

Semigroups 2

Semigroups
A package for semigroups and monoids

5.5.4

29 August 2025

James Mitchell

Marina Anagnostopoulou-Merkouri

Thomas Breuer

Stuart Burrell

Reinis Cirpons

Tom Conti-Leslie

Joseph Edwards

Attila Egri-Nagy

Luke Elliott

Fernando Flores Brito

Tillman Froehlich

Nick Ham

Robert Hancock

Semigroups 3

Max Horn

Christopher Jefferson

Julius Jonusas

Chinmaya Nagpal

Olexandr Konovalov

Artemis Konstantinidi

Hyeokjun Kwon

Dima V. Pasechnik

Markus Pfeiffer

Christopher Russell

Jack Schmidt

Sergio Siccha

Finn Smith

Ben Spiers

Nicolas Thiéry

Maria Tsalakou

Chris Wensley

Murray Whyte

Wilf A. Wilson

Tianrun Yang

Semigroups 4

Michael Young

Fabian Zickgraf

James Mitchell
Email: jdm3@st-andrews.ac.uk
Homepage: https://jdbm.me
Address: Mathematical Institute, North Haugh, St Andrews, Fife,

KY16 9SS, Scotland

Marina Anagnostopoulou-Merkouri
Email: marina.anagnostopoulou-merkouri@bristol.ac.uk
Homepage: https://marinaanagno.github.io

Thomas Breuer
Email: sam@math.rwth-aachen.de
Homepage: https://www.math.rwth-aachen.de/~Thomas.Breuer/

Stuart Burrell
Email: stuartburrell1994@gmail.com
Homepage: https://stuartburrell.github.io

Reinis Cirpons
Email: rc234@st-andrews.ac.uk
Homepage: https://reinisc.id.lv/
Address: Mathematical Institute, North Haugh, St Andrews, Fife,

KY16 9SS, Scotland

Tom Conti-Leslie
Email: tom.contileslie@gmail.com
Homepage: https://tomcontileslie.com/

Joseph Edwards
Email: jde1@st-andrews.ac.uk
Homepage: https://github.com/Joseph-Edwards
Address: Mathematical Institute, North Haugh, St Andrews, Fife,

KY16 9SS, Scotland

Attila Egri-Nagy
Email: attila@egri-nagy.hu
Homepage: http://www.egri-nagy.hu

mailto://jdm3@st-andrews.ac.uk
https://jdbm.me
mailto://marina.anagnostopoulou-merkouri@bristol.ac.uk
https://marinaanagno.github.io
mailto://sam@math.rwth-aachen.de
https://www.math.rwth-aachen.de/~Thomas.Breuer/
mailto://stuartburrell1994@gmail.com
https://stuartburrell.github.io
mailto://rc234@st-andrews.ac.uk
https://reinisc.id.lv/
mailto://tom.contileslie@gmail.com
https://tomcontileslie.com/
mailto://jde1@st-andrews.ac.uk
https://github.com/Joseph-Edwards
mailto://attila@egri-nagy.hu
http://www.egri-nagy.hu

Semigroups 5

Luke Elliott
Email: le27@st-andrews.ac.uk
Homepage: https://le27.github.io/Luke-Elliott/
Address: Mathematical Institute, North Haugh, St Andrews, Fife,

KY16 9SS, Scotland

Fernando Flores Brito
Email: ffloresbrito@gmail.com

Tillman Froehlich
Email: trf1@st-andrews.ac.uk

Nick Ham
Email: nicholas.charles.ham@gmail.com
Homepage: https://n-ham.github.io

Robert Hancock
Email: robert.hancock@maths.ox.ac.uk
Homepage: https://sites.google.com/view/robert-hancock/

Max Horn
Email: mhorn@rptu.de
Homepage: https://www.quendi.de/math
Address: Fachbereich Mathematik, RPTU Kaiserslautern-Landau,

Gottlieb-Daimler-Straße 48, 67663 Kaiserslautern,
Germany

Christopher Jefferson
Email: caj21@st-andrews.ac.uk
Homepage: https://heather.cafe/
Address: Jack Cole Building, North Haugh, St Andrews, Fife,

KY16 9SX, Scotland

Julius Jonusas
Email: j.jonusas@gmail.com
Homepage: http://julius.jonusas.work

Olexandr Konovalov
Email: obk1@st-andrews.ac.uk
Homepage: https://olexandr-konovalov.github.io/
Address: Jack Cole Building, North Haugh, St Andrews, Fife,

KY16 9SX, Scotland

Dima V. Pasechnik
Email: dmitrii.pasechnik@cs.ox.ac.uk
Homepage: http://users.ox.ac.uk/~coml0531/

mailto://le27@st-andrews.ac.uk
https://le27.github.io/Luke-Elliott/
mailto://ffloresbrito@gmail.com
mailto://trf1@st-andrews.ac.uk
mailto://nicholas.charles.ham@gmail.com
https://n-ham.github.io
mailto://robert.hancock@maths.ox.ac.uk
https://sites.google.com/view/robert-hancock/
mailto://mhorn@rptu.de
https://www.quendi.de/math
mailto://caj21@st-andrews.ac.uk
https://heather.cafe/
mailto://j.jonusas@gmail.com
http://julius.jonusas.work
mailto://obk1@st-andrews.ac.uk
https://olexandr-konovalov.github.io/
mailto://dmitrii.pasechnik@cs.ox.ac.uk
http://users.ox.ac.uk/~coml0531/

Semigroups 6

Address: Pembroke College, St. Aldates, Oxford OX1 1DW,
England

Markus Pfeiffer
Email: markus.pfeiffer@morphism.de
Homepage: https://markusp.morphism.de/

Jack Schmidt
Email: jack.schmidt@uky.edu
Homepage: https://www.ms.uky.edu/~jack/

Sergio Siccha
Email: sergio.siccha@gmail.com

Finn Smith
Email: fls3@st-andrews.ac.uk
Homepage: https://flsmith.github.io/
Address: Mathematical Institute, North Haugh, St Andrews, Fife,

KY16 9SS, Scotland

Nicolas Thiéry
Email: nthiery@users.sf.net
Homepage: https://nicolas.thiery.name/

Maria Tsalakou
Email: mt200@st-andrews.ac.uk
Homepage: https://mariatsalakou.github.io/
Address: Mathematical Institute, North Haugh, St Andrews, Fife,

KY16 9SS, Scotland

Chris Wensley
Email: cdwensley.maths@btinternet.com

Murray Whyte
Email: mw231@st-andrews.ac.uk
Address: Mathematical Institute, North Haugh, St Andrews, Fife,

KY16 9SS, Scotland

Wilf A. Wilson
Email: gap@wilf-wilson.net
Homepage: https://wilf.me

Michael Young
Email: mct25@st-andrews.ac.uk
Homepage: https://mtorpey.github.io/
Address: Jack Cole Building, North Haugh, St Andrews, Fife,

KY16 9SX, Scotland

mailto://markus.pfeiffer@morphism.de
https://markusp.morphism.de/
mailto://jack.schmidt@uky.edu
https://www.ms.uky.edu/~jack/
mailto://sergio.siccha@gmail.com
mailto://fls3@st-andrews.ac.uk
https://flsmith.github.io/
mailto://nthiery@users.sf.net
https://nicolas.thiery.name/
mailto://mt200@st-andrews.ac.uk
https://mariatsalakou.github.io/
mailto://cdwensley.maths@btinternet.com
mailto://mw231@st-andrews.ac.uk
mailto://gap@wilf-wilson.net
https://wilf.me
mailto://mct25@st-andrews.ac.uk
https://mtorpey.github.io/

Semigroups 7

Fabian Zickgraf
Email: f.zickgraf@dashdos.com

mailto://f.zickgraf@dashdos.com

Semigroups 2

Abstract
The Semigroups package is a GAP package for semigroups, and monoids. There are particularly efficient
methods for finitely presented semigroups and monoids, and for semigroups and monoids consisting of
transformations, partial permutations, bipartitions, partitioned binary relations, subsemigroups of regular Rees
0-matrix semigroups, and matrices of various semirings including boolean matrices, matrices over finite fields,
and certain tropical matrices. Semigroups contains efficient methods for creating semigroups, monoids, and
inverse semigroups and monoids, calculating their Green’s structure, ideals, size, elements, group of units,
small generating sets, testing membership, finding the inverses of a regular element, factorizing elements over
the generators, and so on. It is possible to test if a semigroup satisfies a particular property, such as if it is
regular, simple, inverse, completely regular, and a large number of further properties. There are methods for
finding presentations for a semigroup, the congruences of a semigroup, the maximal subsemigroups of a finite
semigroup, smaller degree partial permutation representations, and the character tables of inverse semigroups.
There are functions for producing pictures of the Green’s structure of a semigroup, and for drawing graphical
representations of certain types of elements.

Copyright
© by J. D. Mitchell et al.

Semigroups is free software; you can redistribute it and/or modify it, under the terms of the GNU General
Public License, version 3 of the License, or (at your option) any later, version.

Acknowledgements
The authors of the Semigroups package would like to thank:

Manuel Delgado
who contributed to the function DotString (16.1.1).

Casey Donoven and Rhiannon Dougall
for their contribution to the development of the algorithms for maximal subsemigroups and smaller de-
gree partial permutation representations.

James East
who contributed to the part of the package relating to bipartitions. We also thank the University of
Western Sydney for their support of the development of this part of the package.

Zak Mesyan
who contributed to the code for graph inverse semigroups; see Section 7.10.

Yann Péresse and Yanhui Wang
who contributed to the attribute MunnSemigroup (7.2.1).

Jhevon Smith and Ben Steinberg
who contributed the function CharacterTableOfInverseSemigroup (11.15.10).

We would also like to acknowledge the support of: EPSRC grant number GR/S/56085/01; the Carnegie Trust
for the Universities of Scotland for funding the PhD scholarships of Julius Jonušas and Wilf A. Wilson when

Semigroups 3

they worked on this project; the Engineering and Physical Sciences Research Council (EPSRC) for funding
the PhD scholarships of F. Smith (EP/N509759/1) and M. Young (EP/M506631/1) when they worked on this
project.

Contents

1 The Semigroups package 8
1.1 Introduction . 8
1.2 Overview . 8

2 Installing Semigroups 10
2.1 For those in a hurry . 10
2.2 Compiling the kernel module . 11
2.3 Rebuilding the documentation . 11
2.4 Testing your installation . 12
2.5 More information during a computation . 13

3 Bipartitions and blocks 14
3.1 The family and categories of bipartitions . 15
3.2 Creating bipartitions . 16
3.3 Changing the representation of a bipartition . 18
3.4 Operators for bipartitions . 22
3.5 Attributes for bipartitons . 24
3.6 Creating blocks and their attributes . 30
3.7 Actions on blocks . 32
3.8 Semigroups of bipartitions . 33

4 Partitioned binary relations (PBRs) 36
4.1 The family and categories of PBRs . 36
4.2 Creating PBRs . 36
4.3 Changing the representation of a PBR . 38
4.4 Operators for PBRs . 41
4.5 Attributes for PBRs . 41
4.6 Semigroups of PBRs . 46

5 Matrices over semirings 48
5.1 Creating matrices over semirings . 49
5.2 Operators for matrices over semirings . 57
5.3 Boolean matrices . 57
5.4 Matrices over finite fields . 67
5.5 Matrices over the integers . 68
5.6 Max-plus and min-plus matrices . 70

4

Semigroups 5

5.7 Matrix semigroups . 71

6 Semigroups and monoids defined by generating sets 74
6.1 Underlying algorithms . 74
6.2 Semigroups represented by generators . 77
6.3 Options when creating semigroups . 77
6.4 Subsemigroups and supersemigroups . 79
6.5 Changing the representation of a semigroup . 82
6.6 Random semigroups . 91

7 Standard examples 94
7.1 Transformation semigroups . 94
7.2 Semigroups of partial permutations . 97
7.3 Semigroups of bipartitions . 99
7.4 Standard PBR semigroups . 106
7.5 Semigroups of matrices over a finite field . 106
7.6 Semigroups of boolean matrices . 108
7.7 Semigroups of matrices over a semiring . 110
7.8 Examples in various representations . 111
7.9 Free bands . 117
7.10 Graph inverse semigroups . 120
7.11 Free inverse semigroups . 124

8 Standard constructions 129
8.1 Products of semigroups . 129
8.2 Dual semigroups . 130
8.3 Strong semilattices of semigroups . 132
8.4 McAlister triple semigroups . 135

9 Ideals 140
9.1 Creating ideals . 140
9.2 Attributes of ideals . 141

10 Green’s relations 144
10.1 Creating Green’s classes and representatives . 144
10.2 Iterators and enumerators of classes and representatives 155
10.3 Properties of Green’s classes . 156
10.4 Attributes of Green’s classes . 158
10.5 Operations for Green’s relations and classes . 164

11 Attributes and operations for semigroups 166
11.1 Accessing the elements of a semigroup . 166
11.2 Cayley graphs . 168
11.3 Random elements of a semigroup . 168
11.4 Properties of elements in a semigroup . 169
11.5 Operations for elements in a semigroup . 170
11.6 Expressing semigroup elements as words in generators 170
11.7 Generating sets . 174

Semigroups 6

11.8 Minimal ideals and multiplicative zeros . 179
11.9 Group of units and identity elements . 182
11.10Idempotents . 183
11.11Maximal subsemigroups . 186
11.12Attributes of transformations and transformation semigroups 189
11.13Attributes of partial perm semigroups . 193
11.14Attributes of Rees (0-)matrix semigroups . 195
11.15Attributes of inverse semigroups . 196
11.16Nambooripad partial order . 202

12 Properties of semigroups 204
12.1 Arbitrary semigroups . 204
12.2 Inverse semigroups . 218

13 Congruences 225
13.1 Semigroup congruence objects . 225
13.2 Creating congruences . 227
13.3 Congruence classes . 229
13.4 Finding the congruences of a semigroup . 233
13.5 Comparing congruences . 244
13.6 Congruences on Rees matrix semigroups . 245
13.7 Congruences on inverse semigroups . 249
13.8 Congruences on graph inverse semigroups . 252
13.9 Rees congruences . 255
13.10Universal and trivial congruences . 256

14 Semigroup homomorphisms 258
14.1 Homomorphisms of arbitrary semigroups . 258
14.2 Isomorphisms of arbitrary semigroups . 262
14.3 Isomorphisms of Rees (0-)matrix semigroups . 268

15 Finitely presented semigroups and Tietze transformations 273
15.1 Changing representation for words and strings . 273
15.2 Helper functions . 275
15.3 Creating Tietze transformation objects . 277
15.4 Printing Tietze transformation objects . 280
15.5 Changing Tietze transformation objects . 282
15.6 Converting a Tietze transformation object into a fp semigroup 285
15.7 Automatically simplifying a Tietze transformation object 287
15.8 Automatically simplifying an fp semigroup . 289

16 Visualising semigroups and elements 293
16.1 dot pictures . 293
16.2 tex output . 295
16.3 tikz pictures . 296

Semigroups 7

17 IO 299
17.1 Reading and writing elements to a file . 299
17.2 Reading and writing multiplication tables to a file 300

18 Translations 302
18.1 Methods for translations . 303

References 311

Index 312

Chapter 1

The Semigroups package

1.1 Introduction

This is the manual for the Semigroups package for GAP version 5.5.4. Semigroups 5.5.4 is a
distant descendant of the Monoid package for GAP 3 by Goetz Pfeiffer, Steve A. Linton, Edmund F.
Robertson, and Nik Ruskuc.

From Version 3.0.0, Semigroups includes a copy of the libsemigroups C++ library which contains
implementations of the Froidure-Pin, Todd-Coxeter, and Knuth-Bendix algorithms (among others)
that Semigroups utilises.

If you find a bug or an issue with the package, please visit the issue tracker.

1.2 Overview

This manual is organised as follows:

Part I: elements
the different types of elements that are introduced in Semigroups are described in Chapters 3,
4, and 5. These include Bipartition (3.2.1), PBR (4.2.1), and Matrix (5.1.5), which supple-
ment those already defined in the GAP library, such as Transformation (Reference: Trans-
formation for an image list) or PartialPerm (Reference: PartialPerm for a domain and
image).

Part II: semigroups and monoids defined by generating sets
functions and operations for creating semigroups and monoids defined by generating sets (of
the type described in Part I) are described in Chapter 6.

Part III: standard examples and constructions
standard examples of semigroups, such as FullBooleanMatMonoid (7.6.1) or
UniformBlockBijectionMonoid (7.3.8), are described in Chapter 7, and standard con-
structions, such as DirectProduct (8.1.1) are given in Chapter 8.

Part IV: the structure of a semigroup or monoid
the functionality for determining various structural properties of a given semigroup or monoid
are described in Chapters 9, 10, 11, and 12.

8

 http://schmidt.nuigalway.ie/monoid/index.html
https://libsemigroups.readthedocs.io/en/latest/
 https://github.com/semigroups/Semigroups/issues

Semigroups 9

Part V: congruences, quotients, and homomorphisms
methods for creating and manipulating congruences and homomorphisms are described by
Chapters 13 and 14.

Part VI: finitely presented semigroups and monoids
methods for finitely presented semigroups and monoids, in particular, for Tietze transformations
can be found in Chapters 15.

Part VII: utilities and helper functions
functions for reading and writing semigroups and their elements, and for visualising semigroups,
and some of their elements, can be found in Chapters 16 and 17.

Chapter 2

Installing Semigroups

2.1 For those in a hurry

In this section we give a brief description of how to start using Semigroups.
It is assumed that you have a working copy of GAP with version number 4.12.1 or higher. The

most up-to-date version of GAP and instructions on how to install it can be obtained from the main
GAP webpage https://www.gap-system.org.

The following is a summary of the steps that should lead to a successful installation of Semi-
groups:

• ensure that the datastructures package version 0.2.5 or higher is available. datastructures must
be compiled before Semigroups can be loaded.

• ensure that the digraphs package version 1.6.2 or higher is available. digraphs must be com-
piled before Semigroups can be loaded.

• ensure that the genss package version 1.6.5 or higher is available.

• ensure that the images package version 1.3.1 or higher is available.

• ensure that the IO package version 4.5.1 or higher is available. IO must be compiled before
Semigroups can be loaded.

• ensure that the orb package version 4.8.2 or higher is available. orb and Semigroups both
perform better if orb is compiled.

• download the package archive semigroups-5.5.4.tar.gz from the Semigroups package
webpage.

• unzip and untar the file, this should create a directory called semigroups-5.5.4.

• locate your GAP directory, the one containing the directories lib, doc and so on. Move the
directory semigroups-5.5.4.tar.gz into the pkg subdirectory of your GAP directory.

• from version 3.0.0, it is necessary to compile the Semigroups package. Semigroups uses the
libsemigroups C++ library, which requires a compiler implementing the C++14 standard. Inside
the pkg/semigroups-5.5.4 directory, in your terminal type

10

https://www.gap-system.org
https://gap-packages.github.io/datastructures
https://gap-packages.github.io/datastructures
https://gap-packages.github.io/genss
https://gap-packages.github.io/images/
https://gap-packages.github.io/io
https://gap-packages.github.io/io
https://gap-packages.github.io/orb
https://gap-packages.github.io/orb
https://gap-packages.github.io/orb
https://semigroups.github.io/Semigroups
https://semigroups.github.io/Semigroups
 https://libsemigroups.github.io/libsemigroups/

Semigroups 11

./configure && make

Further information about this step can be found in Section 2.2.

• start GAP in the usual way (i.e. type gap at the command line).

• type LoadPackage("semigroups");

PLEASE NOTE THAT from version 3.0.0: Semigroups can only be loaded if it has been compiled.
If you want to check that the package is working correctly, you should run some of the tests

described in Section 2.4.

2.2 Compiling the kernel module

As of version 3.0.0, the Semigroups package has a kernel module written in C++ and this must
be compiled. The kernel module contains the interface to the C++ library libsemigroups . It is not
possible to use the Semigroups package without compiling it.

To compile the kernel component inside the pkg/semigroups-5.5.4.tar.gz directory, type

./configure && make

If you are using GCC to compile Semigroups, then version 5.0 or higher is required. Trying to
compile Semigroups with an earlier version of GCC will result in an error at compile time. Semi-
groups only supports GCC version 5.0 or higher, and clang version 5.0 or higher.

If you installed the package in a pkg directory other than the standard pkg directory in your GAP
installation, then you have to do two things. Firstly during compilation you have to use the option
--with-gaproot=PATH of the configure script where PATH is a path to the main GAP root directory
(if not given the default ../.. is assumed).

If you installed GAP on several architectures, you must execute the configure/make step for each
of the architectures. You can either do this immediately after configuring and compiling GAP itself
on this architecture, or alternatively set the environment variable CONFIGNAME to the name of the
configuration you used when compiling GAP before running ./configure. Note however that your
compiler choice and flags (environment variables CC and CFLAGS) need to be chosen to match the setup
of the original GAP compilation. For example you have to specify 32-bit or 64-bit mode correctly!

2.3 Rebuilding the documentation

The Semigroups package comes complete with pdf, html, and text versions of the documentation.
However, you might find it necessary, at some point, to rebuild the documentation. To rebuild the
documentation the GAPDoc and AutoDoc packages are required. To rebuild the documentation type:

gap makedoc.g

when you’re inside the pkg/semigroups-5.5.4 directory.

https://libsemigroups.readthedocs.io/en/latest/
https://gap-packages.github.io/AutoDoc

Semigroups 12

2.4 Testing your installation

In this section we describe how to test that Semigroups is working as intended. To quickly
test that Semigroups is installed correctly use SemigroupsTestInstall (2.4.1). For more ex-
tensive tests use SemigroupsTestStandard (2.4.2). Finally, for lengthy benchmarking tests use
SemigroupsTestExtreme (2.4.3).

If something goes wrong, then please review the instructions in Section 2.1 and ensure that Semi-
groups has been properly installed. If you continue having problems, please use the issue tracker to
report the issues you are having.

2.4.1 SemigroupsTestInstall

▷ SemigroupsTestInstall() (function)

Returns: true or false.
This function should be called with no argument to test your installation of Semigroups is work-

ing correctly. These tests should take no more than a few seconds to complete. To more comprehen-
sively test that Semigroups is installed correctly use SemigroupsTestStandard (2.4.2).

2.4.2 SemigroupsTestStandard

▷ SemigroupsTestStandard() (function)

Returns: A list indicating which tests passed and failed and the time take to run each file.
This function should be called with no argument to comprehensively test that Semigroups is

working correctly. These tests should take no more than a few minutes to complete. To quickly test
that Semigroups is installed correctly use SemigroupsTestInstall (2.4.1).

Each test file is run twice, once when the methods for IsActingSemigroup (6.1.2) are enabled
and once when they are disabled.

2.4.3 SemigroupsTestExtreme

▷ SemigroupsTestExtreme() (function)

Returns: A list indicating which tests passed and failed and the time take to run each file.
This function should be called with no argument to run some long-running tests, which

could be used to benchmark Semigroups or test your hardware. These tests should take
no more than around half an hour to complete. To quickly test that Semigroups is in-
stalled correctly use SemigroupsTestInstall (2.4.1), or to test all aspects of the package use
SemigroupsTestStandard (2.4.2).

Each test file is run twice, once when the methods for semigroups satisfying IsActingSemigroup
(6.1.2) are enabled and once when they are disabled.

2.4.4 SemigroupsTestAll

▷ SemigroupsTestAll() (function)

Returns: true or false.
This function should be called with no argument to compile the Semigroups package’s documen-

tation, run the standard suite of tests, and run all the examples from the documentation to ensure that
their output is correct. The value returned is true if all the tests succeed, and false otherwise. The
whole process should take no more than a few minutes.

https://github.com/semigroups/Semigroups/issues

Semigroups 13

See SemigroupsTestStandard (2.4.2).

2.5 More information during a computation

2.5.1 InfoSemigroups

▷ InfoSemigroups (info class)

InfoSemigroups is the info class of the Semigroups package. The info level is initially set
to 0 and no info messages are displayed. To increase the amount of information displayed during a
computation increase the info level to 2 or 3. To stop all info messages from being displayed, set the
info level to 0. See also (Reference: Info Functions) and SetInfoLevel (Reference: InfoLevel).

Chapter 3

Bipartitions and blocks

In this chapter we describe the functions in Semigroups for creating and manipulating bipartitions
and semigroups of bipartitions. We begin by describing what these objects are.

A partition of a set X is a set of pairwise disjoint non-empty subsets of X whose union is X . A
partition of X is the collection of equivalence classes of an equivalence relation on X , and vice versa.

Let n ∈N , let n = {1,2, . . . ,n}, and let −n = {−1,−2, . . . ,−n}.
The partition monoid of degree n is the set of all partitions of n ∪-n with a multiplication we

describe below. To avoid conflict with other uses of the word "partition" in GAP, and to reflect their
definition, we have opted to refer to the elements of the partition monoid as bipartitions of degree n ;
we will do so from this point on.

Let x be any bipartition of degree n . Then x is a set of pairwise disjoint non-empty subsets of n
∪-n whose union is n ∪-n ; these subsets are called the blocks of x . A block containing elements of
both n and -n is called a transverse block. If i , j ∈n ∪-n belong to the same block of a bipartition x ,
then we write (i , j)∈x .

Let x and y be bipartitions of degree n . Their product x y can be described as follows. Define n
’= {1′,2′, . . . ,n′}. From x , create a partition x ’ of the set n ∪n ’ by replacing each negative point -i
in a block of x by the point i ’, and create from y a partition y ’ of the set n ’∪-n by replacing each
positive point i in a block of y by the point i ’. Then define a relation on the set n ∪n ’∪-n , where i
and j are related if they are related in either x ’ or y ’, and let p be the transitive closure of this relation.
Finally, define x y to be the bipartition of degree n defined by the restriction of the equivalence relation
p to the set n ∪-n .

Equivalently, the product x y is defined to be the bipartition where i , j ∈n ∪-n (we assume without
loss of generality that i ≥ j) belong to the same block of x y if either:

• i = j ,

• i , j ∈ n and (i , j)∈ x , or

• i , j ∈ -n and (i , j)∈ y ;

or there exists r ∈N and k(1),k(2), . . . ,k(r) ∈ n , and one of the following holds:

• r = 2s−1 for some s ≥ 1 , i ∈n , j ∈ -n and

(i,−k(1)) ∈ x, (k(1),k(2)) ∈ y, (−k(2),−k(3)) ∈ x, . . . ,

. . . , (−k(2s−2),−k(2s−1)) ∈ x, (k(2s−1), j) ∈ y;

14

Semigroups 15

• r = 2s for some s ≥ 1 , and either i , j ∈n , and

(i,−k(1)) ∈ x, (k(1),k(2)) ∈ y, (−k(2),−k(3)) ∈ x, . . . ,(k(2s−1),k(2s)) ∈ y, (−k(2s), j) ∈ x,

or i , j ∈-n , and

(i,k(1)) ∈ y, (−k(1),−k(2)) ∈ x, (k(2),k(3)) ∈ y, . . . ,(−k(2s−1),−k(2s)) ∈ x, (k(2s), j) ∈ y.

