZLEMA"
TQ02-quant-integrations-in-tidyquant.R
Here’ a brief description of the most popular functions from
TTR
:
ADX(HLC, n = 14, maType, ...)
BBands(HLC, n = 20, maType, sd = 2, ...)
: Bollinger
BandsROC(x, n = 1, type = c("continuous", "discrete"), na.pad = TRUE)
:
Rate of Changemomentum(x, n = 1, na.pad = TRUE)
: MomentumSMA(x, n = 10, ...)
: Simple Moving AverageEMA(x, n = 10, wilder = FALSE, ratio = NULL, ...)
:
Exponential Moving AverageDEMA(x, n = 10, v = 1, wilder = FALSE, ratio = NULL)
:
Double Exponential Moving AverageWMA(x, n = 10, wts = 1:n, ...)
: Weighted Moving
AverageEVWMA(price, volume, n = 10, ...)
: Elastic,
Volume-Weighted Moving AverageZLEMA(x, n = 10, ratio = NULL, ...)
: Zero Lag
Exponential Moving AverageVWAP(price, volume, n = 10, ...)
: Volume-Weighted
Moving Average PriceVMA(x, w, ratio = 1, ...)
: Variable-Length Moving
AverageHMA(x, n = 20, ...)
: Hull Moving AverageALMA(x, n = 9, offset = 0.85, sigma = 6, ...)
: Arnaud
Legoux Moving AverageMACD(x, nFast = 12, nSlow = 26, nSig = 9, maType, percent = TRUE, ...)
RSI(price, n = 14, maType, ...)
runSum(x, n = 10, cumulative = FALSE)
: returns sums
over a n-period moving window.runMin(x, n = 10, cumulative = FALSE)
: returns minimums
over a n-period moving window.runMax(x, n = 10, cumulative = FALSE)
: returns maximums
over a n-period moving window.runMean(x, n = 10, cumulative = FALSE)
: returns means
over a n-period moving window.runMedian(x, n = 10, non.unique = "mean", cumulative = FALSE)
:
returns medians over a n-period moving window.runCov(x, y, n = 10, use = "all.obs", sample = TRUE, cumulative = FALSE)
:
returns covariances over a n-period moving window.runCor(x, y, n = 10, use = "all.obs", sample = TRUE, cumulative = FALSE)
:
returns correlations over a n-period moving window.runVar(x, y = NULL, n = 10, sample = TRUE, cumulative = FALSE)
:
returns variances over a n-period moving window.runSD(x, n = 10, sample = TRUE, cumulative = FALSE)
:
returns standard deviations over a n-period moving window.runMAD(x, n = 10, center = NULL, stat = "median", constant = 1.4826, non.unique = "mean", cumulative = FALSE)
:
returns median/mean absolute deviations over a n-period moving
window.wilderSum(x, n = 10)
: returns a Welles Wilder style
weighted sum over a n-period moving window.stoch(HLC, nFastK = 14, nFastD = 3, nSlowD = 3, maType, bounded = TRUE, smooth = 1, ...)
:
Stochastic OscillatorSMI(HLC, n = 13, nFast = 2, nSlow = 25, nSig = 9, maType, bounded = TRUE, ...)
:
Stochastic Momentum Index# Get PerformanceAnalytics functions that work with tq_transmute and tq_mutate
tq_transmute_fun_options()$PerformanceAnalytics
## [1] "Return.annualized" "Return.annualized.excess"
## [3] "Return.clean" "Return.cumulative"
## [5] "Return.excess" "Return.Geltner"
## [7] "zerofill"
TQ02-quant-integrations-in-tidyquant.R
The PerformanceAnalytics
mutation functions all deal
with returns:
Return.annualized
and
Return.annualized.excess
: Takes period returns and
consolidates into annualized returnsReturn.clean
: Removes outliers from returnsReturn.excess
: Removes the risk-free rate from the
returns to yield returns in excess of the risk-free ratezerofill
: Used to replace NA
values with
zeros.We’ll go through some examples, but first let’s get some data. The
FANG
data set will be used which consists of stock prices
for META, AMZN, NFLX, and GOOG from the beginning of 2013 to the end of
2016.