This multiplication can be shown to be associative, and so the collection of all bipartitions of any
particular degree is a monoid; the identity element of the partition monoid of degree n is the bipartition
{{i,−i} : i ∈ n}. A bipartition is a unit if and only if each block is of the form {i ,- j } for some i , j
∈n . Hence the group of units is isomorphic to the symmetric group on n .

Let x be a bipartition of degree n . Then we define x ∗ to be the bipartition obtained from x by
replacing i by -i and -i by i in every block of x for all i ∈n . It is routine to verify that if x and y are
arbitrary bipartitions of equal degree, then

(x∗)∗ = x, xx∗x = x, x∗xx∗ = x∗, (xy)∗ = y∗x∗.

In this way, the partition monoid is a regular *-semigroup.
A bipartition x of degree n is called planar if there do not exist distinct blocks A,U ∈ x , along

with a,b ∈ A and u,v ∈ U , such that a < u < b < v. Define p to be the bipartition of degree n with
blocks {{i,−(i+1)} : i ∈ {1, . . . ,n−1}} and {n,−1} . Note that p is a unit. A bipartition x of degree
n is called annular if x = piyp j for some planar bipartition y of degree n , and some integers i and j .

From a graphical perspective, as on Page 873 in [HR05], a bipartition of degree n is planar if it can
be represented as a graph without edges crossing inside of the rectangle formed by its vertices n ∪-n .
Similarly, as shown in Figure 2 in [Aui12], a bipartition of degree n is annular if it can be represented
as a graph without edges crossing inside an annulus.

3.1 The family and categories of bipartitions

3.1.1 IsBipartition

▷ IsBipartition(obj) (Category)

Returns: true or false.
Every bipartition in GAP belongs to the category IsBipartition. Basic operations for biparti-

tions are RightBlocks (3.5.5), LeftBlocks (3.5.6), ExtRepOfObj (3.5.3), LeftProjection (3.2.4),
RightProjection (3.2.5), StarOp (3.2.6), DegreeOfBipartition (3.5.1), RankOfBipartition
(3.5.2), multiplication of two bipartitions of equal degree is via *.

3.1.2 IsBipartitionCollection

▷ IsBipartitionCollection(obj) (Category)

▷ IsBipartitionCollColl(obj) (Category)

Returns: true or false.
Every collection of bipartitions belongs to the category IsBipartitionCollection. For exam-

ple, bipartition semigroups belong to IsBipartitionCollection.
Every collection of collections of bipartitions belongs to IsBipartitionCollColl. For example,

a list of bipartition semigroups belongs to IsBipartitionCollColl.

Semigroups 16

3.2 Creating bipartitions

There are several ways of creating bipartitions in GAP, which are described in this section. The
maximum degree of a bipartition is set as 2 ^ 29 - 1. In reality, it is unlikely to be possible to create
bipartitions of degrees as small as 2 ^ 24 because they require too much memory.

3.2.1 Bipartition

▷ Bipartition(blocks) (function)

Returns: A bipartition.
Bipartition returns the bipartition x with equivalence classes blocks , which should be a list of

duplicate-free lists whose union is [-n .. -1] union [1 .. n] for some positive integer n.
Bipartition returns an error if the argument does not define a bipartition.

Example
gap> x := Bipartition([[1, -1], [2, 3, -3], [-2]]);
<bipartition: [1, -1], [2, 3, -3], [-2]>

3.2.2 BipartitionByIntRep

▷ BipartitionByIntRep(list) (operation)

Returns: A bipartition.
It is possible to create a bipartition using its internal representation. The argument list must be

a list of positive integers not greater than n, of length 2 * n, and where i appears in the list only if
i-1 occurs earlier in the list.

For example, the internal representation of the bipartition with blocks
Example

[1, -1], [2, 3, -2], [-3]

has internal representation
Example

[1, 2, 2, 1, 2, 3]

The internal representation indicates that the number 1 is in class 1, the number 2 is in class 2, the
number 3 is in class 2, the number -1 is in class 1, the number -2 is in class 2, and -3 is in class 3. As
another example, [1, 3, 2, 1] is not the internal representation of any bipartition since there is no
2 before the 3 in the second position.

In its first form BipartitionByIntRep verifies that the argument list is the internal represen-
tation of a bipartition.

See also IntRepOfBipartition (3.5.4).
Example

gap> BipartitionByIntRep([1, 2, 2, 1, 3, 4]);
<bipartition: [1, -1], [2, 3], [-2], [-3]>

3.2.3 IdentityBipartition

▷ IdentityBipartition(n) (operation)

Returns: The identity bipartition.
Returns the identity bipartition with degree n .

Semigroups 17

Example
gap> IdentityBipartition(10);
<block bijection: [1, -1], [2, -2], [3, -3], [4, -4],
[5, -5], [6, -6], [7, -7], [8, -8], [9, -9], [10, -10]>

3.2.4 LeftOne (for a bipartition)

▷ LeftOne(x) (attribute)

▷ LeftProjection(x) (attribute)

Returns: A bipartition.
The LeftProjection of a bipartition x is the bipartition x * Star(x). It is so-named, since

the left and right blocks of the left projection equal the left blocks of x .
The left projection e of x is also a bipartition with the property that e * x = x . LeftOne and

LeftProjection are synonymous.
Example

gap> x := Bipartition([
> [1, 4, -1, -2, -6], [2, 3, 5, -4], [6, -3], [-5]]);;
gap> LeftOne(x);
<block bijection: [1, 4, -1, -4], [2, 3, 5, -2, -3, -5],
[6, -6]>

gap> LeftBlocks(x);
<blocks: [1*, 4*], [2*, 3*, 5*], [6*]>
gap> RightBlocks(LeftOne(x));
<blocks: [1*, 4*], [2*, 3*, 5*], [6*]>
gap> LeftBlocks(LeftOne(x));
<blocks: [1*, 4*], [2*, 3*, 5*], [6*]>
gap> LeftOne(x) * x = x;
true

3.2.5 RightOne (for a bipartition)

▷ RightOne(x) (attribute)

▷ RightProjection(x) (attribute)

Returns: A bipartition.
The RightProjection of a bipartition x is the bipartition Star(x) * x . It is so-named, since

the left and right blocks of the right projection equal the right blocks of x .
The right projection e of x is also a bipartition with the property that x * e = x . RightOne and

RightProjection are synonymous.
Example

gap> x := Bipartition([[1, -1, -4], [2, -2, -3], [3, 4], [5, -5]]);;
gap> RightOne(x);
<block bijection: [1, 4, -1, -4], [2, 3, -2, -3], [5, -5]>
gap> RightBlocks(RightOne(x));
<blocks: [1*, 4*], [2*, 3*], [5*]>
gap> LeftBlocks(RightOne(x));
<blocks: [1*, 4*], [2*, 3*], [5*]>
gap> RightBlocks(x);
<blocks: [1*, 4*], [2*, 3*], [5*]>
gap> x * RightOne(x) = x;
true

Semigroups 18

3.2.6 StarOp (for a bipartition)

▷ StarOp(x) (operation)

▷ Star(x) (attribute)

Returns: A bipartition.
StarOp returns the unique bipartition g with the property that: x * g * x = x ,

RightBlocks(x) = LeftBlocks(g), and LeftBlocks(x) = RightBlocks(g). The star g can
be obtained from x by changing the sign of every integer in the external representation of x .

Example
gap> x := Bipartition([[1, -4], [2, 3, 4], [5], [-1], [-2, -3], [-5]]);
<bipartition: [1, -4], [2, 3, 4], [5], [-1], [-2, -3],
[-5]>

gap> y := Star(x);
<bipartition: [1], [2, 3], [4, -1], [5], [-2, -3, -4],
[-5]>

gap> x * y * x = x;
true
gap> LeftBlocks(x) = RightBlocks(y);
true
gap> RightBlocks(x) = LeftBlocks(y);
true

3.2.7 RandomBipartition

▷ RandomBipartition([rs,]n) (operation)

▷ RandomBlockBijection([rs,]n) (operation)

Returns: A bipartition.
If n is a positive integer, then RandomBipartition returns a random bipartition of degree n , and

RandomBlockBijection returns a random block bijection of degree n .
If the optional first argument rs is a random source, then this is used to generate the bipartition

returned by RandomBipartition and RandomBlockBijection.
Note that neither of these functions has a uniform distribution.

Example
gap> x := RandomBipartition(6);
<bipartition: [1, 2, 3, 4], [5], [6, -2, -3, -4], [-1, -5], [-6]>
gap> x := RandomBlockBijection(4);
<block bijection: [1, 4, -2], [2, -4], [3, -1, -3]>

3.3 Changing the representation of a bipartition

It is possible that a bipartition can be represented as another type of object, or that another type of GAP
object can be represented as a bipartition. In this section, we describe the functions in the Semigroups
package for changing the representation of bipartition, or for changing the representation of another
type of object to that of a bipartition.

The operations AsPermutation (3.3.5), AsPartialPerm (3.3.4), AsTransformation (3.3.3) can
be used to convert bipartitions into permutations, partial permutations, or transformations where ap-
propriate.

Semigroups 19

3.3.1 AsBipartition

▷ AsBipartition(x[, n]) (operation)

Returns: A bipartition.
AsBipartition returns the bipartition, permutation, transformation, or partial permutation x , as

a bipartition of degree n .
There are several possible arguments for AsBipartition:

permutations
If x is a permutation and n is a positive integer, then AsBipartition(x, n) returns the bi-
partition on [1 .. n] with classes [i, i ^ x] for all i = 1 .. n.

If no positive integer n is specified, then the largest moved point of x is used as the value for n ;
see LargestMovedPoint (Reference: LargestMovedPoint for a permutation).

transformations
If x is a transformation and n is a positive integer such that x is a transformation of [1 .. n],
then AsTransformation returns the bipartition with classes (i) f−1 ∪{i} for all i in the image
of x .

If the positive integer n is not specified, then the degree of x is used as the value for n .

partial permutations
If x is a partial permutation and n is a positive integer, then AsBipartition returns the biparti-
tion with classes [i, i ^ x] for i in [1 .. n]. Thus the degree of the returned bipartition
is the maximum of n and the values i ^ x where i in [1 .. n].

If the optional argument n is not present, then the default value of the maximum of the largest
moved point and the largest image of a moved point of x plus 1 is used.

bipartitions
If x is a bipartition and n is a non-negative integer, then AsBipartition returns a bipartition
corresponding to x with degree n .

If n equals the degree of x , then x is returned. If n is less than the degree of x , then this function
returns the bipartition obtained from x by removing the values exceeding n or less than -n from
the blocks of x . If n is greater than the degree of x , then this function returns the bipartition
with the same blocks as x and the singleton blocks i and -i for all i greater than the degree of
x

pbrs If x is a pbr satisfying IsBipartitionPBR (4.5.8) and n is a non-negative integer, then
AsBipartition returns the bipartition corresponding to x with degree n .

Example
gap> x := Transformation([3, 5, 3, 4, 1, 2]);;
gap> AsBipartition(x, 5);
<bipartition: [1, 3, -3], [2, -5], [4, -4], [5, -1], [-2]>
gap> AsBipartition(x);
<bipartition: [1, 3, -3], [2, -5], [4, -4], [5, -1],
[6, -2], [-6]>

gap> AsBipartition(x, 10);
<bipartition: [1, 3, -3], [2, -5], [4, -4], [5, -1],
[6, -2], [7, -7], [8, -8], [9, -9], [10, -10], [-6]>

gap> AsBipartition((1, 3)(2, 4));

Semigroups 20

<block bijection: [1, -3], [2, -4], [3, -1], [4, -2]>
gap> AsBipartition((1, 3)(2, 4), 10);
<block bijection: [1, -3], [2, -4], [3, -1], [4, -2],
[5, -5], [6, -6], [7, -7], [8, -8], [9, -9], [10, -10]>

gap> x := PartialPerm([1, 2, 3, 4, 5, 6], [6, 7, 1, 4, 3, 2]);;
gap> AsBipartition(x, 11);
<bipartition: [1, -6], [2, -7], [3, -1], [4, -4], [5, -3],
[6, -2], [7], [8], [9], [10], [11], [-5], [-8],
[-9], [-10], [-11]>

gap> AsBipartition(x);
<bipartition: [1, -6], [2, -7], [3, -1], [4, -4], [5, -3],
[6, -2], [7], [-5]>

gap> AsBipartition(Transformation([1, 1, 2]), 1);
<block bijection: [1, -1]>
gap> x := Bipartition([[1, 2, -2], [3], [4, 5, 6, -1],
> [-3, -4, -5, -6]]);;
gap> AsBipartition(x, 0);
<empty bipartition>
gap> AsBipartition(x, 2);
<bipartition: [1, 2, -2], [-1]>
gap> AsBipartition(x, 8);
<bipartition: [1, 2, -2], [3], [4, 5, 6, -1], [7], [8],
[-3, -4, -5, -6], [-7], [-8]>

gap> x := PBR(
> [[-1, 1, 2, 3, 4], [-1, 1, 2, 3, 4],
> [-1, 1, 2, 3, 4], [-1, 1, 2, 3, 4]],
> [[-1, 1, 2, 3, 4], [-2], [-3], [-4]]);;
gap> AsBipartition(x);
<bipartition: [1, 2, 3, 4, -1], [-2], [-3], [-4]>
gap> AsBipartition(x, 2);
<bipartition: [1, 2, -1], [-2]>
gap> AsBipartition(x, 4);
<bipartition: [1, 2, 3, 4, -1], [-2], [-3], [-4]>
gap> AsBipartition(x, 5);
<bipartition: [1, 2, 3, 4, -1], [5], [-2], [-3], [-4],
[-5]>

gap> AsBipartition(x, 0);
<empty bipartition>

3.3.2 AsBlockBijection

▷ AsBlockBijection(x[, n]) (operation)

Returns: A block bijection.
When the argument x is a partial perm and n is a positive integer which is greater than the max-

imum of the degree and codegree of x , this function returns a block bijection corresponding to x .
This block bijection has the same non-singleton classes as g := AsBipartition(x, n) and one
additional class which is the union the singleton classes of g.

If the optional second argument n is not present, then the maximum of the degree and codegree of
x plus 1 is used by default. If the second argument n is not greater than this maximum, then an error
is given.

Semigroups 21

This is the value at x of the embedding of the symmetric inverse monoid into the dual symmetric
inverse monoid given in the FitzGerald-Leech Theorem [FL98].

When the argument x is a partial perm bipartition (see IsPartialPermBipartition (3.5.15))
then this operation returns AsBlockBijection(AsPartialPerm(x)[, n]).

Example
gap> x := PartialPerm([1, 2, 3, 6, 7, 10], [9, 5, 6, 1, 7, 8]);
[2,5][3,6,1,9][10,8](7)
gap> AsBipartition(x, 11);
<bipartition: [1, -9], [2, -5], [3, -6], [4], [5],
[6, -1], [7, -7], [8], [9], [10, -8], [11], [-2],
[-3], [-4], [-10], [-11]>

gap> AsBlockBijection(x, 10);
Error, the 2nd argument (a pos. int.) is less than or equal to the max\
imum of the degree and codegree of the 1st argument (a partial perm)
gap> AsBlockBijection(x, 11);
<block bijection: [1, -9], [2, -5], [3, -6],
[4, 5, 8, 9, 11, -2, -3, -4, -10, -11], [6, -1], [7, -7],
[10, -8]>

gap> x := Bipartition([[1, -3], [2], [3, -2], [-1]]);;
gap> IsPartialPermBipartition(x);
true
gap> AsBlockBijection(x);
<block bijection: [1, -3], [2, 4, -1, -4], [3, -2]>

3.3.3 AsTransformation (for a bipartition)

▷ AsTransformation(x) (attribute)

Returns: A transformation.
When the argument x is a bipartition, that mathematically defines a transformation, this function

returns that transformation. A bipartition x defines a transformation if and only if its right blocks are
the image list of a permutation of [1 .. n] where n is the degree of x .

See IsTransBipartition (3.5.12).
Example

gap> x := Bipartition([[1, -3], [2, -2], [3, 5, 10, -7],
> [4, -12], [6, 7, -6], [8, -5], [9, -11],
> [11, 12, -10], [-1], [-4], [-8], [-9]]);;
gap> AsTransformation(x);
Transformation([3, 2, 7, 12, 7, 6, 6, 5, 11, 7, 10, 10])
gap> IsTransBipartition(x);
true
gap> x := Bipartition([[1, 5], [2, 4, 8, 10],
> [3, 6, 7, -1, -2], [9, -4, -6, -9],
> [-3, -5], [-7, -8], [-10]]);;
gap> AsTransformation(x);
Error, the argument (a bipartition) does not define a transformation

3.3.4 AsPartialPerm (for a bipartition)

▷ AsPartialPerm(x) (operation)

Returns: A partial perm.

Semigroups 22

When the argument x is a bipartition that mathematically defines a partial perm, this function
returns that partial perm.

A bipartition x defines a partial perm if and only if its numbers of left and right blocks both equal
its degree.

See IsPartialPermBipartition (3.5.15).
Example

gap> x := Bipartition([[1, -4], [2, -2], [3, -10], [4, -5],
> [5, -9], [6], [7], [8, -6], [9, -3], [10, -8],
> [-1], [-7]]);;
gap> IsPartialPermBipartition(x);
true
gap> AsPartialPerm(x);
[1,4,5,9,3,10,8,6](2)
gap> x := Bipartition([[1, -2, -4], [2, 3, 4, -3], [-1]]);;
gap> IsPartialPermBipartition(x);
false
gap> AsPartialPerm(x);
Error, the argument (a bipartition) does not define a partial perm

3.3.5 AsPermutation (for a bipartition)

▷ AsPermutation(x) (attribute)

Returns: A permutation.
When the argument x is a bipartition that mathematically defines a permutation, this function

returns that permutation.
A bipartition x defines a permutation if and only if its numbers of left, right, and transverse blocks

all equal its degree.
See IsPermBipartition (3.5.14).

Example
gap> x := Bipartition([[1, -6], [2, -4], [3, -2], [4, -5],
> [5, -3], [6, -1]]);;
gap> IsPermBipartition(x);
true
gap> AsPermutation(x);
(1,6)(2,4,5,3)
gap> AsBipartition(last) = x;
true

3.4 Operators for bipartitions

f * g
returns the composition of f and g when f and g are bipartitions.

f < g
returns true if the internal representation of f is lexicographically less than the internal repre-
sentation of g and false if it is not.

f = g
returns true if the bipartition f equals the bipartition g and returns false if it does not.

Semigroups 23

3.4.1 PartialPermLeqBipartition

▷ PartialPermLeqBipartition(x, y) (operation)

Returns: true or false.
If x and y are partial perm bipartitions, i.e. they satisfy IsPartialPermBipartition (3.5.15),

then this function returns AsPartialPerm(x) < AsPartialPerm(y).

3.4.2 NaturalLeqPartialPermBipartition

▷ NaturalLeqPartialPermBipartition(x, y) (operation)

Returns: true or false.
The natural partial order ≤ on an inverse semigroup S is defined by s ≤ t if there exists an

idempotent e in S such that s = et. Hence if x and y are partial perm bipartitions, then x ≤ y if and
only if AsPartialPerm(x) is a restriction of AsPartialPerm(y).

NaturalLeqPartialPermBipartition returns true if AsPartialPerm(x) is a restriction of
AsPartialPerm(y) and false if it is not. Note that since this is a partial order and not a total order,
it is possible that x and y are incomparable with respect to the natural partial order.

3.4.3 NaturalLeqBlockBijection

▷ NaturalLeqBlockBijection(x, y) (operation)

Returns: true or false.
The natural partial order ≤ on an inverse semigroup S is defined by s ≤ t if there exists an

idempotent e in S such that s = et. Hence if x and y are block bijections, then x ≤ y if and only if
x contains y .

NaturalLeqBlockBijection returns true if x is contained in y and false if it is not. Note
that since this is a partial order and not a total order, it is possible that x and y are incomparable with
respect to the natural partial order.

Example
gap> x := Bipartition([[1, 2, -3], [3, -1, -2], [4, -4],
> [5, -5], [6, -6], [7, -7],
> [8, -8], [9, -9], [10, -10]]);;
gap> y := Bipartition([[1, -2], [2, -1], [3, -3],
> [4, -4], [5, -5], [6, -6], [7, -7],
> [8, -8], [9, -9], [10, -10]]);;
gap> z := Bipartition([Union([1 .. 10], [-10 .. -1])]);;
gap> NaturalLeqBlockBijection(x, y);
false
gap> NaturalLeqBlockBijection(y, x);
false
gap> NaturalLeqBlockBijection(z, x);
true
gap> NaturalLeqBlockBijection(z, y);
true

3.4.4 PermLeftQuoBipartition

▷ PermLeftQuoBipartition(x, y) (operation)

Returns: A permutation.

Semigroups 24

If x and y are bipartitions with equal left and right blocks, then PermLeftQuoBipartition re-
turns the permutation of the indices of the right blocks of x (and y) induced by Star(x) * y .

PermLeftQuoBipartition verifies that x and y have equal left and right blocks, and returns an
error if they do not.

Example
gap> x := Bipartition([[1, 4, 6, 7, 8, 10], [2, 5, -1, -2, -8],
> [3, -3, -6, -7, -9], [9, -4, -5], [-10]]);;
gap> y := Bipartition([[1, 4, 6, 7, 8, 10], [2, 5, -3, -6, -7, -9],
> [3, -4, -5], [9, -1, -2, -8], [-10]]);;
gap> PermLeftQuoBipartition(x, y);
(1,2,3)
gap> Star(x) * y;
<bipartition: [1, 2, 8, -3, -6, -7, -9], [3, 6, 7, 9, -4, -5],
[4, 5, -1, -2, -8], [10], [-10]>

3.5 Attributes for bipartitons

In this section we describe various attributes that a bipartition can possess.

3.5.1 DegreeOfBipartition

▷ DegreeOfBipartition(x) (attribute)

▷ DegreeOfBipartitionCollection(x) (attribute)

Returns: A positive integer.
The degree of a bipartition is, roughly speaking, the number of points where it is defined. More

precisely, if x is a bipartition defined on 2 * n points, then the degree of x is n.
The degree of a collection coll of bipartitions of equal degree is just the degree of any (and every)

bipartition in coll . The degree of collection of bipartitions of unequal degrees is not defined.
Example

gap> x := Bipartition([[1, 7, -3, -8], [2, 6],
> [3], [4, -7, -9], [5, 9, -2],
> [8, -1, -4, -6], [-5]]);;
gap> DegreeOfBipartition(x);
9
gap> S := BrauerMonoid(5);
<regular bipartition *-monoid of degree 5 with 3 generators>
gap> IsBipartitionCollection(S);
true
gap> DegreeOfBipartitionCollection(S);
5

3.5.2 RankOfBipartition

▷ RankOfBipartition(x) (attribute)

▷ NrTransverseBlocks(x) (attribute)

Returns: The rank of a bipartition.
When the argument is a bipartition x , RankOfBipartition returns the number of blocks of x

containing both positive and negative entries, i.e. the number of transverse blocks of x .
NrTransverseBlocks is just a synonym for RankOfBipartition.

Semigroups 25

Example
gap> x := Bipartition([[1, 2, 6, 7, -4, -5, -7], [3, 4, 5, -1, -3],
> [8, -9], [9, -2], [-6], [-8]]);
<bipartition: [1, 2, 6, 7, -4, -5, -7], [3, 4, 5, -1, -3],
[8, -9], [9, -2], [-6], [-8]>

gap> RankOfBipartition(x);
4

3.5.3 ExtRepOfObj (for a bipartition)

▷ ExtRepOfObj(x) (operation)

Returns: A partition of [1 .. 2 * n].
If n is the degree of the bipartition x , then ExtRepOfObj returns the partition of [-n .. -1]

union [1 .. n] corresponding to x as a sorted list of duplicate-free lists.
Example

gap> x := Bipartition([[1, 5, -3], [2, 4, -2, -4], [3, -1, -5]]);
<block bijection: [1, 5, -3], [2, 4, -2, -4], [3, -1, -5]>
gap> ExtRepOfObj(x);
[[1, 5, -3], [2, 4, -2, -4], [3, -1, -5]]

3.5.4 IntRepOfBipartition

▷ IntRepOfBipartition(x) (attribute)

Returns: A list of positive integers.
If x is a bipartition with degree n, then IntRepOfBipartition returns the internal representation

of x : a list of length 2 * n containing positive integers which correspond to the blocks of x .
If i is in [1 .. n], then list[i] refers to the point i; if i is in [n + 1 .. 2 * n], then

list[i] refers to the point n - i (a negative point). Two points lie in the same block of the bipartition
if and only if their entries in the list are equal.

See also BipartitionByIntRep (3.2.2).
Example

gap> x := Bipartition([[1, -3], [3, 4], [2, -1, -2], [-4]]);
<bipartition: [1, -3], [2, -1, -2], [3, 4], [-4]>
gap> IntRepOfBipartition(x);
[1, 2, 3, 3, 2, 2, 1, 4]

3.5.5 RightBlocks

▷ RightBlocks(x) (attribute)

Returns: The right blocks of a bipartition.
RightBlocks returns the right blocks of the bipartition x .
The right blocks of a bipartition x are just the intersections of the blocks of x with [-n .. -1]

where n is the degree of x , the values in transverse blocks are positive, and the values in non-transverse
blocks are negative.

The right blocks of a bipartition are GAP objects in their own right, and are not simply a list of
blocks of x ; see 3.6 for more information.

The significance of this notion lies in the fact that bipartitions x and y are L -related in the
partition monoid if and only if they have equal right blocks.

Semigroups 26

Example
gap> x := Bipartition([[1, 4, 7, 8, -4], [2, 3, 5, -2, -7],
> [6, -1], [-3], [-5, -6, -8]]);;
gap> RightBlocks(x);
<blocks: [1*], [2*, 7*], [3], [4*], [5, 6, 8]>
gap> LeftBlocks(x);
<blocks: [1*, 4*, 7*, 8*], [2*, 3*, 5*], [6*]>

3.5.6 LeftBlocks

▷ LeftBlocks(x) (attribute)

Returns: The left blocks of a bipartition.
LeftBlocks returns the left blocks of the bipartition x .
The left blocks of a bipartition x are just the intersections of the blocks of x with [1..n] where n

is the degree of x , the values in transverse blocks are positive, and the values in non-transverse blocks
are negative.

The left blocks of a bipartition are GAP objects in their own right, and are not simply a list of
blocks of x ; see 3.6 for more information.

The significance of this notion lies in the fact that bipartitions x and y are R-related in the partition
monoid if and only if they have equal left blocks.

Example
gap> x := Bipartition([[1, 4, 7, 8, -4], [2, 3, 5, -2, -7],
> [6, -1], [-3], [-5, -6, -8]]);;
gap> RightBlocks(x);
<blocks: [1*], [2*, 7*], [3], [4*], [5, 6, 8]>
gap> LeftBlocks(x);
<blocks: [1*, 4*, 7*, 8*], [2*, 3*, 5*], [6*]>

3.5.7 NrLeftBlocks

▷ NrLeftBlocks(x) (attribute)

Returns: A non-negative integer.
When the argument is a bipartition x , NrLeftBlocks returns the number of left blocks of x , i.e.

the number of blocks of x intersecting [1 .. n] non-trivially.
Example

gap> x := Bipartition([[1, 2, 3, 4, 5, 6, 8], [7, -2, -3],
> [-1, -4, -7, -8], [-5, -6]]);;
gap> NrLeftBlocks(x);
2
gap> LeftBlocks(x);
<blocks: [1, 2, 3, 4, 5, 6, 8], [7*]>

3.5.8 NrRightBlocks

▷ NrRightBlocks(x) (attribute)

Returns: A non-negative integer.
When the argument is a bipartition x , NrRightBlocks returns the number of right blocks of x ,

i.e. the number of blocks of x intersecting [-n .. -1] non-trivially.

Semigroups 27

Example
gap> x := Bipartition([[1, 2, 3, 4, 6, -2, -7], [5, -1, -3, -8],
> [7, -4, -6], [8], [-5]]);;
gap> RightBlocks(x);
<blocks: [1*, 3*, 8*], [2*, 7*], [4*, 6*], [5]>
gap> NrRightBlocks(x);
4

3.5.9 NrBlocks (for blocks)

▷ NrBlocks(blocks) (attribute)

▷ NrBlocks(f) (attribute)

Returns: A positive integer.
If blocks is some blocks or f is a bipartition, then NrBlocks returns the number of blocks in

blocks or f , respectively.
Example

gap> blocks := BLOCKS_NC([[-1, -2, -3, -4], [-5], [6]]);
<blocks: [1, 2, 3, 4], [5], [6*]>
gap> NrBlocks(blocks);
3
gap> x := Bipartition([
> [1, 5], [2, 4, -2, -4], [3, 6, -1, -5, -6], [-3]]);
<bipartition: [1, 5], [2, 4, -2, -4], [3, 6, -1, -5, -6],
[-3]>

gap> NrBlocks(x);
4

3.5.10 DomainOfBipartition

▷ DomainOfBipartition(x) (attribute)

Returns: A list of positive integers.
If x is a bipartition, then DomainOfBipartition returns the domain of x . The domain of x

consists of those numbers i in [1 .. n] such that i is contained in a transverse block of x , where n
is the degree of x (see DegreeOfBipartition (3.5.1)).

Example
gap> x := Bipartition([[1, 2], [3, 4, 5, -5], [6, -6],
> [-1, -2, -3], [-4]]);
<bipartition: [1, 2], [3, 4, 5, -5], [6, -6], [-1, -2, -3],
[-4]>

gap> DomainOfBipartition(x);
[3, 4, 5, 6]

3.5.11 CodomainOfBipartition

▷ CodomainOfBipartition(x) (attribute)

Returns: A list of positive integers.
If x is a bipartition, then CodomainOfBipartition returns the codomain of x . The codomain of

x consists of those numbers i in [-n .. -1] such that i is contained in a transverse block of x ,
where n is the degree of x (see DegreeOfBipartition (3.5.1)).

Semigroups 28

Example
gap> x := Bipartition([[1, 2], [3, 4, 5, -5], [6, -6],
> [-1, -2, -3], [-4]]);
<bipartition: [1, 2], [3, 4, 5, -5], [6, -6], [-1, -2, -3],
[-4]>

gap> CodomainOfBipartition(x);
[-5, -6]

3.5.12 IsTransBipartition

▷ IsTransBipartition(x) (property)

Returns: true or false.
If the bipartition x defines a transformation, then IsTransBipartition returns true, and if not,

then false is returned.
A bipartition x defines a transformation if and only if the number of left blocks equals the number

of transverse blocks and the number of right blocks equals the degree.
Example

gap> x := Bipartition([[1, 4, -2], [2, 5, -6], [3, -7],
> [6, 7, -9], [8, 9, -1], [10, -5],
> [-3], [-4], [-8], [-10]]);;
gap> IsTransBipartition(x);
true
gap> x := Bipartition([[1, 4, -3, -6], [2, 5, -4, -5],
> [3, 6, -1], [-2]]);;
gap> IsTransBipartition(x);
false
gap> Number(PartitionMonoid(3), IsTransBipartition);
27

3.5.13 IsDualTransBipartition

▷ IsDualTransBipartition(x) (property)

Returns: true or false.
If the star of the bipartition x defines a transformation, then IsDualTransBipartition returns

true, and if not, then false is returned.
A bipartition is the dual of a transformation if and only if its number of right blocks equals its

number of transverse blocks and its number of left blocks equals its degree.
Example

gap> x := Bipartition([[1, -8, -9], [2, -1, -4], [3],
> [4], [5, -10], [6, -2, -5], [7, -3],
> [8], [9, -6, -7], [10]]);;
gap> IsDualTransBipartition(x);
true
gap> x := Bipartition([[1, 4, -3, -6], [2, 5, -4, -5],
> [3, 6, -1], [-2]]);;
gap> IsTransBipartition(x);
false
gap> Number(PartitionMonoid(3), IsDualTransBipartition);
27

Semigroups 29

3.5.14 IsPermBipartition

▷ IsPermBipartition(x) (property)

Returns: true or false.
If the bipartition x defines a permutation, then IsPermBipartition returns true, and if not, then

false is returned.
A bipartition is a permutation if its numbers of left, right, and transverse blocks all equal its degree.

Example
gap> x := Bipartition([
> [1, 4, -1], [2, -3], [3, 6, -5], [5, -2, -4, -6]]);;
gap> IsPermBipartition(x);
false
gap> x := Bipartition([[1, -3], [2, -4], [3, -6], [4, -1],
> [5, -5], [6, -2], [7, -8], [8, -7]]);;
gap> IsPermBipartition(x);
true

3.5.15 IsPartialPermBipartition

▷ IsPartialPermBipartition(x) (property)

Returns: true or false.
If the bipartition x defines a partial permutation, then IsPartialPermBipartition returns true,

and if not, then false is returned.
A bipartition x defines a partial permutation if and only if the numbers of left and right blocks of

x equal the degree of x .
Example

gap> x := Bipartition([
> [1, 4, -1], [2, -3], [3, 6, -5], [5, -2, -4, -6]]);;
gap> IsPartialPermBipartition(x);
false
gap> x := Bipartition([[1, -3], [2], [-4], [3, -6], [4, -1],
> [5, -5], [6, -2], [7, -8], [8, -7]]);;
gap> IsPermBipartition(x);
false
gap> IsPartialPermBipartition(x);
true

3.5.16 IsBlockBijection

▷ IsBlockBijection(x) (property)

Returns: true or false.
If the bipartition x induces a bijection from the quotient of [1 .. n] by the blocks of f to the

quotient of [-n .. -1] by the blocks of f , then IsBlockBijection return true, and if not, then
it returns false.

A bipartition is a block bijection if and only if its number of blocks, left blocks and right blocks
are equal.

Example
gap> x := Bipartition([[1, 4, 5, -2], [2, 3, -1], [6, -5, -6],
> [-3, -4]]);;
gap> IsBlockBijection(x);

Semigroups 30

false
gap> x := Bipartition([[1, 2, -3], [3, -1, -2], [4, -4], [5, -5]]);;
gap> IsBlockBijection(x);
true

3.5.17 IsUniformBlockBijection

▷ IsUniformBlockBijection(x) (property)

Returns: true or false.
If the bipartition x is a block bijection where every block contains an equal number of positive

and negative entries, then IsUniformBlockBijection returns true, and otherwise it returns false.
Example

gap> x := Bipartition([[1, 2, -3, -4], [3, -5], [4, -6],
> [5, -7], [6, -8], [7, -9], [8, -1], [9, -2]]);;
gap> IsBlockBijection(x);
true
gap> x := Bipartition([[1, 2, -3], [3, -1, -2], [4, -4],
> [5, -5]]);;
gap> IsUniformBlockBijection(x);
false

3.5.18 CanonicalBlocks

▷ CanonicalBlocks(blocks) (attribute)

Returns: Blocks of a bipartition.
If blocks is the blocks of a bipartition, then the function CanonicalBlocks returns a canonical

representative of blocks .
In particular, let C(n) be a largest class such that any element of C(n) is blocks of a bipartition of

degree n and such that for every pair of elements x and y of C(n) the number of signed, and similarly
unsigned, blocks of any given size in both x and y are the same. Then CanonicalBlocks returns a
canonical representative of a class C(n) containing blocks where n is the degree of blocks .

Example
gap> B := BLOCKS_NC([[-1, -3], [2, 4, 7], [5, 6]]);
<blocks: [1, 3], [2*, 4*, 7*], [5*, 6*]>
gap> CanonicalBlocks(B);
<blocks: [1*, 2*], [3*, 4*, 5*], [6, 7]>

3.6 Creating blocks and their attributes

As described above the left and right blocks of a bipartition characterise Green’s R- and L -relation
of the partition monoid; see LeftBlocks (3.5.6) and RightBlocks (3.5.5). The left or right blocks of
a bipartition are GAP objects in their own right.

In this section, we describe the functions in the Semigroups package for creating and manipulat-
ing the left or right blocks of a bipartition.

Semigroups 31

3.6.1 IsBlocks

▷ IsBlocks(obj) (Category)

Returns: true or false.
Every blocks object in GAP belongs to the category IsBlocks. Basic operations for blocks are

ExtRepOfObj (3.6.3), RankOfBlocks (3.6.4), DegreeOfBlocks (3.6.5), OnRightBlocks (3.7.1), and
OnLeftBlocks (3.7.2).

3.6.2 BLOCKS_NC

▷ BLOCKS_NC(classes) (function)

Returns: A blocks.
This function makes it possible to create a GAP object corresponding to the left or right blocks of

a bipartition without reference to any bipartitions.
BLOCKS_NC returns the blocks with equivalence classes classes , which should be a list of dupli-

cate-free lists consisting solely of positive or negative integers, where the union of the absolute values
of the lists is [1 .. n] for some n. The blocks with positive entries correspond to transverse blocks
and the classes with negative entries correspond to non-transverse blocks.

This method function does not check that its arguments are valid, and should be used with caution.
Example

gap> BLOCKS_NC([[1], [2], [-3, -6], [-4, -5]]);
<blocks: [1*], [2*], [3, 6], [4, 5]>

3.6.3 ExtRepOfObj (for a blocks)

▷ ExtRepOfObj(blocks) (operation)

Returns: A list of integers.
If n is the degree of a bipartition with left or right blocks blocks , then ExtRepOfObj returns the

partition corresponding to blocks as a sorted list of duplicate-free lists.
Example

gap> blocks := BLOCKS_NC([[1, 6], [2, 3, 7], [4, 5], [-8]]);;
gap> ExtRepOfObj(blocks);
[[1, 6], [2, 3, 7], [4, 5], [-8]]

3.6.4 RankOfBlocks

▷ RankOfBlocks(blocks) (attribute)

▷ NrTransverseBlocks(blocks) (attribute)

Returns: A non-negative integer.
When the argument blocks is the left or right blocks of a bipartition, RankOfBlocks returns the

number of blocks of blocks containing only positive entries, i.e. the number of transverse blocks in
blocks .

NrTransverseBlocks is a synonym of RankOfBlocks in this context.
Example

gap> blocks := BLOCKS_NC([[-1, -2, -4, -6], [3, 10, 12], [5, 7],
> [8], [9], [-11]]);;
gap> RankOfBlocks(blocks);
4

Semigroups 32

3.6.5 DegreeOfBlocks

▷ DegreeOfBlocks(blocks) (attribute)

Returns: A non-negative integer.
The degree of blocks is the number of points n where it is defined, i.e. the union of the blocks in

blocks will be [1 .. n] after taking the absolute value of every element.
Example

gap> blocks := BLOCKS_NC([[-1, -11], [2], [3, 5, 6, 7], [4, 8], [9, 10],
> [12]]);;
gap> DegreeOfBlocks(blocks);
12

3.6.6 ProjectionFromBlocks

▷ ProjectionFromBlocks(blocks) (attribute)

Returns: A bipartition.
When the argument blocks is the left or right blocks of a bipartition, this operation returns the

unique bipartition whose left and right blocks are equal to blocks .
If blocks is the left blocks of a bipartition x, then this operation returns a bipartition equal to the

left projection of x. The analogous statement holds when blocks is the right blocks of a bipartition.
Example

gap> x := Bipartition([[1], [2, -2, -3], [3], [-1]]);
<bipartition: [1], [2, -2, -3], [3], [-1]>
gap> ProjectionFromBlocks(LeftBlocks(x));
<bipartition: [1], [2, -2], [3], [-1], [-3]>
gap> LeftProjection(x);
<bipartition: [1], [2, -2], [3], [-1], [-3]>
gap> ProjectionFromBlocks(RightBlocks(x));
<bipartition: [1], [2, 3, -2, -3], [-1]>
gap> RightProjection(x);
<bipartition: [1], [2, 3, -2, -3], [-1]>

3.7 Actions on blocks

Bipartitions act on left and right blocks in several ways, which are described in this section.

3.7.1 OnRightBlocks

▷ OnRightBlocks(blocks, x) (operation)

Returns: The blocks of a bipartition.
OnRightBlocks returns the right blocks of the product g * x where g is any bipartition whose

right blocks are equal to blocks .
Example

gap> x := Bipartition([[1, 4, 5, 8], [2, 3, 7], [6, -3, -4, -5],
> [-1, -2, -6], [-7, -8]]);;
gap> y := Bipartition([[1, 5], [2, 4, 8, -2], [3, 6, 7, -3, -4],
> [-1, -6, -8], [-5, -7]]);;
gap> RightBlocks(y * x);
<blocks: [1, 2, 6], [3*, 4*, 5*], [7, 8]>

Semigroups 33

gap> OnRightBlocks(RightBlocks(y), x);
<blocks: [1, 2, 6], [3*, 4*, 5*], [7, 8]>

3.7.2 OnLeftBlocks

▷ OnLeftBlocks(blocks, x) (operation)

Returns: The blocks of a bipartition.
OnLeftBlocks returns the left blocks of the product x * y where y is any bipartition whose left

blocks are equal to blocks .
Example

gap> x := Bipartition([[1, 5, 7, -1, -3, -4, -6], [2, 3, 6, 8],
> [4, -2, -5, -8], [-7]]);;
gap> y := Bipartition([[1, 3, -4, -5], [2, 4, 5, 8], [6, -1, -3],
> [7, -2, -6, -7, -8]]);;
gap> LeftBlocks(x * y);
<blocks: [1*, 4*, 5*, 7*], [2, 3, 6, 8]>
gap> OnLeftBlocks(LeftBlocks(y), x);
<blocks: [1*, 4*, 5*, 7*], [2, 3, 6, 8]>

3.8 Semigroups of bipartitions

Semigroups and monoids of bipartitions can be created in the usual way in GAP using the functions
Semigroup (Reference: Semigroup) and Monoid (Reference: Monoid); see Chapter 6 for more
details.

It is possible to create inverse semigroups and monoids of bipartitions using InverseSemigroup
(Reference: InverseSemigroup) and InverseMonoid (Reference: InverseMonoid) when the argu-
ment is a collection of block bijections or partial perm bipartions; see IsBlockBijection (3.5.16)
and IsPartialPermBipartition (3.5.15). Note that every bipartition semigroup in Semigroups is
finite.

3.8.1 IsBipartitionSemigroup

▷ IsBipartitionSemigroup(S) (filter)

▷ IsBipartitionMonoid(S) (filter)

Returns: true or false.
A bipartition semigroup is simply a semigroup consisting of bipartitions. An object obj

is a bipartition semigroup in GAP if it satisfies IsSemigroup (Reference: IsSemigroup) and
IsBipartitionCollection (3.1.2).

A bipartition monoid is a monoid consisting of bipartitions. An object obj is a bipartition monoid
in GAP if it satisfies IsMonoid (Reference: IsMonoid) and IsBipartitionCollection (3.1.2).

Note that it is possible for a bipartition semigroup to have a multiplicative neutral element (i.e. an
identity element) but not to satisfy IsBipartitionMonoid. For example,

Example
gap> x := Bipartition([
> [1, 4, -2], [2, 5, -6], [3, -7], [6, 7, -9], [8, 9, -1],
> [10, -5], [-3], [-4], [-8], [-10]]);;
gap> S := Semigroup(x, One(x));
<commutative bipartition monoid of degree 10 with 1 generator>

Semigroups 34

gap> IsMonoid(S);
true
gap> IsBipartitionMonoid(S);
true
gap> S := Semigroup([
> Bipartition([
> [1, -3], [2, -8], [3, 8, -1], [4, -4], [5, -5], [6, -6],
> [7, -7], [9, 10, -10], [-2], [-9]]),
> Bipartition([
> [1, -1], [2, -2], [3, -3], [4, -4], [5, -5], [6, -6],
> [7, -7], [8, -8], [9, 10, -10], [-9]])]);;
gap> One(S);
fail
gap> MultiplicativeNeutralElement(S);
<bipartition: [1, -1], [2, -2], [3, -3], [4, -4], [5, -5],
[6, -6], [7, -7], [8, -8], [9, 10, -10], [-9]>

gap> IsMonoid(S);
false

In this example S cannot be converted into a monoid using AsMonoid (Reference: AsMonoid) since
the One (Reference: One) of any element in S differs from the multiplicative neutral element.

For more details see IsMagmaWithOne (Reference: IsMagmaWithOne).

3.8.2 IsBlockBijectionSemigroup

▷ IsBlockBijectionSemigroup(S) (property)

▷ IsBlockBijectionMonoid(S) (filter)

Returns: true or false.
A block bijection semigroup is simply a semigroup consisting of block bijections. A block bijection

monoid is a monoid consisting of block bijections.
An object in GAP is a block bijection monoid if it satisfies IsMonoid (Reference: IsMonoid)

and IsBlockBijectionSemigroup.
See IsBlockBijection (3.5.16).

3.8.3 IsPartialPermBipartitionSemigroup

▷ IsPartialPermBipartitionSemigroup(S) (property)

▷ IsPartialPermBipartitionMonoid(S) (filter)

Returns: true or false.
A partial perm bipartition semigroup is simply a semigroup consisting of partial perm bipartitions.

A partial perm bipartition monoid is a monoid consisting of partial perm bipartitions.
An object in GAP is a partial perm bipartition monoid if it satisfies IsMonoid (Reference: Is-

Monoid) and IsPartialPermBipartitionSemigroup.
See IsPartialPermBipartition (3.5.15).

3.8.4 IsPermBipartitionGroup

▷ IsPermBipartitionGroup(S) (property)

Returns: true or false.

Semigroups 35

A perm bipartition group is simply a semigroup consisting of perm bipartitions.
See IsPermBipartition (3.5.14).

3.8.5 DegreeOfBipartitionSemigroup

▷ DegreeOfBipartitionSemigroup(S) (attribute)

Returns: A non-negative integer.
The degree of a bipartition semigroup S is just the degree of any (and every) element of S .

Example
gap> DegreeOfBipartitionSemigroup(JonesMonoid(8));
8

Chapter 4

Partitioned binary relations (PBRs)

In this chapter we describe the functions in Semigroups for creating and manipulating partitioned
binary relations, henceforth referred to by their acronym PBRs. We begin by describing what these
objects are.

PBRs were introduced in the paper [MM13] as, roughly speaking, the maximum generalization of
bipartitions and related objects. Although, mathematically, bipartitions are a special type of PBR, in
Semigroups bipartitions and PBRs are currently distinct types of objects. It is possible to change the
representation from bipartition to PBR, and from PBR to bipartition, when appropriate; see Section 4.3
for more details. The reason for this distinct is largely historical, bipartition appeared in the literature,
and in the Semigroups package, before PBRs.

4.1 The family and categories of PBRs

4.1.1 IsPBR

▷ IsPBR(obj) (Category)

Returns: true or false.
Every PBR in GAP belongs to the category IsPBR. Basic operations for PBRs are DegreeOfPBR

(4.5.2), ExtRepOfObj (4.5.3), PBRNumber (4.5.4), NumberPBR (4.5.4), StarOp (4.5.1), and multipli-
cation of two PBRs of equal degree is via *.

4.1.2 IsPBRCollection

▷ IsPBRCollection(obj) (Category)

▷ IsPBRCollColl(obj) (Category)

Returns: true or false.
Every collection of PBRs belongs to the category IsPBRCollection. For example, PBR semi-

groups belong to IsPBRCollection.
Every collection of collections of PBRs belongs to IsPBRCollColl. For example, a list of PBR

semigroups belongs to IsPBRCollColl.

4.2 Creating PBRs

There are several ways of creating PBRs in GAP, which are described in this section.

36

Semigroups 37

4.2.1 PBR

▷ PBR(left, right) (operation)

Returns: A PBR.
The arguments left and right of this function should each be a list of length n whose entries

are lists of integers in the ranges [-n .. -1] and [1 .. n] for some n greater than 0.
Given such an argument, PBR returns the PBR x where:

• for each i in the range [1 .. n] there is an edge from i to every j in left[i] ;

• for each i in the range [-n .. -1] there is an edge from i to every j in right[-i] ;

PBR returns an error if the argument does not define a PBR.
Example

gap> PBR([[-3, -2, -1, 2, 3], [-1], [-3, -2, 1, 2]],
> [[-2, -1, 1, 2, 3], [3], [-3, -2, -1, 1, 3]]);
PBR([[-3, -2, -1, 2, 3], [-1], [-3, -2, 1, 2]],

[[-2, -1, 1, 2, 3], [3], [-3, -2, -1, 1, 3]])

4.2.2 RandomPBR

▷ RandomPBR(n[, p]) (operation)

Returns: A PBR.
If n is a positive integer and p is an float between 0 and 1, then RandomPBR returns a random PBR

of degree n where the probability of there being an edge from i to j is approximately p.
If the optional second argument is not present, then a random value p is used (chosen with uniform

probability).
Example

gap> RandomPBR(6);
PBR(

[[-5, 1, 2, 3], [-6, -3, -1, 2, 5], [-5, -2, 2, 3, 5],
[-6, -4, -1, 2, 3, 6], [-4, -1, 2, 4],
[-5, -3, -1, 1, 2, 3, 5]],

[[-6, -4, -2, 1, 3, 5, 6], [-5, -2, 1, 2, 3, 5],
[-6, -5, -2, 1, 5], [-6, -5, -3, -2, 1, 3, 4],
[-6, -5, -4, -2, 3, 5], [-6, -4, -2, -1, 1, 2, 6]])

4.2.3 EmptyPBR

▷ EmptyPBR(n) (operation)

Returns: A PBR.
If n is a positive integer, then EmptyPBR returns the PBR of degree n with no edges.

Example
gap> x := EmptyPBR(3);
PBR([[], [], []], [[], [], []])
gap> IsEmptyPBR(x);
true

Semigroups 38

4.2.4 IdentityPBR

▷ IdentityPBR(n) (operation)

Returns: A PBR.
If n is a positive integer, then IdentityPBR returns the identity PBR of degree n . This PBR has

2n edges: specifically, for each i in the ranges [1 .. n] and [-n .. -1], the identity PBR has
an edge from i to -i.

Example
gap> x := IdentityPBR(3);
PBR([[-1], [-2], [-3]], [[1], [2], [3]])
gap> IsIdentityPBR(x);
true

4.2.5 UniversalPBR

▷ UniversalPBR(n) (operation)

Returns: A PBR.
If n is a positive integer, then UniversalPBR returns the PBR of degree n with 4 * n ^ 2 edges,

i.e. every possible edge.
Example

gap> x := UniversalPBR(2);
PBR([[-2, -1, 1, 2], [-2, -1, 1, 2]],

[[-2, -1, 1, 2], [-2, -1, 1, 2]])
gap> IsUniversalPBR(x);
true

4.3 Changing the representation of a PBR

It is possible that a PBR can be represented as another type of object, or that another type of GAP
object can be represented as a PBR. In this section, we describe the functions in the Semigroups
package for changing the representation of PBR, or for changing the representation of another type of
object to that of a PBR.

The operations AsPermutation (4.3.4), AsPartialPerm (4.3.3), AsTransformation (4.3.2),
AsBipartition (3.3.1), AsBooleanMat (5.3.2) can be used to convert PBRs into permutations, par-
tial permutations, transformations, bipartitions, and boolean matrices where appropriate.

4.3.1 AsPBR

▷ AsPBR(x[, n]) (operation)

Returns: A PBR.
AsPBR returns the boolean matrix, bipartition, transformation, partial permutation, or permutation

x as a PBR of degree n .
There are several possible arguments for AsPBR:

bipartitions
If x is a bipartition and n is a positive integer, then AsPBR returns a PBR corresponding to x
with degree n . The resulting PBR has an edge from i to j whenever i and j belong to the same
block of x .

Semigroups 39

If the optional second argument n is not specified, then degree of the bipartition x is used by
default.

boolean matrices
If x is a boolean matrix of even dimension 2 * m and n is a positive integer, then AsPBR returns
a PBR corresponding to x with degree n . If the optional second argument n is not specified,
then dimension of the boolean matrix x is used by default.

transformations, partial perms, permutations
If x is a transformation, partial perm, or permutation and n is a positive integer, then AsPBR
is a synonym for AsPBR(AsBipartition(x, n)). If the optional second argument n is not
specified, then AsPBR is a synonym for AsPBR(AsBipartition(x)). See AsBipartition
(3.3.1) for more details.