## # A tibble: 4,032 × 8
## symbol date open high low close volume adjusted
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 META 2013-01-02 27.4 28.2 27.4 28 69846400 28
## 2 META 2013-01-03 27.9 28.5 27.6 27.8 63140600 27.8
## 3 META 2013-01-04 28.0 28.9 27.8 28.8 72715400 28.8
## 4 META 2013-01-07 28.7 29.8 28.6 29.4 83781800 29.4
## 5 META 2013-01-08 29.5 29.6 28.9 29.1 45871300 29.1
## 6 META 2013-01-09 29.7 30.6 29.5 30.6 104787700 30.6
## 7 META 2013-01-10 30.6 31.5 30.3 31.3 95316400 31.3
## 8 META 2013-01-11 31.3 32.0 31.1 31.7 89598000 31.7
## 9 META 2013-01-14 32.1 32.2 30.6 31.0 98892800 31.0
## 10 META 2013-01-15 30.6 31.7 29.9 30.1 173242600 30.1
## # ℹ 4,022 more rows
TQ02-quant-integrations-in-tidyquant.R
The quantmod::periodReturn()
function generates returns
by periodicity. We’ll go through a couple usage cases.
We want to use the adjusted closing prices column (adjusted for stock
splits, which can make it appear that a stock is performing poorly if a
split is included). We set select = adjusted
. We research
the periodReturn
function, and we found that it accepts
type = "arithmetic"
and period = "yearly"
,
which returns the annual returns.
FANG_annual_returns <- FANG %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "yearly",
type = "arithmetic")
FANG_annual_returns
## # A tibble: 16 × 3
## # Groups: symbol [4]
## symbol date yearly.returns
## <chr> <date> <dbl>
## 1 META 2013-12-31 0.952
## 2 META 2014-12-31 0.428
## 3 META 2015-12-31 0.341
## 4 META 2016-12-30 0.0993
## 5 AMZN 2013-12-31 0.550
## 6 AMZN 2014-12-31 -0.222
## 7 AMZN 2015-12-31 1.18
## 8 AMZN 2016-12-30 0.109
## 9 NFLX 2013-12-31 3.00
## 10 NFLX 2014-12-31 -0.0721
## 11 NFLX 2015-12-31 1.34
## 12 NFLX 2016-12-30 0.0824
## 13 GOOG 2013-12-31 0.550
## 14 GOOG 2014-12-31 -0.0597
## 15 GOOG 2015-12-31 0.442
## 16 GOOG 2016-12-30 0.0171
TQ02-quant-integrations-in-tidyquant.R
Charting annual returns is just a quick use of the
ggplot2
package.
FANG_annual_returns %>%
ggplot(aes(x = date, y = yearly.returns, fill = symbol)) +
geom_col() +
geom_hline(yintercept = 0, color = palette_light()[[1]]) +
scale_y_continuous(labels = scales::percent) +
labs(title = "FANG: Annual Returns",
subtitle = "Get annual returns quickly with tq_transmute!",
y = "Annual Returns", x = "") +
facet_wrap(~ symbol, ncol = 2, scales = "free_y") +
theme_tq() +
scale_fill_tq()
TQ02-quant-integrations-in-tidyquant.R
Daily log returns follow a similar approach. Normally I go with a
transmute function, tq_transmute()
, because the
periodReturn
function accepts different periodicity
options, and anything other than daily will blow up a mutation. But, in
our situation the period returns periodicity is the same as the stock
prices periodicity (both daily), so we can use either. We want to use
the adjusted closing prices column (adjusted for stock splits, which can
make it appear that a stock is performing poorly if a split is
included), so we set select = adjusted
. We researched the
periodReturn
function, and we found that it accepts
type = "log"
and period = "daily"
, which
returns the daily log returns.
FANG_daily_log_returns <- FANG %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "daily",
type = "log",
col_rename = "daily.returns")
TQ02-quant-integrations-in-tidyquant.R
FANG_daily_log_returns %>%
ggplot(aes(x = daily.returns, fill = symbol)) +
geom_density(alpha = 0.5) +
labs(title = "FANG: Charting the Daily Log Returns",
x = "Daily Returns", y = "Density") +
theme_tq() +
scale_fill_tq() +
facet_wrap(~ symbol, ncol = 2)
TQ02-quant-integrations-in-tidyquant.R
The xts::to.period
function is used for periodicity
aggregation (converting from a lower level periodicity to a higher level
such as minutes to hours or months to years). Because we are seeking a
return structure that is on a different time scale than the input (daily
versus weekly), we need to use a transmute function. We select
tq_transmute()
and pass the open, high, low, close and
volume columns via select = open:volume
. Looking at the
documentation for to.period
, we see that it accepts a
period
argument that we can set to "months"
.
The result is the OHLCV data returned with the dates changed to one day
per month.
FANG %>%
group_by(symbol) %>%
tq_transmute(select = open:volume,
mutate_fun = to.period,
period = "months")
## # A tibble: 192 × 7
## # Groups: symbol [4]
## symbol date open high low close volume
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 META 2013-01-31 29.2 31.5 28.7 31.0 190744900
## 2 META 2013-02-28 26.8 27.3 26.3 27.2 83027800
## 3 META 2013-03-28 26.1 26.2 25.5 25.6 28585700
## 4 META 2013-04-30 27.1 27.8 27.0 27.8 36245700
## 5 META 2013-05-31 24.6 25.0 24.3 24.4 35925000
## 6 META 2013-06-28 24.7 25.0 24.4 24.9 96778900
## 7 META 2013-07-31 38.0 38.3 36.3 36.8 154828700
## 8 META 2013-08-30 42.0 42.3 41.1 41.3 67735100
## 9 META 2013-09-30 50.1 51.6 49.8 50.2 100095000
## 10 META 2013-10-31 47.2 52 46.5 50.2 248809000
## # ℹ 182 more rows
TQ02-quant-integrations-in-tidyquant.R
A common usage case is to reduce the number of points to smooth time series plots. Let’s check out the difference between daily and monthly plots.
FANG_daily <- FANG %>%
group_by(symbol)
FANG_daily %>%
ggplot(aes(x = date, y = adjusted, color = symbol)) +
geom_line(linewidth = 1) +
labs(title = "Daily Stock Prices",
x = "", y = "Adjusted Prices", color = "") +
facet_wrap(~ symbol, ncol = 2, scales = "free_y") +
scale_y_continuous(labels = scales::dollar) +
theme_tq() +
scale_color_tq()
TQ02-quant-integrations-in-tidyquant.R
FANG_monthly <- FANG %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = to.period,
period = "months")
FANG_monthly %>%
ggplot(aes(x = date, y = adjusted, color = symbol)) +
geom_line(linewidth = 1) +
labs(title = "Monthly Stock Prices",
x = "", y = "Adjusted Prices", color = "") +
facet_wrap(~ symbol, ncol = 2, scales = "free_y") +
scale_y_continuous(labels = scales::dollar) +
theme_tq() +
scale_color_tq()
TQ02-quant-integrations-in-tidyquant.R
Return correlations are a common way to analyze how closely an asset
or portfolio mimics a baseline index or fund. We will need a set of
returns for both the stocks and baseline. The stock will be the
FANG
data set and the baseline will be the Spdr XLK
technology sector. We have the prices for the “FANG” stocks, so we use
tq_get
to retrieve the “XLK” prices. The returns can be
calculated from the “adjusted” prices using the process in Example
1.
# Asset Returns
FANG_returns_monthly <- FANG %>%
dplyr::group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly")
# Baseline Returns
baseline_returns_monthly <- "XLK" %>%
tq_get(get = "stock.prices",
from = "2013-01-01",
to = "2016-12-31") %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly")
TQ02-quant-integrations-in-tidyquant.R
Next, join the asset returns with the baseline returns by date.
returns_joined <- left_join(FANG_returns_monthly,
baseline_returns_monthly,
by = "date")
returns_joined
## # A tibble: 192 × 4
## # Groups: symbol [4]
## symbol date monthly.returns.x monthly.returns.y
## <chr> <date> <dbl> <dbl>
## 1 META 2013-01-31 0.106 -0.0138
## 2 META 2013-02-28 -0.120 0.00782
## 3 META 2013-03-28 -0.0613 0.0258
## 4 META 2013-04-30 0.0856 0.0175
## 5 META 2013-05-31 -0.123 0.0279
## 6 META 2013-06-28 0.0218 -0.0289
## 7 META 2013-07-31 0.479 0.0373
## 8 META 2013-08-30 0.122 -0.0104
## 9 META 2013-09-30 0.217 0.0253
## 10 META 2013-10-31 -0.000398 0.0502
## # ℹ 182 more rows
TQ02-quant-integrations-in-tidyquant.R
The TTR::runCor
function can be used to evaluate rolling
correlations using the xy pattern. Looking at the documentation
(?runCor
), we can see that the arguments include
x
and y
along with a few additional arguments
including n
for the width of the rolling correlation.
Because the scale is monthly, we’ll go with n = 6
for a
6-month rolling correlation. The col_rename
argument
enables easy renaming of the output column(s).