Example
gap> x := Bipartition([[1, 2, -1], [3, -2], [4, -3, -4]]);
<block bijection: [1, 2, -1], [3, -2], [4, -3, -4]>
gap> AsPBR(x, 2);
PBR([[-1, 1, 2], [-1, 1, 2]], [[-1, 1, 2], [-2]])
gap> AsPBR(x, 5);
PBR([[-1, 1, 2], [-1, 1, 2], [-2, 3], [-4, -3, 4], []],

[[-1, 1, 2], [-2, 3], [-4, -3, 4], [-4, -3, 4], []])
gap> AsPBR(x);
PBR([[-1, 1, 2], [-1, 1, 2], [-2, 3], [-4, -3, 4]],

[[-1, 1, 2], [-2, 3], [-4, -3, 4], [-4, -3, 4]])
gap> mat := Matrix(IsBooleanMat, [[1, 0, 0, 1],
> [0, 1, 1, 0],
> [1, 0, 1, 1],
> [0, 0, 0, 1]]);;
gap> AsPBR(mat);
PBR([[-2, 1], [-1, 2]], [[-2, -1, 1], [-2]])
gap> AsPBR(mat, 2);
PBR([[1]], [[-1]])
gap> AsPBR(mat, 6);
PBR([[-2, 1], [-1, 2], []], [[-2, -1, 1], [-2], []])
gap> x := Transformation([2, 2, 1]);;
gap> AsPBR(x);
PBR([[-2], [-2], [-1]], [[3], [1, 2], []])
gap> AsPBR(x, 2);
PBR([[-2], [-2]], [[], [1, 2]])
gap> AsPBR(x, 4);
PBR([[-2], [-2], [-1], [-4]],

[[3], [1, 2], [], [4]])
gap> x := PartialPerm([4, 3]);
[1,4][2,3]
gap> AsPBR(x);
PBR([[-4], [-3], [], []], [[], [], [2], [1]])
gap> AsPBR(x, 2);
PBR([[], []], [[], []])
gap> AsPBR(x, 5);
PBR([[-4], [-3], [], [], []],

[[], [], [2], [1], []])
gap> x := (1, 3)(2, 4);

Semigroups 40

(1,3)(2,4)
gap> AsPBR(x);
PBR([[-3, 1], [-4, 2], [-1, 3], [-2, 4]],

[[-1, 3], [-2, 4], [-3, 1], [-4, 2]])
gap> AsPBR(x, 5);
PBR([[-3, 1], [-4, 2], [-1, 3], [-2, 4], [-5, 5]],

[[-1, 3], [-2, 4], [-3, 1], [-4, 2], [-5, 5]])

4.3.2 AsTransformation (for a PBR)

▷ AsTransformation(x) (attribute)

Returns: A transformation.
When the argument x is a PBR which satisfies IsTransformationPBR (4.5.9), then this attribute

returns that transformation.
Example

gap> x := PBR([[-3], [-3], [-2]], [[], [3], [1, 2]]);;
gap> IsTransformationPBR(x);
true
gap> AsTransformation(x);
Transformation([3, 3, 2])
gap> x := PBR([[1], [1, 2]], [[-2, -1], [-2, -1]]);;
gap> AsTransformation(x);
Error, the argument (a pbr) does not define a transformation

4.3.3 AsPartialPerm (for a PBR)

▷ AsPartialPerm(x) (operation)

Returns: A partial perm.
When the argument x is a PBR which satisfies IsPartialPermPBR (4.5.11), then this function

returns that partial perm.
Example

gap> x := PBR([[-1, 1], [-3, 2], [-4, 3], [4], [5]],
> [[-1, 1], [-2], [-3, 2], [-4, 3], [-5]]);;
gap> IsPartialPermPBR(x);
true
gap> AsPartialPerm(x);
[2,3,4](1)

4.3.4 AsPermutation (for a PBR)

▷ AsPermutation(x) (attribute)

Returns: A permutation.
When the argument x is a PBR which satisfies IsPermPBR (4.5.12), then this attribute returns that

permutation.
Example

gap> x := PBR([[-1, 1], [-4, 2], [-2, 3], [-3, 4]],
> [[-1, 1], [-2, 3], [-3, 4], [-4, 2]]);;
gap> IsPermPBR(x);
true

Semigroups 41

gap> AsPermutation(x);
(2,4,3)

4.4 Operators for PBRs

x * y
returns the product of x and y when x and y are PBRs.

x < y
returns true if the degree of x is less than the degree of y , or the degrees are equal and the
out-neighbours of x (as a list of list of positive integers) is lexicographically less than the
out-neighbours of y .

x = y
returns true if the PBR x equals the PBR y and returns false if it does not.

4.5 Attributes for PBRs

In this section we describe various attributes that a PBR can possess.

4.5.1 StarOp (for a PBR)

▷ StarOp(x) (operation)

▷ Star(x) (attribute)

Returns: A PBR.
StarOp returns the unique PBR y obtained by exchanging the positive and negative numbers in x

(i.e. multiplying ExtRepOfObj (4.5.3) by -1 and swapping its first and second components).
Example

gap> x := PBR([[], [-1], []], [[-3, -2, 2, 3], [-2, 1], []]);;
gap> Star(x);
PBR([[-3, -2, 2, 3], [-1, 2], []], [[], [1], []])

4.5.2 DegreeOfPBR

▷ DegreeOfPBR(x) (attribute)

▷ DegreeOfPBRCollection(x) (attribute)

Returns: A positive integer.
The degree of a PBR is, roughly speaking, the number of points where it is defined. More precisely,

if x is a PBR defined on 2 * n points, then the degree of x is n.
The degree of a collection coll of PBRs of equal degree is just the degree of any (and every) PBR

in coll . The degree of collection of PBRs of unequal degrees is not defined.
Example

gap> x := PBR([[-2], [-2, -1, 2, 3], [-1, 1, 2, 3]],
> [[-1, 1], [2, 3], [-3, 2, 3]]);
PBR([[-2], [-2, -1, 2, 3], [-1, 1, 2, 3]],

[[-1, 1], [2, 3], [-3, 2, 3]])
gap> DegreeOfPBR(x);

Semigroups 42

3
gap> S := FullPBRMonoid(2);
<pbr monoid of degree 2 with 10 generators>
gap> DegreeOfPBRCollection(S);
2

4.5.3 ExtRepOfObj (for a PBR)

▷ ExtRepOfObj(x) (operation)

Returns: A pair of lists of lists of integers.
If n is the degree of the PBR x , then ExtRepOfObj returns the argument required by PBR (4.2.1)

to create a PBR equal to x , i.e. PBR(ExtRepOfObj(x)) returns a PBR equal to x .
Example

gap> x := PBR([[-1, 1], [-2, 2]],
> [[-2, -1, 1], [-1, 1, 2]]);
PBR([[-1, 1], [-2, 2]], [[-2, -1, 1], [-1, 1, 2]])
gap> ExtRepOfObj(x);
[[[-1, 1], [-2, 2]], [[-2, -1, 1], [-1, 1, 2]]]

4.5.4 PBRNumber

▷ PBRNumber(m, n) (operation)

▷ NumberPBR(mat) (operation)

Returns: A PBR, or a positive integer.
These functions implement a bijection from the set of all PBRs of degree n and the numbers [1

.. 2 ^ (4 * n ^ 2)].
More precisely, if m and n are positive integers such that m is at most 2 ^ (4 * n ^ 2), then

PBRNumber returns the m th PBR of degree n .
If mat is a PBR of degree n , then NumberPBR returns the number in [1 .. 2 ^ (4 * n ^ 2)]

that corresponds to mat .
Example

gap> S := FullPBRMonoid(1);
<pbr monoid of degree 1 with 4 generators>
gap> List(S, NumberPBR);
[3, 15, 5, 7, 8, 1, 4, 11, 13, 16, 6, 2, 9, 12, 14, 10]

4.5.5 IsEmptyPBR

▷ IsEmptyPBR(x) (property)

Returns: true or false.
A PBR is EMPTY if it has no edges. IsEmptyPBR returns true if the PBR x is empty and false

if it is not.
Example

gap> x := PBR([[]], [[]]);;
gap> IsEmptyPBR(x);
true
gap> x := PBR([[-2, 1], [2]], [[-1], [-2, 1]]);
PBR([[-2, 1], [2]], [[-1], [-2, 1]])

Semigroups 43

gap> IsEmptyPBR(x);
false

4.5.6 IsIdentityPBR

▷ IsIdentityPBR(x) (property)

Returns: true or false.
A PBR of degree n is the IDENTITY PBR of degree n if it is the identity of the full PBR monoid

of degree n. The identity PBR of degree n has 2n edges. Specifically, for each i in the ranges [1 ..
n] and [-n .. -1], the identity PBR has an edge from i to -i.

IsIdentityPBR returns true is the PBR x is an identity PBR and false if it is not.
Example

gap> x := PBR([[-2], [-1]], [[1], [2]]);
PBR([[-2], [-1]], [[1], [2]])
gap> IsIdentityPBR(x);
false
gap> x := PBR([[-1]], [[1]]);
PBR([[-1]], [[1]])
gap> IsIdentityPBR(x);
true

4.5.7 IsUniversalPBR

▷ IsUniversalPBR(x) (property)

Returns: true or false.
A PBR of degree n is UNIVERSAL if it has 4 * n ^ 2 edges, i.e. every possible edge.

Example
gap> x := PBR([[]], [[]]);
PBR([[]], [[]])
gap> IsUniversalPBR(x);
false
gap> x := PBR([[-2, 1], [2]], [[-1], [-2, 1]]);
PBR([[-2, 1], [2]], [[-1], [-2, 1]])
gap> IsUniversalPBR(x);
false
gap> x := PBR([[-1, 1]], [[-1, 1]]);
PBR([[-1, 1]], [[-1, 1]])
gap> IsUniversalPBR(x);
true

4.5.8 IsBipartitionPBR

▷ IsBipartitionPBR(x) (property)

▷ IsBlockBijectionPBR(x) (property)

Returns: true or false.
If the PBR x defines a bipartition, then IsBipartitionPBR returns true, and if not, then it returns

false.
A PBR x defines a bipartition if and only if when considered as a boolean matrix it is an equiva-

lence.

Semigroups 44

If x satisfies IsBipartitionPBR and when considered as a bipartition it is a block bijection, then
IsBlockBijectionPBR returns true.

Example
gap> x := PBR([[-1, 3], [-1, 3], [-2, 1, 2, 3]],
> [[-2, -1, 2], [-2, -1, 1, 2, 3],
> [-2, -1, 1, 2]]);
PBR([[-1, 3], [-1, 3], [-2, 1, 2, 3]],

[[-2, -1, 2], [-2, -1, 1, 2, 3], [-2, -1, 1, 2]])
gap> IsBipartitionPBR(x);
false
gap> x := PBR([[-2, -1, 1], [2, 3], [2, 3]],
> [[-2, -1, 1], [-2, -1, 1], [-3]]);
PBR([[-2, -1, 1], [2, 3], [2, 3]],

[[-2, -1, 1], [-2, -1, 1], [-3]])
gap> IsBipartitionPBR(x);
true
gap> IsBlockBijectionPBR(x);
false

4.5.9 IsTransformationPBR

▷ IsTransformationPBR(x) (property)

Returns: true or false.
If the PBR x defines a transformation, then IsTransformationPBR returns true, and if not, then

false is returned.
A PBR x defines a transformation if and only if it satisfies IsBipartitionPBR (4.5.8) and when

it is considered as a bipartition it satisfies IsTransBipartition (3.5.12).
With this definition, AsPBR (4.3.1) and AsTransformation (4.3.2) define mutually inverse iso-

morphisms from the full transformation monoid of degree n to the submonoid of the full PBR monoid
of degree n consisting of all the elements satisfying IsTransformationPBR.

Example
gap> x := PBR([[-3], [-1], [-3]], [[2], [], [1, 3]]);
PBR([[-3], [-1], [-3]], [[2], [], [1, 3]])
gap> IsTransformationPBR(x);
true
gap> x := AsTransformation(x);
Transformation([3, 1, 3])
gap> AsPBR(x) * AsPBR(x) = AsPBR(x ^ 2);
true
gap> Number(FullPBRMonoid(1), IsTransformationPBR);
1
gap> x := PBR([[-2, -1, 2], [-2, 1, 2]], [[-1, 1], [-2]]);
PBR([[-2, -1, 2], [-2, 1, 2]], [[-1, 1], [-2]])
gap> IsTransformationPBR(x);
false

4.5.10 IsDualTransformationPBR

▷ IsDualTransformationPBR(x) (property)

Returns: true or false.

Semigroups 45

If the PBR x defines a dual transformation, then IsDualTransformationPBR returns true, and
if not, then false is returned.

A PBR x defines a dual transformation if and only if Star(x) satisfies IsTransformationPBR
(4.5.9).

Example
gap> x := PBR([[-3, 1, 3], [-1, 2], [-3, 1, 3]],
> [[-1, 2], [-2], [-3, 1, 3]]);
PBR([[-3, 1, 3], [-1, 2], [-3, 1, 3]],

[[-1, 2], [-2], [-3, 1, 3]])
gap> IsDualTransformationPBR(x);
false
gap> IsDualTransformationPBR(Star(x));
true
gap> Number(FullPBRMonoid(1), IsDualTransformationPBR);
1

4.5.11 IsPartialPermPBR

▷ IsPartialPermPBR(x) (property)

Returns: true or false.
If the PBR x defines a partial permutation, then IsPartialPermPBR returns true, and if not, then

false is returned.
A PBR x defines a partial perm if and only if it satisfies IsBipartitionPBR (4.5.8) and and when

it is considered as a bipartition it satisfies IsPartialPermBipartition (3.5.15).
With this definition, AsPBR (4.3.1) and AsPartialPerm (4.3.3) define mutually inverse isomor-

phisms from the symmetric inverse monoid of degree n to the submonoid of the full PBR monoid of
degree n consisting of all the elements satisfying IsPartialPermPBR.

Example
gap> x := PBR([[-1, 1], [2]], [[-1, 1], [-2]]);
PBR([[-1, 1], [2]], [[-1, 1], [-2]])
gap> IsPartialPermPBR(x);
true
gap> x := PartialPerm([3, 1]);
[2,1,3]
gap> AsPBR(x) * AsPBR(x) = AsPBR(x ^ 2);
true
gap> Number(FullPBRMonoid(1), IsPartialPermPBR);
2

4.5.12 IsPermPBR

▷ IsPermPBR(x) (property)

Returns: true or false.
If the PBR x defines a permutation, then IsPermPBR returns true, and if not, then false is

returned.
A PBR x defines a permutation if and only if it satisfies IsBipartitionPBR (4.5.8) and and when

it is considered as a bipartition it satisfies IsPermBipartition (3.5.14).
With this definition, AsPBR (4.3.1) and AsPermutation (4.3.4) define mutually inverse isomor-

phisms from the symmetric group of degree n to the subgroup of the full PBR monoid of degree n

Semigroups 46

consisting of all the elements satisfying IsPermPBR (i.e. the GroupOfUnits (11.9.1) of the full PBR
monoid of degree n).

Example
gap> x := PBR([[-2, 1], [-4, 2], [-1, 3], [-3, 4]],
> [[-1, 3], [-2, 1], [-3, 4], [-4, 2]]);;
gap> IsPermPBR(x);
true
gap> x := (1, 5)(2, 4, 3);
(1,5)(2,4,3)
gap> y := (1, 4, 3)(2, 5);
(1,4,3)(2,5)
gap> AsPBR(x) * AsPBR(y) = AsPBR(x * y);
true
gap> Number(FullPBRMonoid(1), IsPermPBR);
1

4.6 Semigroups of PBRs

Semigroups and monoids of PBRs can be created in the usual way in GAP using the functions
Semigroup (Reference: Semigroup) and Monoid (Reference: Monoid); see Chapter 6 for more
details.

It is possible to create inverse semigroups and monoids of PBRs using InverseSemigroup
(Reference: InverseSemigroup) and InverseMonoid (Reference: InverseMonoid) when the ar-
gument is a collection of PBRs satisfying IsBipartitionPBR (4.5.8) and when considered as bipar-
titions, the collection satisfies IsGeneratorsOfInverseSemigroup.

Note that every PBR semigroup in Semigroups is finite.

4.6.1 IsPBRSemigroup

▷ IsPBRSemigroup(S) (filter)

▷ IsPBRMonoid(S) (filter)

Returns: true or false.
A PBR semigroup is simply a semigroup consisting of PBRs. An object obj is a PBR semigroup

in GAP if it satisfies IsSemigroup (Reference: IsSemigroup) and IsPBRCollection (4.1.2).
A PBR monoid is a monoid consisting of PBRs. An object obj is a PBR monoid in GAP if it

satisfies IsMonoid (Reference: IsMonoid) and IsPBRCollection (4.1.2).
Note that it is possible for a PBR semigroup to have a multiplicative neutral element (i.e. an

identity element) but not to satisfy IsPBRMonoid. For example,
Example

gap> x := PBR([[-2, -1, 3], [-2, 2], [-3, -2, 1, 2, 3]],
> [[-3, -2, -1, 2, 3], [-3, -2, -1, 2, 3], [-1]]);;
gap> S := Semigroup(x, One(x));
<commutative pbr monoid of degree 3 with 1 generator>
gap> IsMonoid(S);
true
gap> IsPBRMonoid(S);
true
gap> S := Semigroup([
> PBR([[-2, 1], [-3, 2], [-1, 3], [-4, 4, 5], [-4, 4, 5]],

Semigroups 47

> [[-1, 3], [-2, 1], [-3, 2], [-4, 4, 5], [-5]]),
> PBR([[-2, 1], [-1, 2], [-3, 3], [-4, 4, 5], [-4, 4, 5]],
> [[-1, 2], [-2, 1], [-3, 3], [-4, 4, 5], [-5]]),
> PBR([[-1, 1, 3], [-2, 2], [-1, 1, 3], [-4, 4, 5], [-4, 4, 5]],
> [[-1, 1, 3], [-2, 2], [-3], [-4, 4, 5], [-5]])]);
<pbr semigroup of degree 5 with 3 generators>
gap> One(S);
fail
gap> MultiplicativeNeutralElement(S);
PBR([[-1, 1], [-2, 2], [-3, 3], [-4, 4, 5], [-4, 4, 5]],

[[-1, 1], [-2, 2], [-3, 3], [-4, 4, 5], [-5]])
gap> IsPBRMonoid(S);
false

In this example S cannot be converted into a monoid using AsMonoid (Reference: AsMonoid) since
the One (Reference: One) of any element in S differs from the multiplicative neutral element.

For more details see IsMagmaWithOne (Reference: IsMagmaWithOne).

4.6.2 DegreeOfPBRSemigroup

▷ DegreeOfPBRSemigroup(S) (attribute)

Returns: A non-negative integer.
The degree of a PBR semigroup S is just the degree of any (and every) element of S .

Example
gap> S := Semigroup(
> PBR([[-1, 1], [-2, 2], [-3, 3]],
> [[-1, 1], [-2, 2], [-3, 3]]),
> PBR([[1, 2], [1, 2], [-3, 3]],
> [[-2, -1], [-2, -1], [-3, 3]]),
> PBR([[-1, 1], [2, 3], [2, 3]],
> [[-1, 1], [-3, -2], [-3, -2]]));
<pbr semigroup of degree 3 with 3 generators>
gap> DegreeOfPBRSemigroup(S);
3

Chapter 5

Matrices over semirings

In this chapter we describe the functionality in Semigroups for creating matrices over semirings.
ONLY SQUARE MATRICES ARE CURRENTLY SUPPORTED. We use the term MATRIX to mean SQUARE

MATRIX everywhere in this manual.
For reference, matrices over the following semirings are currently supported:

the Boolean semiring
the set {0,1} where 0+0 = 0, 0+1 = 1+1 = 1+0 = 1, 1 ·0 = 0 ·0 = 0 ·1 = 0, and 1 ·1 = 1.

the max-plus semiring
the set of integers and negative infinity Z∪{−∞} with operations max and plus.

the min-plus semiring
the set of integers and infinity Z∪{∞} with operations min and plus;

tropical max-plus semirings
the set {−∞,0,1, . . . , t} for some threshold t with operations max and plus;

tropical min-plus semirings
the set {0,1, . . . , t,∞} for some threshold t with operations min and plus;

the semiring Nt,p

the semiring Nt,p = {0,1, . . . , t, t + 1, . . . , t + p− 1} for some threshold t and period p under
addition and multiplication modulo the congruence t = t + p;

the integers
the usual ring of integers;

finite fields
the finite fields GF(q^d) for prime q and some positive integer d.

With the exception of matrices of finite fields, semigroups of matrices in Semigroups are of the
second type described in Section 6.1. In other words, a version of the Froidure-Pin Algorithm [FP97]
is used to compute semigroups of these types, i.e it is possible that all of the elements of such a
semigroup are enumerated and stored in the memory of your computer.

48

Semigroups 49

5.1 Creating matrices over semirings

In this section we describe the two main operations for creating matrices over semirings in Semi-
groups, and the categories, attributes, and operations which apply to every matrix over one of the
semirings given at the start of this chapter.

There are several special methods for boolean matrices, which can be found in Section 5.3. There
are also several special methods for finite fields, which can be found in section 5.4.

5.1.1 IsMatrixOverSemiring

▷ IsMatrixOverSemiring(obj) (Category)

Returns: true or false.
Every matrix over a semiring in Semigroups is a member of the category

IsMatrixOverSemiring, which is a subcategory of IsMultiplicativeElementWithOne
(Reference: IsMultiplicativeElementWithOne), IsAssociativeElement (Reference: IsAssocia-
tiveElement), and IsPositionalObjectRep; see (Reference: Representation).

Every matrix over a semiring in Semigroups is a square matrix.
Basic operations for matrices over semirings are: DimensionOfMatrixOverSemiring (5.1.3),

TransposedMat (Reference: TransposedMat), and One (Reference: One).

5.1.2 IsMatrixOverSemiringCollection

▷ IsMatrixOverSemiringCollection(obj) (Category)

▷ IsMatrixOverSemiringCollColl(obj) (Category)

Returns: true or false.
Every collection of matrices over the same semiring belongs to the category

IsMatrixOverSemiringCollection. For example, semigroups of matrices over a semiring
belong to IsMatrixOverSemiringCollection.

Every collection of collections of matrices over the same semiring belongs to the category
IsMatrixOverSemiringCollColl. For example, a list of semigroups of matrices over semirings
belongs to IsMatrixOverSemiringCollColl.

5.1.3 DimensionOfMatrixOverSemiring

▷ DimensionOfMatrixOverSemiring(mat) (attribute)

Returns: A positive integer.
If mat is a matrix over a semiring (i.e. belongs to the category IsMatrixOverSemiring (5.1.1)),

then mat is a square n by n matrix. DimensionOfMatrixOverSemiring returns the dimension n of
mat .

Example
gap> x := BooleanMat([[1, 0, 0, 1],
> [0, 1, 1, 0],
> [1, 0, 1, 1],
> [0, 0, 0, 1]]);
Matrix(IsBooleanMat, [[1, 0, 0, 1], [0, 1, 1, 0], [1, 0, 1, 1],

[0, 0, 0, 1]])
gap> DimensionOfMatrixOverSemiring(x);
4

Semigroups 50

5.1.4 DimensionOfMatrixOverSemiringCollection

▷ DimensionOfMatrixOverSemiringCollection(coll) (attribute)

Returns: A positive integer.
If coll is a collection of matrices over a semiring (i.e. belongs to the category

IsMatrixOverSemiringCollection (5.1.2)), then the elements of coll are square n by n matri-
ces. DimensionOfMatrixOverSemiringCollection returns the dimension n of these matrices.

Example
gap> x := BooleanMat([[1, 0, 0, 1],
> [0, 1, 1, 0],
> [1, 0, 1, 1],
> [0, 0, 0, 1]]);
Matrix(IsBooleanMat, [[1, 0, 0, 1], [0, 1, 1, 0], [1, 0, 1, 1],

[0, 0, 0, 1]])
gap> DimensionOfMatrixOverSemiringCollection(Semigroup(x));
4

5.1.5 Matrix (for a filter and a matrix)

▷ Matrix(filt, mat[, threshold[, period]]) (operation)

▷ Matrix(semiring, mat) (operation)

Returns: A matrix over semiring.
This operation can be used to construct a matrix over a semiring in Semigroups.
In its first form, the first argument filt specifies the filter to be used to create the matrix, the

second argument mat is a GAP matrix (i.e. a list of lists) compatible with filt , the third and fourth
arguments threshold and period (if required) must be positive integers.

filt
This must be one of the filters given in Section 5.1.8.

mat This must be a list of n lists each of length n (i.e. a square matrix), consisting of elements be-
longing to the underlying semiring described by filt , and threshold and period if present.
An error is given if mat is not compatible with the other arguments.

For example, if filt is IsMaxPlusMatrix, then the entries of mat must belong to the max-plus
semiring, i.e. they must be integers or -∞.

The supported semirings are fully described at the start of this chapter.

threshold
If filt is any of IsTropicalMaxPlusMatrix (5.1.8), IsTropicalMinPlusMatrix (5.1.8),
or IsNTPMatrix (5.1.8), then this argument specifies the threshold of the underlying semiring
of the matrix being created.

period
If filt is IsNTPMatrix (5.1.8), then this argument specifies the period of the underlying semir-
ing of the matrix being created.

In its second form, the arguments should be a semiring semiring and matrix mat with entries in
semiring . Currently, the only supported semirings are finite fields of prime order, and the integers
Integers (Reference: Integers).

The function BooleanMat (5.3.1) is provided for specifically creating boolean matrices.

Semigroups 51

Example
gap> Matrix(IsBooleanMat, [[1, 0, 0, 0],
> [0, 0, 0, 0],
> [1, 1, 1, 1],
> [1, 0, 1, 1]]);
Matrix(IsBooleanMat, [[1, 0, 0, 0], [0, 0, 0, 0], [1, 1, 1, 1],

[1, 0, 1, 1]])
gap> Matrix(IsMaxPlusMatrix, [[4, 0, -2],
> [1, -3, 0],
> [5, -1, -4]]);
Matrix(IsMaxPlusMatrix, [[4, 0, -2], [1, -3, 0], [5, -1, -4]])
gap> Matrix(IsMinPlusMatrix, [[-1, infinity],
> [1, -1]]);
Matrix(IsMinPlusMatrix, [[-1, infinity], [1, -1]])
gap> Matrix(IsTropicalMaxPlusMatrix, [[3, 2, 4],
> [3, 1, 1],
> [-infinity, 1, 1]],
> 9);
Matrix(IsTropicalMaxPlusMatrix, [[3, 2, 4], [3, 1, 1],

[-infinity, 1, 1]], 9)
gap> Matrix(IsTropicalMinPlusMatrix, [[1, 1, 1],
> [0, 3, 0],
> [1, 1, 3]],
> 9);
Matrix(IsTropicalMinPlusMatrix, [[1, 1, 1], [0, 3, 0], [1, 1, 3]], 9)
gap> Matrix(IsNTPMatrix, [[0, 0, 0],
> [2, 0, 1],
> [2, 2, 2]],
> 2, 1);
Matrix(IsNTPMatrix, [[0, 0, 0], [2, 0, 1], [2, 2, 2]], 2, 1)
gap> Matrix(Integers, [[-1, -2, 0],
> [0, 3, -1],
> [1, 0, -3]]);
<3x3-matrix over Integers>
gap> Matrix(Integers, [[-1, -2, 0],
> [0, 3, -1],
> [1, 0, -3]]);
<3x3-matrix over Integers>

5.1.6 AsMatrix (for a filter and a matrix)

▷ AsMatrix(filt, mat) (operation)

▷ AsMatrix(filt, mat, threshold) (operation)

▷ AsMatrix(filt, mat, threshold, period) (operation)

Returns: A matrix.
This operation can be used to change the representation of certain matrices over semirings. If

mat is a matrix over a semiring (in the category IsMatrixOverSemiring (5.1.1)), then AsMatrix
returns a new matrix corresponding to mat of the type specified by the filter filt , and if applicable
the arguments threshold and period . The dimension of the matrix mat is not changed by this
operation.