FANG_rolling_corr <- returns_joined %>%
tq_transmute_xy(x = monthly.returns.x,
y = monthly.returns.y,
mutate_fun = runCor,
n = 6,
col_rename = "rolling.corr.6")
TQ02-quant-integrations-in-tidyquant.R
And, we can plot the rolling correlations for the FANG stocks.
FANG_rolling_corr %>%
ggplot(aes(x = date, y = rolling.corr.6, color = symbol)) +
geom_hline(yintercept = 0, color = palette_light()[[1]]) +
geom_line(linewidth = 1) +
labs(title = "FANG: Six Month Rolling Correlation to XLK",
x = "", y = "Correlation", color = "") +
facet_wrap(~ symbol, ncol = 2) +
theme_tq() +
scale_color_tq()
TQ02-quant-integrations-in-tidyquant.R
In reviewing the available options in the TTR
package,
we see that MACD
will get us the Moving Average Convergence
Divergence (MACD). In researching the documentation, the return is in
the same periodicity as the input and the functions work with OHLC
functions, so we can use tq_mutate()
. MACD requires a
price, so we select close
.
FANG_macd <- FANG %>%
group_by(symbol) %>%
tq_mutate(select = close,
mutate_fun = MACD,
nFast = 12,
nSlow = 26,
nSig = 9,
maType = SMA) %>%
mutate(diff = macd - signal) %>%
select(-(open:volume))
FANG_macd
## # A tibble: 4,032 × 6
## # Groups: symbol [4]
## symbol date adjusted macd signal diff
## <chr> <date> <dbl> <dbl> <dbl> <dbl>
## 1 META 2013-01-02 28 NA NA NA
## 2 META 2013-01-03 27.8 NA NA NA
## 3 META 2013-01-04 28.8 NA NA NA
## 4 META 2013-01-07 29.4 NA NA NA
## 5 META 2013-01-08 29.1 NA NA NA
## 6 META 2013-01-09 30.6 NA NA NA
## 7 META 2013-01-10 31.3 NA NA NA
## 8 META 2013-01-11 31.7 NA NA NA
## 9 META 2013-01-14 31.0 NA NA NA
## 10 META 2013-01-15 30.1 NA NA NA
## # ℹ 4,022 more rows
TQ02-quant-integrations-in-tidyquant.R
And, we can visualize the data like so.
FANG_macd %>%
filter(date >= as_date("2016-10-01")) %>%
ggplot(aes(x = date)) +
geom_hline(yintercept = 0, color = palette_light()[[1]]) +
geom_line(aes(y = macd, col = symbol)) +
geom_line(aes(y = signal), color = "blue", linetype = 2) +
geom_bar(aes(y = diff), stat = "identity", color = palette_light()[[1]]) +
facet_wrap(~ symbol, ncol = 2, scale = "free_y") +
labs(title = "FANG: Moving Average Convergence Divergence",
y = "MACD", x = "", color = "") +
theme_tq() +
scale_color_tq()
TQ02-quant-integrations-in-tidyquant.R
The xts::apply.quarterly()
function that is part of the
period apply group can be used to apply functions by quarterly time
segments. Because we are seeking a return structure that is on a
different time scale than the input (quarterly versus daily), we need to
use a transmute function. We select tq_transmute
and pass
the close price using select
, and we send this subset of
the data to the apply.quarterly
function via the
mutate_fun
argument. Looking at the documentation for
apply.quarterly
, we see that we can pass a function to the
argument, FUN
. We want the maximum values, so we set
FUN = max
. The result is the quarters returned as a date
and the maximum closing price during the quarter returned as a
double.
FANG_max_by_qtr <- FANG %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = apply.quarterly,
FUN = max,
col_rename = "max.close") %>%
mutate(year.qtr = paste0(year(date), "-Q", quarter(date))) %>%
select(-date)
FANG_max_by_qtr
## # A tibble: 64 × 3
## # Groups: symbol [4]
## symbol max.close year.qtr
## <chr> <dbl> <chr>
## 1 META 32.5 2013-Q1
## 2 META 29.0 2013-Q2
## 3 META 51.2 2013-Q3
## 4 META 58.0 2013-Q4
## 5 META 72.0 2014-Q1
## 6 META 67.6 2014-Q2
## 7 META 79.0 2014-Q3
## 8 META 81.4 2014-Q4
## 9 META 85.3 2015-Q1
## 10 META 88.9 2015-Q2
## # ℹ 54 more rows
TQ02-quant-integrations-in-tidyquant.R
The minimum each quarter can be retrieved in much the same way. The
data frames can be joined using left_join
to get the max
and min by quarter.
FANG_min_by_qtr <- FANG %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = apply.quarterly,
FUN = min,
col_rename = "min.close") %>%
mutate(year.qtr = paste0(year(date), "-Q", quarter(date))) %>%
select(-date)
FANG_by_qtr <- left_join(FANG_max_by_qtr, FANG_min_by_qtr,
by = c("symbol" = "symbol",
"year.qtr" = "year.qtr"))
FANG_by_qtr
## # A tibble: 64 × 4
## # Groups: symbol [4]
## symbol max.close year.qtr min.close
## <chr> <dbl> <chr> <dbl>
## 1 META 32.5 2013-Q1 25.1
## 2 META 29.0 2013-Q2 22.9
## 3 META 51.2 2013-Q3 24.4
## 4 META 58.0 2013-Q4 44.8
## 5 META 72.0 2014-Q1 53.5
## 6 META 67.6 2014-Q2 56.1
## 7 META 79.0 2014-Q3 62.8
## 8 META 81.4 2014-Q4 72.6
## 9 META 85.3 2015-Q1 74.1
## 10 META 88.9 2015-Q2 77.5
## # ℹ 54 more rows
TQ02-quant-integrations-in-tidyquant.R
And, we can visualize the data like so.
FANG_by_qtr %>%
ggplot(aes(x = year.qtr, color = symbol)) +
geom_segment(aes(xend = year.qtr, y = min.close, yend = max.close),
linewidth = 1) +
geom_point(aes(y = max.close), size = 2) +
geom_point(aes(y = min.close), size = 2) +
facet_wrap(~ symbol, ncol = 2, scale = "free_y") +
labs(title = "FANG: Min/Max Price By Quarter",
y = "Stock Price", color = "") +
theme_tq() +
scale_color_tq() +
scale_y_continuous(labels = scales::dollar) +
theme(axis.text.x = element_text(angle = 90, hjust = 1),
axis.title.x = element_blank())
TQ02-quant-integrations-in-tidyquant.R
A good way to analyze relationships over time is using rolling calculations that compare two assets. Pairs trading is a common mechanism for similar assets. While we will not go into a pairs trade analysis, we will analyze the relationship between two similar assets as a precursor to a pairs trade. In this example we will analyze two similar assets, MasterCard (MA) and Visa (V) to show the relationship via regression.
Before we analyze a rolling regression, it’s helpful to view the
overall trend in returns. To do this, we use tq_get()
to
get stock prices for the assets and tq_transmute()
to
transform the daily prices to daily returns. We’ll collect the data and
visualize via a scatter plot.
# Get stock pairs
stock_prices <- c("MA", "V") %>%
tq_get(get = "stock.prices",
from = "2015-01-01",
to = "2016-12-31") %>%
group_by(symbol)
stock_pairs <- stock_prices %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "daily",
type = "log",
col_rename = "returns") %>%
spread(key = symbol, value = returns)
TQ02-quant-integrations-in-tidyquant.R
We can visualize the relationship between the returns of the stock pairs like so.
stock_pairs %>%
ggplot(aes(x = V, y = MA)) +
geom_point(color = palette_light()[[1]], alpha = 0.5) +
geom_smooth(method = "lm") +
labs(title = "Visualizing Returns Relationship of Stock Pairs") +
theme_tq()
TQ02-quant-integrations-in-tidyquant.R
We can get statistics on the relationship from the lm
function. The model is highly correlated with a p-value of essential
zero. The coefficient estimate for V (Coefficient 1) is 0.8134
indicating a positive relationship, meaning as V increases MA also tends
to increase.
##
## Call:
## lm(formula = MA ~ V, data = stock_pairs)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.026957 -0.003966 0.000215 0.003966 0.028946
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0001130 0.0003097 0.365 0.715
## V 0.8133640 0.0226394 35.927 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.00695 on 502 degrees of freedom
## Multiple R-squared: 0.72, Adjusted R-squared: 0.7194
## F-statistic: 1291 on 1 and 502 DF, p-value: < 2.2e-16
TQ02-quant-integrations-in-tidyquant.R
While this characterizes the overall relationship, it’s missing the
time aspect. Fortunately, we can use the zoo::rollapply()
function to plot a rolling regression, showing how the model coefficient
varies on a rolling basis over time. We calculate rolling regressions
with tq_mutate()
in two additional steps:
tq_mutate(mutate_fun = rollapply)
First, create a custom regression function. An important point is
that the “data” will be passed to the regression function as an
xts
object. The timetk::tk_tbl
function takes
care of converting to a data frame.