The version of the operation with arguments filt and mat can be applied to:

Semigroups 52

• IsMinPlusMatrix (5.1.8) and a tropical min-plus matrix (i.e. convert a tropical min-plus
matrix to a (non-tropical) min-plus matrix);

• IsMaxPlusMatrix (5.1.8) and a tropical max-plus matrix;

The version of the operation with arguments filt , mat , and threshold can be applied to:

• IsTropicalMinPlusMatrix (5.1.8), a tropical min-plus or min-plus matrix, and a value for
the threshold of the resulting matrix.

• IsTropicalMaxPlusMatrix (5.1.8) and a tropical max-plus, or max-plus matrix, and a value
for the threshold of the resulting matrix.

The version of the operation with arguments filt , mat , threshold , and period can be applied to
IsNTPMatrix (5.1.8) and an ntp matrix, or integer matrix.

When converting matrices with negative entries to an ntp, tropical max-plus, or tropical min-plus
matrix, the entry is replaced with its absolute value.

When converting non-tropical matrices to tropical matrices entries higher than the specified
threshold are reduced to the threshold.

Example
gap> mat := Matrix(IsTropicalMinPlusMatrix, [[0, 1, 3],
> [1, 1, 6],
> [0, 4, 2]], 10);;
gap> AsMatrix(IsMinPlusMatrix, mat);
Matrix(IsMinPlusMatrix, [[0, 1, 3], [1, 1, 6], [0, 4, 2]])
gap> mat := Matrix(IsTropicalMaxPlusMatrix, [[-infinity, -infinity, 3],
> [0, 1, 3],
> [4, 1, 0]], 10);;
gap> AsMatrix(IsMaxPlusMatrix, mat);
Matrix(IsMaxPlusMatrix, [[-infinity, -infinity, 3], [0, 1, 3],

[4, 1, 0]])
gap> mat := Matrix(IsNTPMatrix, [[1, 2, 2],
> [0, 2, 0],
> [1, 3, 0]], 4, 5);;
gap> Matrix(Integers, mat);
<3x3-matrix over Integers>
gap> mat := Matrix(IsMinPlusMatrix, [[0, 1, 3], [1, 1, 6], [0, 4, 2]]);;
gap> mat := AsMatrix(IsTropicalMinPlusMatrix, mat, 2);
Matrix(IsTropicalMinPlusMatrix, [[0, 1, 2], [1, 1, 2], [0, 2, 2]], 2)
gap> mat := AsMatrix(IsTropicalMinPlusMatrix, mat, 1);
Matrix(IsTropicalMinPlusMatrix, [[0, 1, 1], [1, 1, 1], [0, 1, 1]], 1)
gap> mat := Matrix(IsTropicalMaxPlusMatrix, [[-infinity, -infinity, 3],
> [0, 1, 3],
> [4, 1, 0]], 10);;
gap> AsMatrix(IsTropicalMaxPlusMatrix, mat, 4);
Matrix(IsTropicalMaxPlusMatrix, [[-infinity, -infinity, 3],

[0, 1, 3], [4, 1, 0]], 4)
gap> mat := Matrix(IsMaxPlusMatrix, [[-infinity, -infinity, 3],
> [0, 1, 3],
> [4, 1, 0]]);;
gap> AsMatrix(IsTropicalMaxPlusMatrix, mat, 10);
Matrix(IsTropicalMaxPlusMatrix, [[-infinity, -infinity, 3],

[0, 1, 3], [4, 1, 0]], 10)

Semigroups 53

gap> mat := Matrix(IsNTPMatrix, [[0, 1, 0],
> [1, 3, 1],
> [1, 0, 1]], 10, 10);;
gap> mat := AsMatrix(IsNTPMatrix, mat, 5, 6);
Matrix(IsNTPMatrix, [[0, 1, 0], [1, 3, 1], [1, 0, 1]], 5, 6)
gap> mat := AsMatrix(IsNTPMatrix, mat, 2, 6);
Matrix(IsNTPMatrix, [[0, 1, 0], [1, 3, 1], [1, 0, 1]], 2, 6)
gap> mat := AsMatrix(IsNTPMatrix, mat, 2, 1);
Matrix(IsNTPMatrix, [[0, 1, 0], [1, 2, 1], [1, 0, 1]], 2, 1)
gap> mat := Matrix(Integers, mat);
<3x3-matrix over Integers>
gap> AsMatrix(IsNTPMatrix, mat, 1, 2);
Matrix(IsNTPMatrix, [[0, 1, 0], [1, 2, 1], [1, 0, 1]], 1, 2)

5.1.7 RandomMatrix (for a filter and a matrix)

▷ RandomMatrix(filt, dim[, threshold[, period]]) (function)

▷ RandomMatrix(semiring, dim) (function)

Returns: A matrix over semiring.
This operation can be used to construct a random matrix over a semiring in Semigroups. The

usage of RandomMatrix is similar to that of Matrix (5.1.5).
In its first form, the first argument filt specifies the filter to be used to create the matrix, the

second argument dim is dimension of the matrix, the third and fourth arguments threshold and
period (if required) must be positive integers.

filt
This must be one of the filters given in Section 5.1.8.

dim This must be a positive integer.

threshold
If filt is any of IsTropicalMaxPlusMatrix (5.1.8), IsTropicalMinPlusMatrix (5.1.8),
or IsNTPMatrix (5.1.8), then this argument specifies the threshold of the underlying semiring
of the matrix being created.

period
If filt is IsNTPMatrix (5.1.8), then this argument specifies the period of the underlying semir-
ing of the matrix being created.

In its second form, the arguments should be a semiring semiring and dimension dim . Currently,
the only supported semirings are finite fields of prime order and the integers Integers (Reference:
Integers).

Example
gap> RandomMatrix(IsBooleanMat, 3);
Matrix(IsBooleanMat, [[1, 0, 0], [1, 0, 1], [1, 0, 1]])
gap> RandomMatrix(IsMaxPlusMatrix, 2);
Matrix(IsMaxPlusMatrix, [[1, -infinity], [1, 0]])
gap> RandomMatrix(IsMinPlusMatrix, 3);
Matrix(IsMinPlusMatrix, [[infinity, 2, infinity], [4, 0, -2], [1, -3, 0]])
gap> RandomMatrix(IsTropicalMaxPlusMatrix, 3, 5);

Semigroups 54

Matrix(IsTropicalMaxPlusMatrix, [[5, 1, 4], [1, -infinity, 1], [1, 0, 2]],
5)

gap> RandomMatrix(IsTropicalMinPlusMatrix, 3, 2);
Matrix(IsTropicalMinPlusMatrix, [[1, -infinity, -infinity], [1, 1, 1],

[2, 2, 1]], 2)
gap> RandomMatrix(IsNTPMatrix, 3, 2, 5);
Matrix(IsNTPMatrix, [[1, 1, 1], [1, 1, 0], [3, 0, 1]], 2, 5)
gap> RandomMatrix(Integers, 2);
Matrix(Integers, [[1, 3], [0, 0]])
gap> RandomMatrix(Integers, 2);
Matrix(Integers, [[-1, 0], [0, -1]])
gap> RandomMatrix(GF(5), 1);
Matrix(GF(5), [[Z(5)^0]])

5.1.8 Matrix filters

▷ IsBooleanMat(obj) (Category)

▷ IsMatrixOverFiniteField(obj) (Category)

▷ IsMaxPlusMatrix(obj) (Category)

▷ IsMinPlusMatrix(obj) (Category)

▷ IsTropicalMatrix(obj) (Category)

▷ IsTropicalMaxPlusMatrix(obj) (Category)

▷ IsTropicalMinPlusMatrix(obj) (Category)

▷ IsNTPMatrix(obj) (Category)

▷ Integers(obj) (Category)

Returns: true or false.
Every matrix over a semiring in Semigroups is a member of one of these categories, which are

subcategory of IsMatrixOverSemiring (5.1.1).
IsTropicalMatrix is a supercategory of IsTropicalMaxPlusMatrix and

IsTropicalMinPlusMatrix.
Basic operations for matrices over semirings include: multiplication via *,

DimensionOfMatrixOverSemiring (5.1.3), One (Reference: One), the underlying list of
lists used to create the matrix can be accessed using AsList (5.1.10), the rows of mat can be accessed
using mat[i] where i is between 1 and the dimension of the matrix, it also possible to loop over
the rows of a matrix; for tropical matrices ThresholdTropicalMatrix (5.1.11); for ntp matrices
ThresholdNTPMatrix (5.1.12) and PeriodNTPMatrix (5.1.12).

For matrices over finite fields see Section 5.4; for Boolean matrices more details can be found in
Section 5.3.

5.1.9 Matrix collection filters

▷ IsBooleanMatCollection(obj) (Category)

▷ IsBooleanMatCollColl(obj) (Category)

▷ IsMatrixOverFiniteFieldCollection(obj) (Category)

▷ IsMatrixOverFiniteFieldCollColl(obj) (Category)

▷ IsMaxPlusMatrixCollection(obj) (Category)

▷ IsMaxPlusMatrixCollColl(obj) (Category)

▷ IsMinPlusMatrixCollection(obj) (Category)

Semigroups 55

▷ IsMinPlusMatrixCollColl(obj) (Category)

▷ IsTropicalMatrixCollection(obj) (Category)

▷ IsTropicalMaxPlusMatrixCollection(obj) (Category)

▷ IsTropicalMaxPlusMatrixCollColl(obj) (Category)

▷ IsTropicalMinPlusMatrixCollection(obj) (Category)

▷ IsTropicalMinPlusMatrixCollColl(obj) (Category)

▷ IsNTPMatrixCollection(obj) (Category)

▷ IsNTPMatrixCollColl(obj) (Category)

Returns: true or false.
Every collection of matrices over the same semiring in Semigroups belongs to one of the cate-

gories above. For example, semigroups of boolean matrices belong to IsBooleanMatCollection.
Similarly, every collection of collections of matrices over the same semiring in Semigroups be-

longs to one of the categories above.

5.1.10 AsList

▷ AsList(mat) (attribute)

▷ AsMutableList(mat) (operation)

Returns: A list of lists.
If mat is a matrix over a semiring (in the category IsMatrixOverSemiring (5.1.1)), then AsList

returns the underlying list of lists of semiring elements corresponding to mat . In this case, the returned
list and all of its entries are immutable.

The operation AsMutableList returns a mutable copy of the underlying list of lists of the matrix
over semiring mat .

Example
gap> mat := Matrix(IsNTPMatrix,
> [[0, 1, 0], [1, 3, 1], [1, 0, 1]], 5, 6);
Matrix(IsNTPMatrix, [[0, 1, 0], [1, 3, 1], [1, 0, 1]], 5, 6)
gap> list := AsList(mat);
[[0, 1, 0], [1, 3, 1], [1, 0, 1]]
gap> IsMutable(list);
false
gap> IsMutable(list[1]);
false
gap> list := AsMutableList(mat);
[[0, 1, 0], [1, 3, 1], [1, 0, 1]]
gap> IsMutable(list);
true
gap> IsMutable(list[1]);
true
gap> mat = Matrix(IsNTPMatrix, AsList(mat), 5, 6);
true

5.1.11 ThresholdTropicalMatrix

▷ ThresholdTropicalMatrix(mat) (attribute)

Returns: A positive integer.
If mat is a tropical matrix (i.e. belongs to the category IsTropicalMatrix (5.1.8)), then

ThresholdTropicalMatrix returns the threshold (i.e. the largest integer) of the underlying semiring.

Semigroups 56

Example
gap> mat := Matrix(IsTropicalMaxPlusMatrix,
> [[0, 3, 0, 2],
> [1, 1, 1, 0],
> [-infinity, 1, -infinity, 1],
> [0, -infinity, 2, -infinity]], 10);
Matrix(IsTropicalMaxPlusMatrix, [[0, 3, 0, 2], [1, 1, 1, 0],

[-infinity, 1, -infinity, 1], [0, -infinity, 2, -infinity]], 10)
gap> ThresholdTropicalMatrix(mat);
10
gap> mat := Matrix(IsTropicalMaxPlusMatrix,
> [[0, 3, 0, 2],
> [1, 1, 1, 0],
> [-infinity, 1, -infinity, 1],
> [0, -infinity, 2, -infinity]], 3);
Matrix(IsTropicalMaxPlusMatrix, [[0, 3, 0, 2], [1, 1, 1, 0],

[-infinity, 1, -infinity, 1], [0, -infinity, 2, -infinity]], 3)
gap> ThresholdTropicalMatrix(mat);
3

5.1.12 ThresholdNTPMatrix

▷ ThresholdNTPMatrix(mat) (attribute)

▷ PeriodNTPMatrix(mat) (attribute)

Returns: A positive integer.
An NTP MATRIX is a matrix with entries in a semiring Nt,p = {0,1, . . . , t, t +1, . . . , t + p−1} for

some threshold t and period p under addition and multiplication modulo the congruence t = t + p.
If mat is a ntp matrix (i.e. belongs to the category IsNTPMatrix (5.1.8)), then

ThresholdNTPMatrix and PeriodNTPMatrix return the threshold and period of the underlying
semiring, respectively.

Example
gap> mat := Matrix(IsNTPMatrix, [[1, 1, 0],
> [2, 1, 0],
> [0, 1, 1]],
> 1, 2);
Matrix(IsNTPMatrix, [[1, 1, 0], [2, 1, 0], [0, 1, 1]], 1, 2)
gap> ThresholdNTPMatrix(mat);
1
gap> PeriodNTPMatrix(mat);
2
gap> mat := Matrix(IsNTPMatrix, [[2, 1, 3],
> [0, 5, 1],
> [4, 1, 0]],
> 3, 4);
Matrix(IsNTPMatrix, [[2, 1, 3], [0, 5, 1], [4, 1, 0]], 3, 4)
gap> ThresholdNTPMatrix(mat);
3
gap> PeriodNTPMatrix(mat);
4

Semigroups 57

5.2 Operators for matrices over semirings

mat1 * mat2
returns the product of the matrices mat1 and mat2 of equal dimension over the same semiring
using the usual matrix multiplication with the operations + and * from the underlying semiring.

mat1 < mat2
returns true if when considered as a list of rows, the matrix mat1 is short-lex less than the
matrix mat2 , and false if this is not the case. This means that a matrix of lower dimension is
less than a matrix of higher dimension.

mat1 = mat2
returns true if the matrix mat1 equals the matrix mat2 (i.e. the entries are equal and the
underlying semirings are equal) and returns false if it does not.

5.3 Boolean matrices

In this section we describe the operations, properties, and attributes in Semigroups specifically for
Boolean matrices. These include:

• NumberBooleanMat (5.3.6)

• Successors (5.3.5)

• IsRowTrimBooleanMat (5.3.9), IsColTrimBooleanMat (5.3.9), and IsTrimBooleanMat
(5.3.9),

• CanonicalBooleanMat (5.3.8)

• IsSymmetricBooleanMat (5.3.10)

• IsAntiSymmetricBooleanMat (5.3.13)

• IsTransitiveBooleanMat (5.3.12)

• IsReflexiveBooleanMat (5.3.11)

• IsTotalBooleanMat (5.3.14)

• IsOntoBooleanMat (5.3.14)

• IsPartialOrderBooleanMat (5.3.15)

• IsEquivalenceBooleanMat (5.3.16)

5.3.1 BooleanMat

▷ BooleanMat(arg) (function)

Returns: A boolean matrix.
BooleanMat returns the boolean matrix mat defined by its argument. The argument can be any of

the following:

Semigroups 58

a matrix with entries 0 and/or 1
the argument arg is list of n lists of length n consisting of the values 0 and 1;

a matrix with entries true and/or false
the argument arg is list of n lists of length n consisting of the values true and false;

successors
the argument arg is list of n sublists of consisting of positive integers not greater than n. In this
case, the entry j in the sublist in position i of arg indicates that the entry in position (i, j)
of the created boolean matrix is true.

BooleanMat returns an error if the argument is not one of the above types.
Example

gap> x := BooleanMat([[true, false], [true, true]]);
Matrix(IsBooleanMat, [[1, 0], [1, 1]])
gap> y := BooleanMat([[1, 0], [1, 1]]);
Matrix(IsBooleanMat, [[1, 0], [1, 1]])
gap> z := BooleanMat([[1], [1, 2]]);
Matrix(IsBooleanMat, [[1, 0], [1, 1]])
gap> x = y;
true
gap> y = z;
true
gap> Display(x);
1 0
1 1

5.3.2 AsBooleanMat

▷ AsBooleanMat(x[, n]) (operation)

Returns: A boolean matrix.
AsBooleanMat returns the pbr, bipartition, permutation, transformation, or partial permutation x ,

as a boolean matrix of dimension n .
There are several possible arguments for AsBooleanMat:

permutations
If x is a permutation and n is a positive integer, then AsBooleanMat(x, n) returns the boolean
matrix mat of dimension n such that mat[i][j] = true if and only if j = i ^ x.

If no positive integer n is specified, then the largest moved point of x is used as the value for n ;
see LargestMovedPoint (Reference: LargestMovedPoint for a permutation).

transformations
If x is a transformation and n is a positive integer such that x is a transformation of [1 .. n],
then AsTransformation returns the boolean matrix mat of dimension n such that mat[i][j]
= true if and only if j = i ^ x.

If the positive integer n is not specified, then the degree of f is used as the value for n .

partial permutations
If x is a partial permutation and n is a positive integer such that i ^ x <= n for all i in [1 ..

Semigroups 59

n], then AsBooleanMat returns the boolean matrix mat of dimension n such that mat[i][j]
= true if and only if j = i ^ x.

If the optional argument n is not present, then the default value of the maximum of degree and
the codegree of x is used.

bipartitions
If x is a bipartition and n is any non-negative integer, then AsBooleanMat returns the boolean
matrix mat of dimension n such that mat[i][j] = true if and only if i and j belong to the
same block of x .

If the optional argument n is not present, then twice the degree of x is used by default.

pbrs If x is a pbr and n is any non-negative integer, then AsBooleanMat returns the boolean matrix
mat of dimension n such that mat[i][j] = true if and only if i and j are related in x .

If the optional argument n is not present, then twice the degree of x is used by default.
Example

gap> Display(AsBooleanMat((1, 2), 5));
0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
gap> Display(AsBooleanMat((1, 2)));
0 1
1 0
gap> x := Transformation([1, 3, 4, 1, 3]);;
gap> Display(AsBooleanMat(x));
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 0 1 0 0
gap> Display(AsBooleanMat(x, 4));
1 0 0 0
0 0 1 0
0 0 0 1
1 0 0 0
gap> x := PartialPerm([1, 2, 3, 6, 8, 10],
> [2, 6, 7, 9, 1, 5]);
[3,7][8,1,2,6,9][10,5]
gap> Display(AsBooleanMat(x));
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
gap> x := Bipartition([[1, 4, -2, -3], [2, 3, 5, -5], [-1, -4]]);

Semigroups 60

<bipartition: [1, 4, -2, -3], [2, 3, 5, -5], [-1, -4]>
gap> y := AsBooleanMat(x);
<10x10 boolean matrix>
gap> Display(y);
1 0 0 1 0 0 1 1 0 0
0 1 1 0 1 0 0 0 0 1
0 1 1 0 1 0 0 0 0 1
1 0 0 1 0 0 1 1 0 0
0 1 1 0 1 0 0 0 0 1
0 0 0 0 0 1 0 0 1 0
1 0 0 1 0 0 1 1 0 0
1 0 0 1 0 0 1 1 0 0
0 0 0 0 0 1 0 0 1 0
0 1 1 0 1 0 0 0 0 1
gap> IsEquivalenceBooleanMat(y);
true
gap> AsBooleanMat(x, 1);
Matrix(IsBooleanMat, [[1]])
gap> Display(AsBooleanMat(x, 1));
1
gap> Display(AsBooleanMat(x, 2));
1 0
0 1
gap> Display(AsBooleanMat(x, 3));
1 0 0
0 1 1
0 1 1
gap> Display(AsBooleanMat(x, 11));
1 0 0 1 0 0 1 1 0 0 0
0 1 1 0 1 0 0 0 0 1 0
0 1 1 0 1 0 0 0 0 1 0
1 0 0 1 0 0 1 1 0 0 0
0 1 1 0 1 0 0 0 0 1 0
0 0 0 0 0 1 0 0 1 0 0
1 0 0 1 0 0 1 1 0 0 0
1 0 0 1 0 0 1 1 0 0 0
0 0 0 0 0 1 0 0 1 0 0
0 1 1 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0
gap> x := PBR(
> [[-1, 1], [2, 3], [-3, 2, 3]],
> [[-1, 1, 2], [-3, -1, 1, 3], [-3, -1, 1, 2, 3]]);;
gap> AsBooleanMat(x);
Matrix(IsBooleanMat, [[1, 0, 0, 1, 0, 0], [0, 1, 1, 0, 0, 0],

[0, 1, 1, 0, 0, 1], [1, 1, 0, 1, 0, 0], [1, 0, 1, 1, 0, 1],
[1, 1, 1, 1, 0, 1]])

gap> Display(AsBooleanMat(x));
1 0 0 1 0 0
0 1 1 0 0 0
0 1 1 0 0 1
1 1 0 1 0 0
1 0 1 1 0 1

Semigroups 61

1 1 1 1 0 1

5.3.3 \in

▷ \in(mat1, mat2) (operation)

Returns: true or false.
If mat1 and mat2 are boolean matrices, then mat1 in mat2 returns true if the binary relation

defined by mat1 is a subset of that defined by mat2 .
Example

gap> x := BooleanMat([[1, 0, 0, 1], [0, 0, 0, 0],
> [1, 0, 1, 1], [0, 1, 1, 1]]);;
gap> y := BooleanMat([[1, 0, 1, 0], [1, 1, 1, 0],
> [0, 1, 1, 0], [1, 1, 1, 1]]);;
gap> x in y;
false
gap> y in y;
true

5.3.4 OnBlist

▷ OnBlist(blist, mat) (function)

Returns: A boolean list.
If blist is a boolean list of length n and mat is boolean matrices of dimension n, then OnBlist

returns the product of blist (thought of as a row vector over the boolean semiring) and mat .
Example

gap> mat := BooleanMat([[1, 0, 0, 1],
> [0, 0, 0, 0],
> [1, 0, 1, 1],
> [0, 1, 1, 1]]);;
gap> blist := BlistList([1 .. 4], [1, 2]);
[true, true, false, false]
gap> OnBlist(blist, mat);
[true, false, false, true]

5.3.5 Successors

▷ Successors(mat) (attribute)

Returns: A list of lists of positive integers.
A row of a boolean matrix of dimension n can be thought of of as the characteristic function of a

subset S of [1 .. n], i.e. i in S if and only if the ith component of the row equals 1. We refer to
the subset S as the SUCCESSORS of the row.

If mat is a boolean matrix, then Successors returns the list of successors of the rows of mat .
Example

gap> mat := BooleanMat([[1, 0, 1, 1],
> [1, 0, 0, 0],
> [0, 0, 1, 0],
> [1, 1, 0, 0]]);;
gap> Successors(mat);
[[1, 3, 4], [1], [3], [1, 2]]

Semigroups 62

5.3.6 BooleanMatNumber

▷ BooleanMatNumber(m, n) (operation)

▷ NumberBooleanMat(mat) (operation)

Returns: A boolean matrix, or a positive integer.
These functions implement a bijection from the set of all boolean matrices of dimension n and the

numbers [1 .. 2 ^ (n ^ 2)].
More precisely, if m and n are positive integers such that m is at most 2 ^ (n ^ 2), then

BooleanMatNumber returns the m th n by n boolean matrix.
If mat is an n by n boolean matrix, then NumberBooleanMat returns the number in [1 .. 2 ^

(n ^ 2)] that corresponds to mat .
Example

gap> mat := BooleanMat([[0, 1, 1, 0],
> [1, 0, 1, 1],
> [1, 1, 0, 1],
> [0, 1, 0, 1]]);;
gap> NumberBooleanMat(mat);
27606
gap> Display(BooleanMatNumber(27606, 4));
0 1 1 0
1 0 1 1
1 1 0 1
0 1 0 1

5.3.7 BlistNumber

▷ BlistNumber(m, n) (function)

▷ NumberBlist(blist) (function)

Returns: A boolean list, or a positive integer.
These functions implement a bijection from the set of all boolean lists of length n and the numbers

[1 .. 2 ^ n].
More precisely, if m and n are positive integers such that m is at most 2 ^ n , then BlistNumber

returns the m th boolean list of length n .
If blist is a boolean list of length n , then NumberBlist returns the number in [1 .. 2 ^ n]

that corresponds to blist .
Example

gap> blist := BlistList([1 .. 10], []);
[false, false, false, false, false, false, false, false, false,

false]
gap> NumberBlist(blist);
1
gap> blist := BlistList([1 .. 10], [10]);
[false, false, false, false, false, false, false, false, false, true
]

gap> NumberBlist(blist);
2
gap> BlistNumber(1, 10);
[false, false, false, false, false, false, false, false, false,

false]
gap> BlistNumber(2, 10);

Semigroups 63

[false, false, false, false, false, false, false, false, false, true
]

5.3.8 CanonicalBooleanMat (for a perm group, perm group and boolean matrix)

▷ CanonicalBooleanMat(G, H, mat) (operation)

▷ CanonicalBooleanMat(G, mat) (operation)

▷ CanonicalBooleanMat(mat) (attribute)

Returns: A boolean matrix.
This operation returns a fixed representative of the orbit of the boolean matrix mat under the action

of the permutation group G on its rows and the permutation group H on its columns.
In its second form, when only a single permutation group G is specified, G acts on the rows and

columns of mat independently.
In its third form, when only a boolean matrix is specified, CanonicalBooleanMat returns a fixed

representative of the orbit of mat under the action of the symmetric group on its rows, and, indepen-
dently, on its columns. In other words, CanonicalBooleanMat returns a canonical boolean matrix
equivalent to mat up to rearranging rows and columns. This version of CanonicalBooleanMat uses
digraphs and its interface with the bliss library for computing automorphism groups and canonical
forms of graphs [JK07]. As a consequence, CanonicalBooleanMat with a single argument is signif-
icantly faster than the versions with 2 or 3 arguments.

Example
gap> mat := BooleanMat([[1, 1, 1, 0, 0, 0],
> [0, 0, 0, 1, 0, 1],
> [1, 0, 0, 1, 0, 1],
> [0, 0, 0, 0, 0, 0],
> [0, 1, 1, 1, 1, 1],
> [0, 1, 1, 0, 1, 0]]);
Matrix(IsBooleanMat, [[1, 1, 1, 0, 0, 0], [0, 0, 0, 1, 0, 1],

[1, 0, 0, 1, 0, 1], [0, 0, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1],
[0, 1, 1, 0, 1, 0]])

gap> CanonicalBooleanMat(mat);
Matrix(IsBooleanMat, [[0, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0],

[0, 0, 1, 1, 1, 0], [1, 1, 0, 0, 1, 0], [0, 0, 1, 1, 0, 1],
[1, 1, 1, 1, 0, 1]])

gap> Display(CanonicalBooleanMat(mat));
0 0 0 0 0 0
1 1 0 0 0 0
0 0 1 1 1 0
1 1 0 0 1 0
0 0 1 1 0 1
1 1 1 1 0 1
gap> Display(CanonicalBooleanMat(Group((1, 3)), mat));
0 1 1 0 0 1
0 0 1 0 0 1
1 1 0 1 0 0
0 0 0 0 0 0
1 0 1 1 1 1
1 0 0 1 1 0
gap> Display(CanonicalBooleanMat(Group((1, 3)), Group(()), mat));
1 1 1 0 0 0

http://www.tcs.tkk.fi/Software/bliss/

Semigroups 64

0 0 0 1 0 1
0 1 0 1 0 1
0 0 0 0 0 0
1 0 1 1 1 1
1 0 1 0 1 0

5.3.9 IsRowTrimBooleanMat

▷ IsRowTrimBooleanMat(mat) (property)

▷ IsColTrimBooleanMat(mat) (property)

▷ IsTrimBooleanMat(mat) (property)

Returns: true or false.
A row or column of a boolean matrix of dimension n can be thought of of as the characteristic

function of a subset S of [1 .. n], i.e. i in S if and only if the ith component of the row or
column equals 1.

A boolean matrix is ROW TRIM if no subset induced by a row of mat is contained in the subset
induced by any other row of mat . COLUMN TRIM is defined analogously. A boolean matrix is TRIM

if it is both row and column trim.
Example

gap> mat := BooleanMat([[0, 0, 1, 1],
> [1, 0, 1, 0],
> [1, 1, 0, 0],
> [0, 1, 0, 1]]);;
gap> IsTrimBooleanMat(mat);
true
gap> mat := BooleanMat([[0, 1, 1, 0],
> [0, 0, 1, 0],
> [1, 0, 0, 1],
> [1, 0, 1, 0]]);;
gap> IsRowTrimBooleanMat(mat);
false
gap> IsColTrimBooleanMat(mat);
false

5.3.10 IsSymmetricBooleanMat

▷ IsSymmetricBooleanMat(mat) (property)

Returns: true or false.
A boolean matrix is SYMMETRIC if it is symmetric about the main diagonal, i.e. mat[i][j] =

mat[j][i] for all i, j in the range [1 .. n] where n is the dimension of mat .
Example

gap> mat := BooleanMat([[0, 1, 1, 0],
> [1, 0, 1, 1],
> [1, 1, 0, 1],
> [0, 1, 0, 1]]);
Matrix(IsBooleanMat, [[0, 1, 1, 0], [1, 0, 1, 1], [1, 1, 0, 1],

[0, 1, 0, 1]])
gap> IsSymmetricBooleanMat(mat);
false
gap> mat := BooleanMat([[0, 1, 1, 0],

Semigroups 65

> [1, 0, 1, 1],
> [1, 1, 0, 1],
> [0, 1, 1, 1]]);
Matrix(IsBooleanMat, [[0, 1, 1, 0], [1, 0, 1, 1], [1, 1, 0, 1],

[0, 1, 1, 1]])
gap> IsSymmetricBooleanMat(mat);
true

5.3.11 IsReflexiveBooleanMat

▷ IsReflexiveBooleanMat(mat) (property)

Returns: true or false.
A boolean matrix is REFLEXIVE if every entry in the main diagonal is true, i.e. mat[i][i] =

true for all i in the range [1 .. n] where n is the dimension of mat .
Example

gap> mat := BooleanMat([[1, 0, 0, 0],
> [1, 1, 0, 0],
> [0, 1, 0, 1],
> [1, 1, 1, 1]]);
Matrix(IsBooleanMat, [[1, 0, 0, 0], [1, 1, 0, 0], [0, 1, 0, 1],

[1, 1, 1, 1]])
gap> IsReflexiveBooleanMat(mat);
false
gap> mat := BooleanMat([[1, 1, 1, 0],
> [1, 1, 1, 1],
> [1, 1, 1, 1],
> [0, 1, 1, 1]]);
Matrix(IsBooleanMat, [[1, 1, 1, 0], [1, 1, 1, 1], [1, 1, 1, 1],

[0, 1, 1, 1]])
gap> IsReflexiveBooleanMat(mat);
true

5.3.12 IsTransitiveBooleanMat

▷ IsTransitiveBooleanMat(mat) (property)

Returns: true or false.
A boolean matrix is TRANSITIVE if whenever mat[i][j] = true and mat[j][k] = true then

mat[i][k] = true.
Example

gap> x := BooleanMat([[1, 0, 0, 1],
> [1, 0, 1, 1],
> [1, 1, 1, 0],
> [0, 1, 1, 0]]);
Matrix(IsBooleanMat, [[1, 0, 0, 1], [1, 0, 1, 1], [1, 1, 1, 0],

[0, 1, 1, 0]])
gap> IsTransitiveBooleanMat(x);
false
gap> x := BooleanMat([[1, 1, 1, 1],
> [1, 1, 1, 1],
> [1, 1, 1, 1],
> [1, 1, 1, 1]]);

Semigroups 66

Matrix(IsBooleanMat, [[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1],
[1, 1, 1, 1]])

gap> IsTransitiveBooleanMat(x);
true

5.3.13 IsAntiSymmetricBooleanMat

▷ IsAntiSymmetricBooleanMat(mat) (property)

Returns: true or false.
A boolean matrix is ANTI-SYMMETRIC if whenever mat[i][j] = true and mat[j][i] =

true then i = j.
Example

gap> x := BooleanMat([[1, 0, 0, 1],
> [1, 0, 1, 1],
> [1, 1, 1, 0],
> [0, 1, 1, 0]]);
Matrix(IsBooleanMat, [[1, 0, 0, 1], [1, 0, 1, 1], [1, 1, 1, 0],

[0, 1, 1, 0]])
gap> IsAntiSymmetricBooleanMat(x);
false
gap> x := BooleanMat([[1, 0, 0, 1],
> [1, 0, 1, 0],
> [1, 0, 1, 0],
> [0, 1, 1, 0]]);
Matrix(IsBooleanMat, [[1, 0, 0, 1], [1, 0, 1, 0], [1, 0, 1, 0],

[0, 1, 1, 0]])
gap> IsAntiSymmetricBooleanMat(x);
true

5.3.14 IsTotalBooleanMat

▷ IsTotalBooleanMat(mat) (property)

▷ IsOntoBooleanMat(mat) (property)

Returns: true or false.
A boolean matrix is TOTAL if there is at least one entry in every row is true. Similarly, a boolean

matrix is ONTO if at least one entry in every column is true.
Example

gap> x := BooleanMat([[1, 0, 0, 1],
> [1, 0, 1, 1],
> [1, 1, 1, 0],
> [0, 1, 1, 0]]);
Matrix(IsBooleanMat, [[1, 0, 0, 1], [1, 0, 1, 1], [1, 1, 1, 0],

[0, 1, 1, 0]])
gap> IsTotalBooleanMat(x);
true
gap> IsOntoBooleanMat(x);
true
gap> x := BooleanMat([[1, 0, 0, 1],
> [1, 0, 1, 0],
> [0, 0, 0, 0],

Semigroups 67

> [0, 1, 1, 0]]);
Matrix(IsBooleanMat, [[1, 0, 0, 1], [1, 0, 1, 0], [0, 0, 0, 0],

[0, 1, 1, 0]])
gap> IsTotalBooleanMat(x);
false
gap> IsOntoBooleanMat(x);
true

5.3.15 IsPartialOrderBooleanMat

▷ IsPartialOrderBooleanMat(mat) (property)

Returns: true or false.
A boolean matrix is a PARTIAL ORDER if it is reflexive, transitive, and anti-symmetric.

Example
gap> Number(FullBooleanMatMonoid(3), IsPartialOrderBooleanMat);
19

5.3.16 IsEquivalenceBooleanMat

▷ IsEquivalenceBooleanMat(mat) (property)

Returns: true or false.
A boolean matrix is an EQUIVALENCE if it is reflexive, transitive, and symmetric.

Example
gap> Number(FullBooleanMatMonoid(3), IsEquivalenceBooleanMat);
5
gap> Bell(3);
5

5.3.17 IsTransformationBooleanMat

▷ IsTransformationBooleanMat(mat) (property)

Returns: true or false.
A boolean matrix is a TRANSFORMATION if every row contains precisely one true value.

Example
gap> Number(FullBooleanMatMonoid(3), IsTransformationBooleanMat);
27

5.4 Matrices over finite fields

In this section we describe some operations in Semigroups for matrices over finite fields that are
required for such matrices to form semigroups satisfying IsActingSemigroup (6.1.2).

From v5.0.0, Semigroups uses the GAP library implementation of matrices over finite fields
belonging to the category IsMatrixObj (Reference: IsMatrixObj) rather than the previous imple-
mentation in the Semigroups package. This means that from v5.0.0, matrices over a finite field no
longer belong to the category IsMatrixOverSemiring (5.1.1).

The following methods are implemented in Semigroups for matrix objects over finite fields.

Semigroups 68

5.4.1 RowSpaceBasis (for a matrix over finite field)

▷ RowSpaceBasis(m) (attribute)

▷ RowSpaceTransformation(m) (attribute)

▷ RowSpaceTransformationInv(m) (attribute)

If m is a matrix object over a finite field, then to compute the value of any of the above at-
tributes, a canonical basis for the row space of m is computed along with an invertible matrix
RowSpaceTransformation such that m * RowSpaceTransformation(m) = RowSpaceBasis(m).
RowSpaceTransformationInv(m) is the inverse of RowSpaceTransformation(m).

Example
gap> x := Matrix(GF(4), Z(4) ^ 0 * [[1, 1, 0], [0, 1, 1], [1, 1, 1]]);
[[Z(2)^0, Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0, Z(2)^0],

[Z(2)^0, Z(2)^0, Z(2)^0]]
gap> RowSpaceBasis(x);
<rowbasis of rank 3 over GF(2^2)>
gap> RowSpaceTransformation(x);
[[0*Z(2), Z(2)^0, Z(2)^0], [Z(2)^0, Z(2)^0, Z(2)^0],

[Z(2)^0, 0*Z(2), Z(2)^0]]

5.4.2 RightInverse (for a matrix over finite field)

▷ RightInverse(m) (attribute)

▷ LeftInverse(m) (attribute)

Returns: A matrix over a finite field.
These attributes contain a semigroup left-inverse, and a semigroup right-inverse of the matrix m

respectively.
Example

gap> x := Matrix(GF(4), Z(4) ^ 0 * [[1, 1, 0], [0, 0, 0], [1, 1, 1]]);
[[Z(2)^0, Z(2)^0, 0*Z(2)], [0*Z(2), 0*Z(2), 0*Z(2)],

[Z(2)^0, Z(2)^0, Z(2)^0]]
gap> LeftInverse(x);
[[Z(2)^0, Z(2)^0, 0*Z(2)], [0*Z(2), 0*Z(2), 0*Z(2)],

[Z(2)^0, 0*Z(2), Z(2)^0]]
gap> Display(LeftInverse(x) * x);
1 1 .
. . .
. . 1

5.5 Matrices over the integers

In this section we describe operations in Semigroups specifically for integer matrices.
From v5.0.0, Semigroups uses the GAP library implementation of matrices over the integers

belonging to the category IsMatrixObj (Reference: IsMatrixObj) rather than the previous imple-
mentation in the Semigroups package. This means that from v5.0.0, matrices over the integers no
longer belong to the category IsMatrixOverSemiring (5.1.1).

The following methods are implemented in Semigroups for matrix objects over the integers.

Semigroups 69

5.5.1 InverseOp (for an integer matrix)

▷ InverseOp(mat) (operation)

Returns: An integer matrix.
If mat is an integer matrix (i.e. belongs to the category Integers (5.1.8)) whose inverse (if it

exists) is also an integer matrix, then InverseOp returns the inverse of mat .
An integer matrix has an integer matrix inverse if and only if it has determinant one.

Example
gap> mat := Matrix(Integers, [[0, 0, -1],
> [0, 1, 0],
> [1, 0, 0]]);
<3x3-matrix over Integers>
gap> InverseOp(mat);
<3x3-matrix over Integers>
gap> mat * InverseOp(mat) = One(mat);
true

5.5.2 IsTorsion (for an integer matrix)

▷ IsTorsion(mat) (attribute)

Returns: true or false
If mat is an integer matrix (i.e. belongs to the category Integers (5.1.8)), then IsTorsion returns

true if mat is torsion and false otherwise.
An integer matrix mat is torsion if and only if there exists an integer n such that mat to the power

of n is equal to the identity matrix.
Example

gap> mat := Matrix(Integers, [[0, 0, -1],
> [0, 1, 0],
> [1, 0, 0]]);
<3x3-matrix over Integers>
gap> IsTorsion(mat);
true
gap> mat := Matrix(Integers, [[0, 0, -1, 0],
> [0, -1, 0, 0],
> [4, 4, 2, -1],
> [1, 1, 0, 3]]);
<4x4-matrix over Integers>
gap> IsTorsion(mat);
false

5.5.3 Order

▷ Order(mat) (attribute)

Returns: An integer or infinity.
If mat is an integer matrix, then InverseOp returns the order of mat . The order of mat is the

smallest integer power of mat equal to the identity. If no such integer exists, the order is equal to
infinity.

Example
gap> mat := Matrix(Integers, [[0, 0, -1, 0],
> [0, -1, 0, 0],

Semigroups 70

> [4, 4, 2, -1],
> [1, 1, 0, 3]]);;
gap> Order(mat);
infinity
gap> mat := Matrix(Integers, [[0, 0, -1],
> [0, 1, 0],
> [1, 0, 0]]);;
gap> Order(mat);
4

5.6 Max-plus and min-plus matrices

In this section we describe operations in Semigroups specifically for max-plus and min-plus matri-
ces. These are in addition to those given elsewhere in this chapter for arbitrary matrices over semirings.
These include:

• InverseOp (5.6.1)

• RadialEigenvector (5.6.2)

• SpectralRadius (5.6.3)

• UnweightedPrecedenceDigraph (5.6.4)

5.6.1 InverseOp

▷ InverseOp(mat) (operation)

Returns: A max-plus matrix.
If mat is an invertible max-plus matrix (i.e. belongs to the category IsMaxPlusMatrix (5.1.8)

and is a row permutation applied to the identity), then InverseOp returns the inverse of mat . This
method is described in [Far09].

Example
gap> InverseOp(Matrix(IsMaxPlusMatrix, [[-infinity, -infinity, 0],
> [0, -infinity, -infinity],
> [-infinity, 0, -infinity]]));
Matrix(IsMaxPlusMatrix, [[-infinity, 0, -infinity],

[-infinity, -infinity, 0], [0, -infinity, -infinity]])

5.6.2 RadialEigenvector

▷ RadialEigenvector(mat) (operation)

Returns: A vector.
If mat is a n by n max-plus matrix (i.e. belongs to the category IsMaxPlusMatrix (5.1.8)), then

RadialEigenvector returns an eigenvector corresponding to the eigenvalue equal to the spectral
radius of mat . This method is described in [Far09].

Example
gap> RadialEigenvector(Matrix(IsMaxPlusMatrix, [[0, -3], [-2, -10]]));
[0, -2]

Semigroups 71

5.6.3 SpectralRadius

▷ SpectralRadius(mat) (operation)

Returns: A rational number.
If mat is a max-plus matrix (i.e. belongs to the category IsMaxPlusMatrix (5.1.8)), then

SpectralRadius returns the supremum of the set of eigenvalues of mat . This method is described in
[BFCGOGJ92].

Example
gap> SpectralRadius(Matrix(IsMaxPlusMatrix, [[-infinity, 1, -4],
> [2, -infinity, 0],
> [0, 1, 1]]));
3/2

5.6.4 UnweightedPrecedenceDigraph

▷ UnweightedPrecedenceDigraph(mat) (operation)

Returns: A digraph.
If mat is a max-plus matrix (i.e. belongs to the category IsMaxPlusMatrix (5.1.8)), then

UnweightedPrecedenceDigraph returns the unweighted precedence digraph corresponding to mat .
For an n by n matrix mat , the unweighted precedence digraph is defined as the digraph with n

vertices where vertex i is adjacent to vertex j if and only if mat[i][j] is not equal to -infinity.
Example

gap> UnweightedPrecedenceDigraph(Matrix(IsMaxPlusMatrix, [[2, -2, 0],
> [-infinity, 10, -2], [-infinity, 2, 1]]));
<immutable digraph with 3 vertices, 7 edges>

5.7 Matrix semigroups

In this section we describe operations and attributes in Semigroups specifically for matrix semi-
groups. These are in addition to those given elsewhere in this chapter for arbitrary matrices over
semirings. These include:

• IsXMatrixSemigroup (5.7.1)

• IsFinite (5.7.3)

• IsTorsion (5.7.4)

• NormalizeSemigroup (5.7.5)

Random matrix semigroups can be created by using the function RandomSemigroup (6.6.1). We can
also create a matrix semigroup isomorphic to a given semigroup by using IsomorphismSemigroup
(6.5.1) and AsSemigroup (6.5.3). These functions require a filter, and accept any of the filters in
Section 5.7.1.

There are corresponding functions which can be used for matrix monoids: RandomMonoid (6.6.1),
IsomorphismMonoid (6.5.2), and AsMonoid (6.5.4). These can be used with the filters in Section
5.7.2.

Semigroups 72

5.7.1 Matrix semigroup filters

▷ IsMatrixOverSemiringSemigroup(obj) (Category)

▷ IsBooleanMatSemigroup(obj) (Category)

▷ IsMatrixOverFiniteFieldSemigroup(obj) (Category)

▷ IsMaxPlusMatrixSemigroup(obj) (Category)

▷ IsMinPlusMatrixSemigroup(obj) (Category)

▷ IsTropicalMatrixSemigroup(obj) (Category)

▷ IsTropicalMaxPlusMatrixSemigroup(obj) (Category)

▷ IsTropicalMinPlusMatrixSemigroup(obj) (Category)

▷ IsNTPMatrixSemigroup(obj) (Category)

▷ IsIntegerMatrixSemigroup(obj) (Category)

Returns: true or false.
The above are the currently supported types of matrix semigroups. For monoids see Section 5.7.2.

5.7.2 Matrix monoid filters

▷ IsMatrixOverSemiringMonoid(obj) (Category)

▷ IsBooleanMatMonoid(obj) (Category)

▷ IsMatrixOverFiniteFieldMonoid(obj) (Category)

▷ IsMaxPlusMatrixMonoid(obj) (Category)

▷ IsMinPlusMatrixMonoid(obj) (Category)

▷ IsTropicalMatrixMonoid(obj) (Category)

▷ IsTropicalMaxPlusMatrixMonoid(obj) (Category)

▷ IsTropicalMinPlusMatrixMonoid(obj) (Category)

▷ IsNTPMatrixMonoid(obj) (Category)

▷ IsIntegerMatrixMonoid(obj) (Category)

Returns: true or false.
The above are the currently supported types of matrix monoids. They correspond to the matrix

semigroup types in Section 5.7.1.

5.7.3 IsFinite

▷ IsFinite(S) (property)

Returns: true or false.
If S is a max-plus or min-plus matrix semigroup (i.e. belongs to the category

IsMaxPlusMatrixSemigroup (5.7.1)), then IsFinite returns true if S is finite and false oth-
erwise. This method is based on [Gau96] (max-plus) and [Sim78] (min-plus). For min-plus ma-
trix semigroups, this method is only valid if each min-plus matrix in the semigroup contains only
non-negative integers. Note, this method is terminating and does not involve enumerating semigroups.

Example
gap> IsFinite(Semigroup(Matrix(IsMaxPlusMatrix,
> [[0, -3],
> [-2, -10]])));
true
gap> IsFinite(Semigroup(Matrix(IsMaxPlusMatrix,
> [[1, -infinity, 2],
> [-2, 4, -infinity],
> [1, 0, 3]])));

Semigroups 73

false
gap> IsFinite(Semigroup(Matrix(IsMinPlusMatrix,
> [[infinity, 0],
> [5, 4]])));
false
gap> IsFinite(Semigroup(Matrix(IsMinPlusMatrix,
> [[1, 0],
> [0, infinity]])));
true

5.7.4 IsTorsion

▷ IsTorsion(S) (attribute)

Returns: true or false.
If S is a max-plus matrix semigroup (i.e. belongs to the category IsMaxPlusMatrixSemigroup

(5.7.1)), then IsTorsion returns true if S is torsion and false otherwise. This method is based on
[Gau96] and draws on [Bur16], [BFCGOGJ92] and [Far09].

Example
gap> IsTorsion(Semigroup(Matrix(IsMaxPlusMatrix,
> [[0, -3],
> [-2, -10]])));
true
gap> IsTorsion(Semigroup(Matrix(IsMaxPlusMatrix,
> [[1, -infinity, 2],
> [-2, 4, -infinity],
> [1, 0, 3]])));
false

5.7.5 NormalizeSemigroup

▷ NormalizeSemigroup(S) (operation)

Returns: A semigroup.
This method applies to max-plus matrix semigroups (i.e. those belonging to the category

IsMaxPlusMatrixSemigroup (5.7.1)) that are finitely generated, such that the spectral radius of
the matrix equal to the sum of the generators (with respect to the max-plus semiring) is zero.
NormalizeSemigroup returns a semigroup of matrices all with strictly non-positive entries. Note
that the output is isomorphic to a min-plus matrix semigroup. This method is based on [Gau96] and
[Bur16].

Example
gap> NormalizeSemigroup(Semigroup(Matrix(IsMaxPlusMatrix,
> [[0, -3],
> [-2, -10]])));
<commutative semigroup of 2x2 max-plus matrices with 1 generator>

Chapter 6

Semigroups and monoids defined by
generating sets

In this chapter we describe the various ways that semigroups and monoids defined by generating sets
can be created in Semigroups; where the generators are, for example, those elements described in
earlier chapters of this manual.

6.1 Underlying algorithms

Computing the Green’s structure of a semigroup or monoid is a fundamental step in almost every
algorithm for semigroups. There are two fundamental algorithms in the Semigroups package for
computing the Green’s structure of a semigroup defined by a set of generators. In the next two sub-
sections we briefly describe these two algorithms.

6.1.1 Acting semigroups

The first of the fundamental algorithms for computing a semigroup defined by a generating set is
described in [EEMP19]. When applied to a semigroup or monoid with relatively large subgroups,
or D-classes, these are the most efficient methods in the Semigroups package. For example, the
complexity of computing, say, the size of a transformation semigroup that happens to be a group, is
the same as the complexity of the Schreier-Sims Algorithm (polynomial in the number of points acted
on by the transformations) for a permutation group.

In theory, these algorithms can be applied to compute any subsemigroup of a regular semigroup;
but so far in the Semigroups package they are only implemented for semigroups of: transformations
(see (Reference: Transformations)), partial permutations (see (Reference: Partial permutations)),
bipartitions (see Chapter 3), matrices over a finite field (see Section 5.4); subsemigroups of regular
Rees 0-matrix semigroups over permutation groups (see Chapter (Reference: Rees Matrix Semi-
groups)), and subsemigroups of McAlister triples (see Section 8.4).

We refer to semigroups to which the algorithms in [EEMP19] can be applied as acting semigroups,
and such semigroups belong to the category IsActingSemigroup (6.1.2).

If you know a priori that the semigroup you want to compute is large and J -trivial, then you can
disable the special methods for acting semigroups when you create the semigroups; see Section 6.3
for more details.

74

Semigroups 75

It is harder for the acting semigroup algorithms to compute Green’s L - and H -classes of a
transformation semigroup and the methods used to compute with Green’s R- and D-classes are the
most efficient in Semigroups. Thus, if you are computing with a transformation semigroup, wherever
possible, it is advisable to use the commands relating to Green’s R- or D-classes rather than those
relating to Green’s L - or H -classes. No such difficulties are present when computing with the other
types of acting semigroups in Semigroups.

There are methods in Semigroups for computing individual Green’s classes of an act-
ing semigroup without computing the entire data structure of the underlying semigroup; see
GreensRClassOfElementNC (10.1.3). It is also possible to compute the R-classes, the number of
elements and test membership in a semigroup without computing all the elements; see, for example,
GreensRClasses (10.1.4), RClassReps (10.1.5), IteratorOfRClasses (10.2.2), or NrRClasses
(10.1.9). This may be useful if you want to study a very large semigroup where computing all the
elements of the semigroup is not feasible.

6.1.2 IsActingSemigroup

▷ IsActingSemigroup(obj) (Category)

Returns: true or false.
Every acting semigroup, as defined in Section 6.1.1, belongs to this category.

Example
gap> S := Semigroup(Transformation([1, 3, 2]));;
gap> IsActingSemigroup(S);
true
gap> CanUseFroidurePin(S);
true
gap> S := FreeSemigroup(3);;
gap> IsActingSemigroup(S);
false

6.1.3 The Froidure-Pin Algorithm

The second fundamental algorithm for computing finite semigroups is the Froidure-Pin Algorithm
[FP97]. The Semigroups package contains two implementations of the Froidure-Pin Algorithm: one
in the libsemigroups C++ library and the other within the Semigroups package kernel module.

Both implementations outperform the algorithms for acting semigroups when applied to semi-
groups with small (trivial) subgroups. This method is also used to determine the structure of a semi-
group when the algorithms described in [EEMP19] do not apply. It is possible to specify which
methods should be applied to a given semigroup; see Section 6.3.

A semigroup to which the Froidure-Pin Algorithm can be applied in Semigroups satisfy
CanUseFroidurePin (6.1.4). Every acting semigroup in Semigroups satisfies CanUseFroidurePin
(6.1.4) and the Froidure-Pin Algorithm is used to compute certain properties or attributes.

Currently, the libsemigroups implementation of the Froidure-Pin Algorithm can be applied to
semigroups consisting of the following types of elements: transformations (see (Reference: Transfor-
mations)), partial permutations (see (Reference: Partial permutations)), bipartitions (see Chapter
3), partitioned binary relations (see Chapter 4) as defined in [MM13]; and matrices over the following
semirings:

• the Boolean semiring {0,1} where 0+0= 0, 0+1= 1+1= 1+0= 1, and 1 ·0= 0 ·0= 0 ·1= 0

https://libsemigroups.readthedocs.io/en/latest/
https://libsemigroups.readthedocs.io/en/latest/

Semigroups 76

• finite fields;

• the max-plus semiring of natural numbers and negative infinity N∪{−∞} with operations max
and plus;

• the min-plus semiring of natural numbers and infinity N∪{∞} with operations min and plus;

• the tropical max-plus semiring {−∞,0,1, . . . , t} for some threshold t with operations max and
plus;

• the tropical min-plus semiring {0,1, . . . , t,∞} for some threshold t with operations min and
plus;

• the semiring Nt,p = {0,1, . . . , t, t + 1, . . . , t + p− 1} for some threshold t and period p under
addition and multiplication modulo the congruence t = t + p.