TQ02-quant-integrations-in-tidyquant.R
Now we can use tq_mutate()
to apply the custom
regression function over a rolling window using rollapply
from the zoo
package. Internally, the
returns_combined
data frame is being passed automatically
to the data
argument of the rollapply
function. All you need to specify is the
mutate_fun = rollapply
and any additional arguments
necessary to apply the rollapply
function. We’ll specify a
90 day window via width = 90
. The FUN
argument
is our custom regression function, regr_fun
. It’s extremely
important to specify by.column = FALSE
, which tells
rollapply
to perform the computation using the data as a
whole rather than apply the function to each column independently. The
col_rename
argument is used to rename the added
columns.
stock_pairs <- stock_pairs %>%
tq_mutate(mutate_fun = rollapply,
width = 90,
FUN = regr_fun,
by.column = FALSE,
col_rename = c("coef.0", "coef.1"))
stock_pairs
## # A tibble: 504 × 5
## date MA V coef.0 coef.1
## <date> <dbl> <dbl> <dbl> <dbl>
## 1 2015-01-02 0 0 NA NA
## 2 2015-01-05 -0.0285 -0.0223 NA NA
## 3 2015-01-06 -0.00216 -0.00646 NA NA
## 4 2015-01-07 0.0154 0.0133 NA NA
## 5 2015-01-08 0.0154 0.0133 NA NA
## 6 2015-01-09 -0.0128 -0.0149 NA NA
## 7 2015-01-12 -0.0129 -0.00196 NA NA
## 8 2015-01-13 0.00228 0.00292 NA NA
## 9 2015-01-14 -0.00108 -0.0202 NA NA
## 10 2015-01-15 -0.0146 -0.00955 NA NA
## # ℹ 494 more rows
TQ02-quant-integrations-in-tidyquant.R
Finally, we can visualize the first coefficient like so. A horizontal line is added using the full data set model. This gives us insight as to points in time where the relationship deviates significantly from the long run trend which can be explored for potential pair trade opportunities.
stock_pairs %>%
ggplot(aes(x = date, y = coef.1)) +
geom_line(linewidth = 1, color = palette_light()[[1]]) +
geom_hline(yintercept = 0.8134, linewidth = 1, color = palette_light()[[2]]) +
labs(title = "MA ~ V: Visualizing Rolling Regression Coefficient", x = "") +
theme_tq()
TQ02-quant-integrations-in-tidyquant.R
Stock returns during this time period.
stock_prices %>%
tq_transmute(adjusted,
periodReturn,
period = "daily",
type = "log",
col_rename = "returns") %>%
mutate(wealth.index = 100 * cumprod(1 + returns)) %>%
ggplot(aes(x = date, y = wealth.index, color = symbol)) +
geom_line(linewidth = 1) +
labs(title = "MA and V: Stock Prices") +
theme_tq() +
scale_color_tq()
TQ02-quant-integrations-in-tidyquant.R
In this example we use several of the
PerformanceAnalytics
functions to clean and format returns.
The example uses three progressive applications of
tq_transmute
to apply various quant functions to the
grouped stock prices from the FANG
data set. First, we
calculate daily returns using quantmod::periodReturn
. Next,
we use Return.clean
to clean outliers from the return data.
The alpha
parameter is the percentage of outliers to be
cleaned. Finally, the excess returns are calculated using a risk-free
rate of 3% (divided by 252 for 252 trade days in one year).
FANG %>%
group_by(symbol) %>%
tq_transmute(adjusted, periodReturn, period = "daily") %>%
tq_transmute(daily.returns, Return.clean, alpha = 0.05) %>%
tq_transmute(daily.returns, Return.excess, Rf = 0.03 / 252)
## # A tibble: 4,032 × 3
## # Groups: symbol [4]
## symbol date `daily.returns > Rf`
## <chr> <date> <dbl>
## 1 META 2013-01-02 -0.000119
## 2 META 2013-01-03 -0.00833
## 3 META 2013-01-04 0.0355
## 4 META 2013-01-07 0.0228
## 5 META 2013-01-08 -0.0124
## 6 META 2013-01-09 0.0525
## 7 META 2013-01-10 0.0231
## 8 META 2013-01-11 0.0133
## 9 META 2013-01-14 -0.0244
## 10 META 2013-01-15 -0.0276
## # ℹ 4,022 more rows
TQ02-quant-integrations-in-tidyquant.R