(see Chapter 5).
The version of the Froidure-Pin Algorithm [FP97] written in C within the Semigroups

package kernel module can be used to compute any other semigroup in GAP which satisfies
CanUseGapFroidurePin (6.1.4). In theory, any finite semigroup can be computed using this al-
gorithm. However, the condition that the semigroup has satisfies CanUseGapFroidurePin (6.1.4) is
imposed to avoid this method being used when it is inappropriate. If implementing a new type of
semigroup in GAP, then simply do

Example
InstallTrueMethod(CanUseGapFroidurePin,

MyNewSemigroupType);

to make your new semigroup type MyNewSemigroupType use this version of the Froidure-Pin Al-
gorithm. To make this work efficiently it is necessary that a hash function is implemented for the
elements of MyNewSemigroupType; more details will be included in a future edition of this manual.

Mostly due to the way that GAP handles memory, this implementation is approximately 4 times
slower than the implementation in libsemigroups . This version of the Froidure-Pin Algorithm is
included because it applies to a wider class of semigroups than those currently implemented in lib-
semigroups and it is more straightforward to extend the classes of semigroup to which it applies.

6.1.4 CanUseFroidurePin

▷ CanUseFroidurePin(obj) (property)

▷ CanUseGapFroidurePin(obj) (property)

▷ CanUseLibsemigroupsFroidurePin(obj) (property)

Returns: true or false.
Every semigroup satisfying CanUseFroidurePin is a valid input for the Froidure-Pin algorithm;

see Section 6.1.3 for more details.
Basic operations for semigroups satisfying CanUseFroidurePin are: AsListCanonical

(11.1.1), EnumeratorCanonical (11.1.1), IteratorCanonical (11.1.1), PositionCanonical
(11.1.2), Enumerate (11.1.3), and IsEnumerated (11.1.4).

Example
gap> S := Semigroup(Transformation([1, 3, 2]));;
gap> CanUseFroidurePin(S);
true

https://libsemigroups.readthedocs.io/en/latest/
https://libsemigroups.readthedocs.io/en/latest/
https://libsemigroups.readthedocs.io/en/latest/

Semigroups 77

gap> S := FreeSemigroup(3);;
gap> CanUseFroidurePin(S);
false

6.2 Semigroups represented by generators

6.2.1 InverseMonoidByGenerators

▷ InverseMonoidByGenerators(coll[, opts]) (operation)

▷ InverseSemigroupByGenerators(coll[, opts]) (operation)

Returns: An inverse monoid or semigroup.
If coll is a collection satisfying IsGeneratorsOfInverseSemigroup, then

InverseMonoidByGenerators and InverseSemigroupByGenerators return the inverse monoid
and semigroup generated by coll , respectively.

If present, the optional second argument opts should be a record containing the values of the
options for the semigroup being created, as described in Section 6.3.

6.3 Options when creating semigroups

When using any of the functions:

• InverseSemigroup (Reference: InverseSemigroup),

• InverseMonoid (Reference: InverseMonoid),

• Semigroup (Reference: Semigroup),

• Monoid (Reference: Monoid),

• SemigroupByGenerators (Reference: SemigroupByGenerators),

• MonoidByGenerators (Reference: MonoidByGenerators),

• ClosureSemigroup (6.4.1),

• ClosureMonoid (6.4.1),

• ClosureInverseSemigroup (6.4.1),

• ClosureInverseMonoid (6.4.1),

• SemigroupIdeal (9.1.1)

a record can be given as an optional final argument. The components of this record specify the values
of certain options for the semigroup being created. A list of these options and their default values is
given below.

Assume that S is the semigroup created by one of the functions given above and that either: S is
generated by a collection gens ; or S is an ideal of such a semigroup.

Semigroups 78

acting
this component should be true or false. Roughly speaking, there are two types of methods in
the Semigroups package: those for semigroups which have to be fully enumerated, and those
for semigroups that do not; see Section 1.1. In order for a semigroup to use the latter meth-
ods in Semigroups it must satisfy IsActingSemigroup (6.1.2). By default any semigroup or
monoid of transformations, partial permutations, Rees 0-matrix elements, or bipartitions satis-
fies IsActingSemigroup.

There are cases (such as when it is known a priori that the semigroup is D-trivial), when it
might be preferable to use the methods that involve fully enumerating a semigroup. In other
words, it might be desirable to disable the more sophisticated methods for acting semigroups.
If this is the case, then the value of this component can be set false when the semigroup
is created. Following this none of the special methods for acting semigroup will be used to
compute anything about the semigroup.

regular
this component should be true or false. If it is known a priori that the semigroup S being
created is a regular semigroup, then this component can be set to true. In this case, S knows
it is a regular semigroup and can take advantage of the methods for regular semigroups in
Semigroups. It is usually much more efficient to compute with a regular semigroup that to
compute with a non-regular semigroup.

If this option is set to true when the semigroup being defined is NOT regular, then the results
might be unpredictable.

The default value for this option is false.

hashlen
this component should be a positive integer, which roughly specifies the lengths of the hash
tables used internally by Semigroups. Semigroups uses hash tables in several fundamental
methods. The lengths of these tables are a compromise between performance and memory
usage; larger tables provide better performance for large computations but use more memory.
Note that it is unlikely that you will need to specify this option unless you find that GAP runs
out of memory unexpectedly or that the performance of Semigroups is poorer than expected.
If you find that GAP runs out of memory unexpectedly, or you plan to do a large number of
computations with relatively small semigroups (say with tens of thousands of elements), then
you might consider setting hashlen to be less than the default value of 12517 for each of these
semigroups. If you find that the performance of Semigroups is unexpectedly poor, or you plan
to do a computation with a very large semigroup (say, more than 10 million elements), then you
might consider setting hashlen to be greater than the default value of 12517.

You might find it useful to set the info level of the info class InfoOrb to 2 or higher since
this will indicate when hash tables used by Semigroups are being grown; see SetInfoLevel
(Reference: InfoLevel).

small
if this component is set to true, then Semigroups will compute a small subset of gens that
generates S at the time that S is created. This will increase the amount of time required to create
S substantially, but may decrease the amount of time required for subsequent calculations with
S . If this component is set to false, then Semigroups will return the semigroup generated by
gens without modifying gens . The default value for this component is false.

Semigroups 79

This option is ignored when passed to ClosureSemigroup (6.4.1) or
ClosureInverseSemigroup (6.4.1).

cong_by_ker_trace_threshold
this should be a positive integer, which specifies a semigroup size. If S is a semigroup with
inverse op, and S has a size greater than or equal to this threshold, then any congruence defined
on it may use the "kernel and trace" method to perform calculations. If its size is less than the
threshold, then other methods will be used instead. The "kernel and trace" method has better
complexity than the generic method, but has large overheads which make it a poor choice for
small semigroups. The default value for this component is 10 ^ 5. See Section 13.7 for more
information about the "kernel and trace" method.

Example
gap> S := Semigroup(Transformation([1, 2, 3, 3]),
> rec(hashlen := 100003, small := false));
<commutative transformation semigroup of degree 4 with 1 generator>

The default values of the options described above are stored in a global variable named
SEMIGROUPS.DefaultOptionsRec (6.3.1). If you want to change the default values of these options
for a single GAP session, then you can simply redefine the value in GAP. For example, to change the
option small from the default value of false use:

Example
gap> SEMIGROUPS.DefaultOptionsRec.small := true;
true

If you want to change the default values of the options stored in SEMIGROUPS.DefaultOptionsRec
(6.3.1) for all GAP sessions, then you can edit these values in the file
semigroups-5.5.4/gap/options.g.

6.3.1 SEMIGROUPS.DefaultOptionsRec

▷ SEMIGROUPS.DefaultOptionsRec (global variable)

This global variable is a record whose components contain the default values of certain options for
semigroups. A description of these options is given above in Section 6.3.

The value of SEMIGROUPS.DefaultOptionsRec is defined in the file
semigroups/gap/options.g.

6.4 Subsemigroups and supersemigroups

6.4.1 ClosureSemigroup

▷ ClosureSemigroup(S, coll[, opts]) (operation)

▷ ClosureMonoid(S, coll[, opts]) (operation)

▷ ClosureInverseSemigroup(S, coll[, opts]) (operation)

▷ ClosureInverseMonoid(S, coll[, opts]) (operation)

Returns: A semigroup, monoid, inverse semigroup, or inverse monoid.
These operations return the semigroup, monoid, inverse semigroup or inverse monoid generated

by the argument S and the collection of elements coll after removing duplicates and elements from

Semigroups 80

coll that are already in S . In most cases, the new semigroup knows at least as much information
about its structure as was already known about that of S .

When X is any of Semigroup (Reference: Semigroup), Monoid (Reference: Monoid),
InverseSemigroup (Reference: InverseSemigroup), or InverseMonoid (Reference: Inverse-
Monoid), the argument S of the operation ClosureX must belong to the category IsX, and
ClosureX(S, coll) returns an object in the category IsX such that

Example
ClosureX(S, coll) = X(S, coll);

but may have fewer generators, if for example, coll contains a duplicates or elements already known
to belong to S .

For example, the argument S of ClosureInverseSemigroup must be an inverse
semigroup in the category IsInverseSemigroup (Reference: IsInverseSemigroup).
ClosureInverseSemigroup(S, coll) returns an inverse semigroup which is equal to
InverseSemigroup(S, coll).

If present, the optional third argument opts should be a record containing the values of the options
for the semigroup being created as described in Section 6.3.

Example
gap> gens := [Transformation([2, 6, 7, 2, 6, 1, 1, 5]),
> Transformation([3, 8, 1, 4, 5, 6, 7, 1]),
> Transformation([4, 3, 2, 7, 7, 6, 6, 5]),
> Transformation([7, 1, 7, 4, 2, 5, 6, 3])];;
gap> S := Monoid(gens[1]);;
gap> for x in gens do
> S := ClosureSemigroup(S, x);
> od;
gap> S;
<transformation monoid of degree 8 with 4 generators>
gap> Size(S);
233606
gap> S := Monoid(PartialPerm([1]));
<trivial partial perm group of rank 1 with 1 generator>
gap> T := ClosureMonoid(S, [PartialPerm([2 .. 5])]);
<partial perm monoid of rank 5 with 2 generators>
gap> One(T);
<identity partial perm on [1, 2, 3, 4, 5]>
gap> T := ClosureSemigroup(S, [PartialPerm([2 .. 5])]);
<partial perm semigroup of rank 4 with 2 generators>
gap> One(T);
fail
gap> ClosureInverseMonoid(DualSymmetricInverseMonoid(3),
> DClass(DualSymmetricInverseMonoid(3),
> IdentityBipartition(3)));
<inverse block bijection monoid of degree 3 with 3 generators>
gap> S := InverseSemigroup(Bipartition([[1, -1, -3], [2, 3, -2]]),
> Bipartition([[1, -3], [2, -2], [3, -1]]));;
gap> T := ClosureInverseSemigroup(S, DClass(PartitionMonoid(3),
> IdentityBipartition(3)));
<inverse block bijection semigroup of degree 3 with 3 generators>
gap> T := ClosureInverseSemigroup(T, [T.1, T.1, T.1]);
<inverse block bijection semigroup of degree 3 with 3 generators>

Semigroups 81

gap> S := InverseMonoid([
> PartialPerm([5, 9, 10, 0, 6, 3, 8, 4, 0]),
> PartialPerm([10, 7, 0, 8, 0, 0, 5, 9, 1])]);;
gap> x := PartialPerm([
> 5, 1, 7, 3, 10, 0, 2, 12, 0, 14, 11, 0, 16, 0, 0, 0, 0, 6, 9, 15]);
[4,3,7,2,1,5,10,14][8,12][13,16][18,6][19,9][20,15](11)
gap> S := ClosureInverseSemigroup(S, x);
<inverse partial perm semigroup of rank 19 with 4 generators>
gap> Size(S);
9744
gap> T := Idempotents(SymmetricInverseSemigroup(10));;
gap> S := ClosureInverseSemigroup(S, T);
<inverse partial perm semigroup of rank 19 with 14 generators>

6.4.2 SubsemigroupByProperty (for a semigroup and function)

▷ SubsemigroupByProperty(S, func) (operation)

▷ SubsemigroupByProperty(S, func, limit) (operation)

Returns: A semigroup.
SubsemigroupByProperty returns the subsemigroup of the semigroup S generated by those ele-

ments of S fulfilling func (which should be a function returning true or false).
If no elements of S fulfil func , then fail is returned.
If the optional third argument limit is present and a positive integer, then once the subsemigroup

has at least limit elements the computation stops.
Example

gap> func := function(x)
> local n;
> n := DegreeOfTransformation(x);
> return 1 ^ x <> 1 and ForAll([1 .. n], y -> y = 1 or y ^ x = y);
> end;
function(x) ... end
gap> T := SubsemigroupByProperty(FullTransformationSemigroup(3), func);
<transformation semigroup of size 2, degree 3 with 2 generators>
gap> T := SubsemigroupByProperty(FullTransformationSemigroup(4), func);
<transformation semigroup of size 3, degree 4 with 3 generators>
gap> T := SubsemigroupByProperty(FullTransformationSemigroup(5), func);
<transformation semigroup of size 4, degree 5 with 4 generators>

6.4.3 InverseSubsemigroupByProperty

▷ InverseSubsemigroupByProperty(S, func) (operation)

Returns: An inverse semigroup.
InverseSubsemigroupByProperty returns the inverse subsemigroup of the inverse semigroup

S generated by those elements of S fulfilling func (which should be a function returning true or
false).

If no elements of S fulfil func , then fail is returned.
If the optional third argument limit is present and a positive integer, then once the subsemigroup

has at least limit elements the computation stops.

Semigroups 82

Example
gap> IsIsometry := function(f)
> local n, i, j, k, l;
> n := RankOfPartialPerm(f);
> for i in [1 .. n - 1] do
> k := DomainOfPartialPerm(f)[i];
> for j in [i + 1 .. n] do
> l := DomainOfPartialPerm(f)[j];
> if not AbsInt(k ^ f - l ^ f) = AbsInt(k - l) then
> return false;
> fi;
> od;
> od;
> return true;
> end;;
gap> S := InverseSubsemigroupByProperty(SymmetricInverseSemigroup(5),
> IsIsometry);;
gap> Size(S);
142

6.5 Changing the representation of a semigroup

The Semigroups package provides two convenient constructors IsomorphismSemigroup (6.5.1) and
IsomorphismMonoid (6.5.2) for changing the representation of a given semigroup or monoid. These
methods can be used to find an isomorphism from any semigroup to a semigroup of any other type,
provided such an isomorphism exists.

Note that at present neither IsomorphismSemigroup (6.5.1) nor IsomorphismMonoid (6.5.2)
can be used to determine whether two given semigroups, or monoids, are isomorphic.

Some methods for IsomorphismSemigroup (6.5.1) and IsomorphismMonoid (6.5.2) are based
on methods for the GAP library operations:

• IsomorphismReesMatrixSemigroup (Reference: IsomorphismReesMatrixSemigroup),

• AntiIsomorphismTransformationSemigroup (Reference: AntiIsomorphismTransforma-
tionSemigroup),

• IsomorphismTransformationSemigroup (Reference: IsomorphismTransformationSemi-
group) and IsomorphismTransformationMonoid (Reference: IsomorphismTransforma-
tionMonoid),

• IsomorphismPartialPermSemigroup (Reference: IsomorphismPartialPermSemigroup)
and IsomorphismPartialPermMonoid (Reference: IsomorphismPartialPermMonoid),

• IsomorphismFpSemigroup (Reference: IsomorphismFpSemigroup) and
IsomorphismFpMonoid.

The operation IsomorphismMonoid (6.5.2) can be used to return an isomorphism from a semi-
group which is mathematically a monoid (but does not below to the category of monoids in GAP
IsMonoid (Reference: IsMonoid)) into a monoid. This is the primary purpose of the opera-
tion IsomorphismMonoid (6.5.2). Either IsomorphismSemigroup (6.5.1) or IsomorphismMonoid

Semigroups 83

(6.5.2) can be used to change the representation of a monoid, but only the latter is guaranteed to return
an object in the category of monoids.

Example
gap> S := Monoid(Transformation([1, 4, 6, 2, 5, 3, 7, 8, 9, 9]),
> Transformation([6, 3, 2, 7, 5, 1, 8, 8, 9, 9]));;
gap> AsSemigroup(IsBooleanMatSemigroup, S);
<monoid of 10x10 boolean matrices with 2 generators>
gap> AsMonoid(IsBooleanMatMonoid, S);
<monoid of 10x10 boolean matrices with 2 generators>
gap> S := Semigroup(Transformation([1, 4, 6, 2, 5, 3, 7, 8, 9, 9]),
> Transformation([6, 3, 2, 7, 5, 1, 8, 8, 9, 9]));;
gap> AsSemigroup(IsBooleanMatSemigroup, S);
<semigroup of 10x10 boolean matrices with 2 generators>
gap> AsMonoid(IsBooleanMatMonoid, S);
<monoid of 8x8 boolean matrices with 2 generators>
gap> M := Monoid([
> Bipartition([[1, -3], [2, 3, 6], [4, 7, -6], [5, -8], [8, -4, -5],
> [-1], [-2], [-7]]),
> Bipartition([[1, 3, -6], [2, -8], [4, 8, -1], [5], [6, -3, -4],
> [7], [-2], [-5], [-7]]),
> Bipartition([[1, 2, 4, -3, -7, -8], [3, 5, 6, 8, -4, -6],
> [7, -1, -2, -5]])]);;
gap> AsMonoid(IsPBRMonoid, M);
<pbr monoid of size 163, degree 163 with 3 generators>
gap> AsSemigroup(IsPBRSemigroup, M);
<pbr semigroup of size 163, degree 8 with 4 generators>

There are some further methods in Semigroups for obtaining an isomorphism from a Rees matrix,
or 0-matrix, semigroup to another such semigroup with particular properties; RMSNormalization
(6.5.7) and RZMSNormalization (6.5.6).

6.5.1 IsomorphismSemigroup

▷ IsomorphismSemigroup(filt, S) (operation)

Returns: An isomorphism of semigroups.
IsomorphismSemigroup can be used to find an isomorphism from a given semigroup to a semi-

group of another type, provided such an isomorphism exists.
The first argument filt must be of the form IsXSemigroup, for example,

IsTransformationSemigroup (Reference: IsTransformationSemigroup), IsFpSemigroup
(Reference: IsFpSemigroup), and IsPBRSemigroup (4.6.1) are some possible values for filt .
Note that filt should not be of the form IsXMonoid; see IsomorphismMonoid (6.5.2). The second
argument S should be a semigroup.

IsomorphismSemigroup returns an isomorphism from S to a semigroup T of the type described
by filt , if such an isomorphism exists. More precisely, if T is the range of the returned isomorphism,
then filt(T) will return true. For example, if filt is IsTransformationSemigroup, then the
range of the returned isomorphism will be a transformation semigroup.

An error is returned if there is no isomorphism from S to a semigroup satisfying filt . For exam-
ple, there is no method for IsomorphismSemigroup when filt is, say, IsReesMatrixSemigroup
(Reference: IsReesMatrixSemigroup) and when S is a non-simple semigroup. Similarly, there is

Semigroups 84

no method when filt is IsPartialPermSemigroup (Reference: IsPartialPermSemigroup) and
when S is a non-inverse semigroup.

In some cases, if no better method is installed, IsomorphismSemigroup returns an isomorphism
found by composing an isomorphism from S to a transformation semigroup T, and an isomorphism
from T to a semigroup of type filt .

Note that if the argument S belongs to the category of monoids IsMonoid (Reference: Is-
Monoid), then IsomorphismSemigroup will often, but not always, return a monoid isomorphism.

Example
gap> S := Semigroup([
> Bipartition([
> [1, 2], [3, 6, -2], [4, 5, -3, -4], [-1, -6], [-5]]),
> Bipartition([
> [1, -4], [2, 3, 4, 5], [6], [-1, -6], [-2, -3], [-5]])]);
<bipartition semigroup of degree 6 with 2 generators>
gap> IsomorphismSemigroup(IsTransformationSemigroup, S);
<bipartition semigroup of size 11, degree 6 with 2 generators> ->
<transformation semigroup of size 11, degree 12 with 2 generators>
gap> IsomorphismSemigroup(IsBooleanMatSemigroup, S);
<bipartition semigroup of size 11, degree 6 with 2 generators> ->
<semigroup of size 11, 12x12 boolean matrices with 2 generators>
gap> IsomorphismSemigroup(IsFpSemigroup, S);
<bipartition semigroup of size 11, degree 6 with 2 generators> ->
<fp semigroup with 2 generators and 5 relations of length 27>
gap> S := InverseSemigroup([
> PartialPerm([1, 2, 3, 6, 8, 10],
> [2, 6, 7, 9, 1, 5]),
> PartialPerm([1, 2, 3, 4, 6, 7, 8, 10],
> [3, 8, 1, 9, 4, 10, 5, 6])]);;
gap> IsomorphismSemigroup(IsBipartitionSemigroup, S);
<inverse partial perm semigroup of rank 10 with 2 generators> ->
<inverse bipartition semigroup of degree 10 with 2 generators>
gap> S := SymmetricInverseMonoid(4);
<symmetric inverse monoid of degree 4>
gap> IsomorphismSemigroup(IsBlockBijectionSemigroup, S);
<symmetric inverse monoid of degree 4> ->
<inverse block bijection monoid of degree 5 with 3 generators>
gap> Size(Range(last));
209
gap> S := Semigroup([
> PartialPerm([3, 1]), PartialPerm([1, 3, 4])]);;
gap> IsomorphismSemigroup(IsBlockBijectionSemigroup, S);
<partial perm semigroup of rank 3 with 2 generators> ->
<block bijection semigroup of degree 5 with 2 generators>

6.5.2 IsomorphismMonoid

▷ IsomorphismMonoid(filt, S) (operation)

Returns: An isomorphism of monoids.
IsomorphismMonoid can be used to find an isomorphism from a given semigroup which is math-

ematically a monoid (but might not belong to the category of monoids in GAP) to a monoid, provided
such an isomorphism exists.

Semigroups 85

The first argument filt must be of the form IsXMonoid, for example,
IsTransformationMonoid (Reference: IsTransformationMonoid), IsFpMonoid (Reference:
IsFpMonoid), and IsBipartitionMonoid (3.8.1) are some possible values for filt . Note that
filt should not be of the form IsXSemigroup; see IsomorphismSemigroup (6.5.1). The second
argument S should be a semigroup which is mathematically a monoid but which may or may not
belong to the category IsMonoid (Reference: IsMonoid) of monoids in GAP, i.e. S must satisfy
IsMonoidAsSemigroup (12.1.13).

IsomorphismMonoid returns a monoid isomorphism from S to a semigroup T of the type de-
scribed by filt , if such an isomorphism exists. In this context, a monoid isomorphism is a semigroup
isomorphism that maps the MultiplicativeNeutralElement (Reference: MultiplicativeNeu-
tralElement) of S to the One (Reference: One) of T . If T is the range of the returned isomorphism,
then filt(T) will return true. For example, if filt is IsTransformationMonoid, then the range
of the returned isomorphism will be a transformation monoid.

An error is returned if there is no isomorphism from S to a monoid satisfying filt . For exam-
ple, there is no method for IsomorphismMonoid when filt is, say, IsReesZeroMatrixSemigroup
(Reference: IsReesZeroMatrixSemigroup) and when S is a not 0-simple. Similarly, there is no
method when filt is IsPartialPermMonoid (Reference: IsPartialPermMonoid) and when S is a
non-inverse monoid.

In some cases, if no better method is installed, IsomorphismMonoid returns an isomorphism
found by composing an isomorphism from S to a transformation monoid T, and an isomorphism from
T to a monoid of type filt .

Example
gap> S := Semigroup(Transformation([1, 4, 6, 2, 5, 3, 7, 8, 9, 9]),
> Transformation([6, 3, 2, 7, 5, 1, 8, 8, 9, 9]));
<transformation semigroup of degree 10 with 2 generators>
gap> IsomorphismMonoid(IsTransformationMonoid, S);
<transformation semigroup of degree 10 with 2 generators> ->
<transformation monoid of degree 8 with 2 generators>
gap> IsomorphismMonoid(IsBooleanMatMonoid, S);
<transformation semigroup of degree 10 with 2 generators> ->
<monoid of 8x8 boolean matrices with 2 generators>
gap> IsomorphismMonoid(IsFpMonoid, S);
<transformation semigroup of degree 10 with 2 generators> ->
<fp monoid with 2 generators and 17 relations of length 278>

6.5.3 AsSemigroup

▷ AsSemigroup(filt, S) (operation)

Returns: A semigroup.
AsSemigroup(filt, S) is just shorthand for Range(IsomorphismSemigroup(filt, S)),

when S is a semigroup; see IsomorphismSemigroup (6.5.1) for more details.
Note that if the argument S belongs to the category of monoids IsMonoid (Reference: Is-

Monoid), then AsSemigroup will often, but not always, return a monoid. A monoid is not returned if
there is not a good monoid isomorphism from S to a monoid of the required type, but there is a good
semigroup isomorphism.

If it is not possible to convert the semigroup S to a semigroup of type filt , then an error is given.
Example

gap> S := Semigroup([
> Bipartition([

Semigroups 86

> [1, 2], [3, 6, -2], [4, 5, -3, -4], [-1, -6], [-5]]),
> Bipartition([
> [1, -4], [2, 3, 4, 5], [6], [-1, -6], [-2, -3], [-5]])]);
<bipartition semigroup of degree 6 with 2 generators>
gap> AsSemigroup(IsTransformationSemigroup, S);
<transformation semigroup of size 11, degree 12 with 2 generators>
gap> S := Semigroup([
> Bipartition([
> [1, 2], [3, 6, -2], [4, 5, -3, -4], [-1, -6], [-5]]),
> Bipartition([
> [1, -4], [2, 3, 4, 5], [6], [-1, -6], [-2, -3], [-5]])]);
<bipartition semigroup of degree 6 with 2 generators>
gap> AsSemigroup(IsTransformationSemigroup, S);
<transformation semigroup of size 11, degree 12 with 2 generators>
gap> T := Semigroup(Transformation([2, 2, 3]),
> Transformation([3, 1, 3]));
<transformation semigroup of degree 3 with 2 generators>
gap> S := AsSemigroup(IsMatrixOverFiniteFieldSemigroup, GF(5), T);
<semigroup of 3x3 matrices over GF(5) with 2 generators>
gap> Size(S);
5

6.5.4 AsMonoid

▷ AsMonoid([filt,]S) (operation)

Returns: A monoid or fail.
AsMonoid(filt, S) is just shorthand for Range(IsomorphismMonoid(filt, S)), when S is

a semigroup or monoid; see IsomorphismMonoid (6.5.2) for more details.
If the first argument filt is omitted and the semigroup S is mathematically a monoid which does

not belong to the category of monoids in GAP, then AsMonoid returns a monoid (in the category of
monoids) isomorphic to S and of the same type as S . If S is already in the category of monoids and
the first argument filt is omitted, then S is returned.

If the first argument filt is omitted and the semigroup S is not a monoid, i.e. it does not satisfy
IsMonoidAsSemigroup (12.1.13), then fail is returned.

Example
gap> S := Semigroup(Transformation([1, 4, 6, 2, 5, 3, 7, 8, 9, 9]),
> Transformation([6, 3, 2, 7, 5, 1, 8, 8, 9, 9]));;
gap> AsMonoid(S);
<transformation monoid of degree 8 with 2 generators>
gap> AsSemigroup(IsBooleanMatSemigroup, S);
<semigroup of 10x10 boolean matrices with 2 generators>
gap> AsMonoid(IsBooleanMatMonoid, S);
<monoid of 8x8 boolean matrices with 2 generators>
gap> S := Monoid(Bipartition([[1, -1, -3], [2, 3], [-2]]),
> Bipartition([[1, -1], [2, 3, -3], [-2]]));
<bipartition monoid of degree 3 with 2 generators>
gap> AsMonoid(IsTransformationMonoid, S);
<transformation monoid of size 3, degree 3 with 2 generators>
gap> AsMonoid(S);
<bipartition monoid of size 3, degree 3 with 2 generators>

Semigroups 87

6.5.5 IsomorphismPermGroup

▷ IsomorphismPermGroup(S) (attribute)

Returns: An isomorphism.
If the semigroup S is mathematically a group, so that it satisfies IsGroupAsSemigroup (12.1.7),

then IsomorphismPermGroup returns an isomorphism to a permutation group.
If S is not a group then an error is given.
See also IsomorphismPermGroup (Reference: IsomorphismPermGroup).

Example
gap> S := Semigroup(Transformation([2, 2, 3, 4, 6, 8, 5, 5]),
> Transformation([3, 3, 8, 2, 5, 6, 4, 4]));;
gap> IsGroupAsSemigroup(S);
true
gap> iso := IsomorphismPermGroup(S);;
gap> Source(iso) = S and Range(iso) = Group([(5, 6, 8), (2, 3, 8, 4)]);
true
gap> StructureDescription(Range(IsomorphismPermGroup(S)));
"S6"
gap> S := Range(IsomorphismPartialPermSemigroup(SymmetricGroup(4)));
<partial perm group of size 24, rank 4 with 2 generators>
gap> Range(IsomorphismPermGroup(S));
Group([(1,2,3,4), (1,2)])
gap> G := GroupOfUnits(PartitionMonoid(4));
<block bijection group of degree 4 with 2 generators>
gap> StructureDescription(G);
"S4"
gap> iso := IsomorphismPermGroup(G);;
gap> RespectsMultiplication(iso);
true
gap> inv := InverseGeneralMapping(iso);;
gap> ForAll(G, x -> (x ^ iso) ^ inv = x);
true
gap> ForAll(G, x -> ForAll(G, y -> (x * y) ^ iso = x ^ iso * y ^ iso));
true

6.5.6 RZMSNormalization

▷ RZMSNormalization(R) (attribute)

Returns: An isomorphism.
If R is a Rees 0-matrix semigroup M0[I,T,Λ;P] then RZMSNormalization returns an isomor-

phism from R to a normalized Rees 0-matrix semigroup S = M0[I,T,Λ;Q]. The structure matrix Q
is obtained by normalizing the matrix P (see Matrix (Reference: Matrix)) and has the following
properties:

• The matrix Q is in block diagonal form, and the blocks are ordered by decreasing size along the
leading diagonal (the size of a block is defined to be the number of rows it contains multiplied
by the number of columns it contains).

If the index sets I and Λ are partitioned into k parts according to the
RZMSConnectedComponents (11.14.2) of S, giving a disjoint union I = I1 ∪ . . . ∪ Ik and

Semigroups 88

Λ = Λ1 ∪ . . .∪Λk, then the rth block corresponds to the sub-matrix Qr of Q defined by Ir and
Λr.

• The first non-zero entry in a row occurs no sooner than the first non-zero entry in any previous
row.

• The first non-zero entry in a column occurs no sooner than the first non-zero entry in any
previous column.

• The previous two items imply that if the matrix P has any rows/columns consisting entirely of
zeroes, then these will become the final rows/columns of Q.

Furthermore, if T is a group (i.e. a semigroup for which IsGroupAsSemigroup (12.1.7) returns true),
then the non-zero entries of the structure matrix Q are chosen such that the following hold:

• The first non-zero entry of every row and every column is equal to the identity of T .

• For each r, let Qr be the sub-matrix of Q defined by Ir and Λr (as above), and let Tr be the
subsemigroup of T generated by the non-zero entries of Qr. Then the idempotent generated
subsemigroup of S is equal to:

–
⋃k

r=1 M0[Ir,Tr,Λr,Qr], where the zeroes of these Rees 0-matrix semigroups are all identi-
fied with the zero of S.

The normalization given by RZMSNormalization is based on Theorem 2 of [Gra68] and is sometimes
called Graham normal form. Note that isomorphic Rees 0-matrix semigroups can have normalizations
which are not equal.

Example
gap> R := ReesZeroMatrixSemigroup(Group(()),
> [[0, (), 0],
> [(), 0, 0],
> [0, 0, ()]]);
<Rees 0-matrix semigroup 3x3 over Group(())>
gap> iso := RZMSNormalization(R);
<Rees 0-matrix semigroup 3x3 over Group(())> ->
<Rees 0-matrix semigroup 3x3 over Group(())>
gap> S := Range(iso);
<Rees 0-matrix semigroup 3x3 over Group(())>
gap> Matrix(S);
[[(), 0, 0], [0, (), 0], [0, 0, ()]]
gap> R := ReesZeroMatrixSemigroup(SymmetricGroup(4),
> [[0, 0, 0, (1, 3, 2)],
> [(2, 3), 0, 0, 0],
> [0, 0, (1, 3), (1, 2)],
> [0, (4, 1, 2, 3), 0, 0]]);
<Rees 0-matrix semigroup 4x4 over Sym([1 .. 4])>
gap> S := Range(RZMSNormalization(R));
<Rees 0-matrix semigroup 4x4 over Sym([1 .. 4])>
gap> Matrix(S);
[[(), (), 0, 0], [0, (), 0, 0], [0, 0, (), 0], [0, 0, 0, ()]
]

Semigroups 89

6.5.7 RMSNormalization

▷ RMSNormalization(R) (attribute)

Returns: An isomorphism.
If R is a Rees matrix semigroup over a group G (i.e. a semigroup for which IsGroupAsSemigroup

(12.1.7) returns true), then RMSNormalization returns an isomorphism from R to a normalized Rees
matrix semigroup S over G.

The semigroup S is normalized in the sense that the first entry of each row and column of the
Matrix (Reference: Matrix) of S is the identity element of G.

Example
gap> R := ReesMatrixSemigroup(SymmetricGroup(4),
> [[(1, 2), (2, 4, 3), (2, 1, 4)],
> [(1, 3, 2), (1, 2)(3, 4), ()],
> [(2, 3), (1, 3, 2, 4), (2, 3)]]);
<Rees matrix semigroup 3x3 over Sym([1 .. 4])>
gap> iso := RMSNormalization(R);
<Rees matrix semigroup 3x3 over Sym([1 .. 4])> ->
<Rees matrix semigroup 3x3 over Sym([1 .. 4])>
gap> S := Range(iso);
<Rees matrix semigroup 3x3 over Sym([1 .. 4])>
gap> Matrix(S);
[[(), (), ()], [(), (1,2), (1,4,2,3)], [(), (1,4,2,3), (2,4)]]

6.5.8 IsomorphismReesMatrixSemigroup (for a semigroup)

▷ IsomorphismReesMatrixSemigroup(S) (attribute)

▷ IsomorphismReesZeroMatrixSemigroup(S) (attribute)

▷ IsomorphismReesMatrixSemigroupOverPermGroup(S) (attribute)

▷ IsomorphismReesZeroMatrixSemigroupOverPermGroup(S) (attribute)

Returns: An isomorphism.
If the semigroup S is finite and simple, then IsomorphismReesMatrixSemigroup returns an

isomorphism to a Rees matrix semigroup over some group (usually a permutation group), and
IsomorphismReesMatrixSemigroupOverPermGroup returns an isomorphism to a Rees matrix
semigroup over a permutation group.

If S is finite and 0-simple, then IsomorphismReesZeroMatrixSemigroup returns an iso-
morphism to a Rees 0-matrix semigroup over some group (usually a permutation group),
and IsomorphismReesZeroMatrixSemigroupOverPermGroup returns an isomorphism to a Rees
0-matrix semigroup over a permutation group.

See also InjectionPrincipalFactor (10.4.7).
Example

gap> S := Semigroup(PartialPerm([1]));
<trivial partial perm group of rank 1 with 1 generator>
gap> iso := IsomorphismReesMatrixSemigroup(S);;
gap> Source(iso) = S;
true
gap> Range(iso);
<Rees matrix semigroup 1x1 over Group(())>
gap> S := Semigroup(PartialPerm([1]), PartialPerm([]));
<partial perm monoid of rank 1 with 2 generators>

Semigroups 90

gap> Range(IsomorphismReesZeroMatrixSemigroup(S));
<Rees 0-matrix semigroup 1x1 over Group(())>

6.5.9 AntiIsomorphismDualFpSemigroup

▷ AntiIsomorphismDualFpSemigroup(S) (attribute)

▷ AntiIsomorphismDualFpMonoid(S) (attribute)

Returns: A finitely presented semigroup or monoid.
AntiIsomorphismDualFpSemigroup returns an anti-isomorphism (MappingByFunction

(Reference: MappingByFunction)) from the finitely presented semigroup S to another finitely pre-
sented semigroup. The range finitely presented semigroup is obtained from S by reversing the relations
of S .

AntiIsomorphismDualFpMonoid works analogously when S is a finitely presented monoid, and
the range of the returned anti-isomorphism is a finitely presented monoid.

Example
gap> F := FreeSemigroup("a", "b");
<free semigroup on the generators [a, b]>
gap> AssignGeneratorVariables(F);
gap> R := [[a ^ 3, a], [b ^ 2, b], [(a * b) ^ 2, a]];
[[a^3, a], [b^2, b], [(a*b)^2, a]]
gap> S := F / R;
<fp semigroup with 2 generators and 3 relations of length 14>
gap> map := AntiIsomorphismDualFpSemigroup(S);
MappingByFunction(<fp semigroup with 2 generators and

3 relations of length 14>, <fp semigroup with 2 generators and
3 relations of length 14>

, function(x) ... end, function(x) ... end)
gap> RelationsOfFpSemigroup(Range(map));
[[a^3, a], [b^2, b], [(b*a)^2, a]]

6.5.10 EmbeddingFpMonoid

▷ EmbeddingFpMonoid(S) (attribute)

Returns: A finitely presented monoid.
EmbeddingFpMonoid returns an embedding (SemigroupHomomorphismByImages (14.1.1))

from the finitely presented semigroup S into a finitely presented monoid. If S satisfies
IsMonoidAsSemigroup (12.1.13), then the mapping returned by this function is an isomorphism (the
same isomorphism as IsomorphismFpMonoid (Reference: IsomorphismFpMonoid)). If S is not a
monoid, then the range is isomorphic to S with an identity adjoined (a new element not previously in
S). The embedded copy of S in the range can be recovered using Image (Reference: Image).

Example
gap> F := FreeSemigroup("a", "b");
<free semigroup on the generators [a, b]>
gap> AssignGeneratorVariables(F);
gap> R := [[a ^ 3, a], [b ^ 2, b], [(a * b) ^ 2, a]];
[[a^3, a], [b^2, b], [(a*b)^2, a]]
gap> S := F / R;
<fp semigroup with 2 generators and 3 relations of length 14>
gap> Size(S);

Semigroups 91

3
gap> IsMonoidAsSemigroup(S);
false
gap> map := EmbeddingFpMonoid(S);
<fp semigroup with 2 generators and 3 relations of length 14> ->
<fp monoid with 2 generators and 3 relations of length 14>
gap> Size(Range(map));
4

6.6 Random semigroups

6.6.1 RandomSemigroup

▷ RandomSemigroup(arg...) (function)

▷ RandomMonoid(arg...) (function)

▷ RandomInverseSemigroup(arg...) (function)

▷ RandomInverseMonoid(arg...) (function)

Returns: A semigroup.
The operations described in this section can be used to generate semigroups, in some sense, at

random. There is no guarantee given about the distribution of these semigroups, and this is only
intended as a means of generating semigroups for testing and other similar purposes.

Roughly speaking, the arguments of RandomSemigroup are a filter specifying the type of the
semigroup to be returned, together with some further parameters that describe some attributes of the
semigroup to be returned. For instance, we may want to specify the number of generators, and, say,
the degree, or dimension, of the elements, where appropriate. The arguments of RandomMonoid,
RandomInverseSemigroup, and RandomInverseMonoid are analogous.

If no arguments are specified, then they are all chosen at random, for a truly random experience.
The first argument, if present, should be a filter filter . For RandomSemigroup and

RandomInverseSemigroup the filter filter must be of the form IsXSemigroup. For exam-
ple, IsTransformationSemigroup (Reference: IsTransformationSemigroup), IsFpSemigroup
(Reference: IsFpSemigroup), and IsPBRSemigroup (4.6.1) are some possible values for filter .
For RandomMonoid and RandomInverseMonoid the argument filter must be of the form
IsXMonoid; such as IsBipartitionMonoid (3.8.1) or IsBooleanMatMonoid (5.7.2).

Suppose that the first argument filter is IsFpSemigroup (Reference: IsFpSemigroup). Then
the only other arguments that can be specified is (and this argument is also optional):

number of generators
The second argument, if present, should be a positive integer m indicating the number of gener-
ators that the semigroup should have. If the second argument m is not specified, then a number
is selected at random.

If filter is a filter such as IsTransformationSemigroup (Reference: IsTransformationSemi-
group) or IsIntegerMatrixSemigroup (5.7.1), then a further argument can be specified:

degree / dimension
The third argument, if present, should be a positive integer n , which specifies the de-
gree or dimension of the generators. For example, if the first argument filter is

Semigroups 92

IsTransformationSemigroup, then the value of this argument is the degree of the transfor-
mations in the returned semigroup; or if filter is IsMatrixOverFiniteFieldSemigroup,
then this argument is the dimension of the matrices in the returned semigroup.

If filter is IsTropicalMaxPlusMatrixSemigroup (5.7.1), for example, then a fourth argument
can be given (or not!):

threshold
The fourth argument, if present, should be a positive integer t , which specifies the threshold of
the semiring over which the matrices in the returned semigroup are defined.

You get the idea, the error messages are self-explanatory, and RandomSemigroup works for most of
the type of semigroups defined in GAP.

RandomMonoid is similar to RandomSemigroup except it returns a monoid. Likewise,
RandomInverseSemigroup and RandomInverseMonoid return inverse semigroups and monoids, re-
spectively.

Example
gap> RandomSemigroup();
<semigroup of 10x10 max-plus matrices with 12 generators>
gap> RandomMonoid(IsTransformationMonoid);
<transformation monoid of degree 9 with 7 generators>
gap> RandomMonoid(IsPartialPermMonoid, 2);
<partial perm monoid of rank 17 with 2 generators>
gap> RandomMonoid(IsPartialPermMonoid, 2, 3);
<partial perm monoid of rank 3 with 2 generators>
gap> RandomInverseSemigroup(IsTropicalMinPlusMatrixSemigroup);
<semigroup of 6x6 tropical min-plus matrices with 14 generators>
gap> RandomInverseSemigroup(IsTropicalMinPlusMatrixSemigroup, 1);
<semigroup of 6x6 tropical min-plus matrices with 14 generators>
gap> RandomSemigroup(IsTropicalMinPlusMatrixSemigroup, 2);
<semigroup of 11x11 tropical min-plus matrices with 2 generators>
gap> RandomSemigroup(IsTropicalMinPlusMatrixSemigroup, 2, 1);
<semigroup of 1x1 tropical min-plus matrices with 2 generators>
gap> RandomSemigroup(IsTropicalMinPlusMatrixSemigroup, 2, 1, 3);
gap> last.1;
Matrix(IsTropicalMinPlusMatrix, [[infinity]], 3)
gap> RandomSemigroup(IsNTPMatrixSemigroup, 2, 1, 3, 4);
<semigroup of 1x1 ntp matrices with 2 generators>
gap> last.1;
Matrix(IsNTPMatrix, [[2]], 3, 4)
gap> RandomSemigroup(IsReesMatrixSemigroup, 2, 2);
<Rees matrix semigroup 2x2 over

<permutation group of size 659 with 1 generator>>
gap> RandomSemigroup(IsReesZeroMatrixSemigroup, 2, 2, Group((1, 2), (3, 4)));
<Rees 0-matrix semigroup 2x2 over Group([(1,2), (3,4)])>
gap> RandomInverseMonoid(IsMatrixOverFiniteFieldMonoid, 2, 2);
<monoid of 3x3 matrices over GF(421^4) with 3 generators>
gap> RandomInverseMonoid(IsMatrixOverFiniteFieldMonoid, 2, 2, GF(7));
<monoid of 3x3 matrices over GF(7) with 2 generators>
gap> RandomSemigroup(IsBipartitionSemigroup, 5, 5);
<bipartition semigroup of degree 5 with 5 generators>
gap> RandomMonoid(IsBipartitionMonoid, 5, 5);

Semigroups 93

<bipartition monoid of degree 5 with 5 generators>
gap> RandomSemigroup(IsBooleanMatSemigroup);
<semigroup of 3x3 boolean matrices with 18 generators>
gap> RandomMonoid(IsBooleanMatMonoid);
<monoid of 11x11 boolean matrices with 19 generators>

Chapter 7

Standard examples

In this chapter we describe some standard families of examples of semigroups and monoids which are
available in the Semigroups package.

7.1 Transformation semigroups

In this section, we describe the operations in Semigroups that can be used to create transformation
semigroups belonging to several standard classes of example. See (Reference: Transformations) for
more information about transformations.

7.1.1 CatalanMonoid

▷ CatalanMonoid(n) (operation)

Returns: A transformation monoid.
If n is a positive integer, then this operation returns the Catalan monoid of degree n . The Catalan

monoid is the semigroup of the order-preserving and order-decreasing transformations of [1 .. n]
with the usual ordering.

The Catalan monoid is generated by the n - 1 transformations fi:(
1 2 3 · · · i i+1 i+2 · · · n
1 2 3 · · · i i i+2 · · · n

)
,

where i = 1, . . . ,n−1 and has size equal to the nth Catalan number.
Example

gap> S := CatalanMonoid(6);
<transformation monoid of degree 6 with 5 generators>
gap> Size(S);
132

7.1.2 EndomorphismsPartition

▷ EndomorphismsPartition(list) (operation)

Returns: A transformation monoid.
If list is a list of positive integers, then EndomorphismsPartition returns a monoid of endo-

morphisms preserving a partition of [1 .. Sum(list)] with a part of length list[i] for every i.

94

Semigroups 95

For example, if list = [1, 2, 3], then EndomorphismsPartition returns the monoid of endo-
morphisms of the partition [[1], [2, 3], [4, 5, 6]].

If f is a transformation of [1 .. n], then it is an ENDOMORPHISM of a partition P on [1 ..
n] if (i, j) in P implies that (i ^ f, j ^ f) is in P.

EndomorphismsPartition returns a monoid with a minimal size generating set, as described in
[ABMS15].

Example
gap> S := EndomorphismsPartition([3, 3, 3]);
<transformation semigroup of degree 9 with 4 generators>
gap> Size(S);
531441

7.1.3 PartialTransformationMonoid

▷ PartialTransformationMonoid(n) (operation)

Returns: A transformation monoid.
If n is a positive integer, then this function returns a semigroup of transformations on n + 1 points

which is isomorphic to the semigroup consisting of all partial transformation on n points. This monoid
has (n + 1) ^ n elements.

Example
gap> S := PartialTransformationMonoid(5);
<regular transformation monoid of degree 6 with 4 generators>
gap> Size(S);
7776

7.1.4 SingularTransformationSemigroup

▷ SingularTransformationSemigroup(n) (operation)

▷ SingularTransformationMonoid(n) (operation)

Returns: The semigroup of non-invertible transformations.
If n is a integer greater than 1, then this function returns the semigroup of non-invertible trans-

formations, which is generated by the n(n - 1) idempotents of degree n and rank n - 1 and has
nn −n! elements.

Example
gap> S := SingularTransformationSemigroup(4);
<regular transformation semigroup ideal of degree 4 with 1 generator>
gap> Size(S);
232

7.1.5 Semigroups of order-preserving transformations

▷ OrderEndomorphisms(n) (operation)

▷ SingularOrderEndomorphisms(n) (operation)

▷ OrderAntiEndomorphisms(n) (operation)

▷ PartialOrderEndomorphisms(n) (operation)

▷ PartialOrderAntiEndomorphisms(n) (operation)

Returns: A semigroup of transformations related to a linear order.

Semigroups 96

OrderEndomorphisms(n)
OrderEndomorphisms(n) returns the monoid of transformations that preserve the usual order
on {1,2, . . . ,n}, where n is a positive integer. OrderEndomorphisms(n) is generated by the
n + 1 transformations:(

1 2 3 · · · n−1 n
1 1 2 · · · n−2 n−1

)
,

(
1 2 · · · i−1 i i+1 i+2 · · · n
1 2 · · · i−1 i+1 i+1 i+2 · · · n

)
where i = 0, . . . ,n−1, and has

(2n−1
n−1

)
elements.

SingularOrderEndomorphisms(n)
SingularOrderEndomorphisms(n) returns the ideal of OrderEndomorphisms(n) con-
sisting of the non-invertible elements, when n is at least 2. The only invert-
ible element in OrderEndomorphisms(n) is the identity transformation. Therefore
SingularOrderEndomorphisms(n) has

(2n−1
n−1

)
−1 elements.

OrderAntiEndomorphisms(n)
OrderAntiEndomorphisms(n) returns the monoid of transformations that preserve or reverse
the usual order on {1,2, . . . ,n}, where n is a positive integer. OrderAntiEndomorphisms(n)
is generated by the generators of OrderEndomorphisms(n) along with the bijective transfor-
mation that reverses the order on {1,2, . . . ,n}. The monoid OrderAntiEndomorphisms(n)
has

(2n−1
n−1

)
−n elements.

PartialOrderEndomorphisms(n)
PartialOrderEndomorphisms(n) returns a monoid of transformations on n + 1 points that
is isomorphic to the monoid consisting of all partial transformations that preserve the usual
order on {1,2, . . . ,n}.

PartialOrderAntiEndomorphisms(n)
PartialAntiOrderEndomorphisms(n) returns a monoid of transformations on n + 1 points
that is isomorphic to the monoid consisting of all partial transformations that preserve or reverse
the usual order on {1,2, . . . ,n}.

Example
gap> S := OrderEndomorphisms(5);
<regular transformation monoid of degree 5 with 5 generators>
gap> IsIdempotentGenerated(S);
true
gap> Size(S) = Binomial(2 * 5 - 1, 5 - 1);
true
gap> Difference(S, SingularOrderEndomorphisms(5));
[IdentityTransformation]
gap> SingularOrderEndomorphisms(10);
<regular transformation semigroup ideal of degree 10 with 1 generator>
gap> T := OrderAntiEndomorphisms(4);
<regular transformation monoid of degree 4 with 5 generators>
gap> Transformation([4, 2, 2, 1]) in T;
true
gap> U := PartialOrderEndomorphisms(6);
<regular transformation monoid of degree 7 with 12 generators>
gap> V := PartialOrderAntiEndomorphisms(6);
<regular transformation monoid of degree 7 with 13 generators>

Semigroups 97

gap> IsSubsemigroup(V, U);
true

7.1.6 EndomorphismMonoid (for a digraph)

▷ EndomorphismMonoid(digraph) (attribute)

▷ EndomorphismMonoid(digraph, colors) (operation)

Returns: A monoid.
An endomorphism of digraph is a homomorphism DigraphHomomorphism (Digraphs: Di-

graphHomomorphism) from digraph back to itself.
EndomorphismMonoid, called with a single argument, returns the monoid of all endomorphisms

of digraph .
If the colors argument is specified, then it will return the monoid of endomorphisms which

respect the given colouring. The colouring colors can be in one of two forms:

• A list of positive integers of size the number of vertices of digraph , where colors[i] is the
colour of vertex i.

• A list of lists, such that colors[i] is a list of all vertices with colour i.

See also GeneratorsOfEndomorphismMonoid (Digraphs: GeneratorsOfEndomorphis-
mMonoid). Note that the performance of EndomorphismMonoid may differ from that of
GeneratorsOfEndomorphismMonoid (Digraphs: GeneratorsOfEndomorphismMonoid) since
the former incrementally adds newly discovered endomorphisms to the monoid using ClosureMonoid
(6.4.1).

Example
gap> gr := Digraph(List([1 .. 3], x -> [1 .. 3]));;
gap> EndomorphismMonoid(gr);
<transformation monoid of degree 3 with 3 generators>
gap> gr := CompleteDigraph(3);;
gap> EndomorphismMonoid(gr);
<transformation group of size 6, degree 3 with 2 generators>
gap> S := EndomorphismMonoid(gr, [1, 2, 2]);;
gap> IsGroupAsSemigroup(S);
true
gap> Size(S);
2
gap> S := EndomorphismMonoid(gr, [[1], [2, 3]]);;
gap> S := EndomorphismMonoid(gr, [1, 2, 2]);;
gap> IsGroupAsSemigroup(S);
true

7.2 Semigroups of partial permutations

In this section, we describe the operations in Semigroups that can be used to create semigroups
of partial permutations belonging to several standard classes of example. See (Reference: Partial
permutations) for more information about partial permutations.

Semigroups 98

7.2.1 MunnSemigroup

▷ MunnSemigroup(S) (attribute)

Returns: The Munn semigroup of a semilattice.
If S is a semilattice, then MunnSemigroup returns the inverse semigroup of partial permutations

of isomorphisms of principal ideals of S ; called the Munn semigroup of S .
This function was written jointly by J. D. Mitchell, Yann Péresse (St Andrews), Yanhui Wang

(York).
Example

gap> S := InverseSemigroup([
> PartialPerm([1, 2, 3, 4, 5, 6, 7, 10], [4, 6, 7, 3, 8, 2, 9, 5]),
> PartialPerm([1, 2, 7, 9], [5, 6, 4, 3])]);
<inverse partial perm semigroup of rank 10 with 2 generators>
gap> T := IdempotentGeneratedSubsemigroup(S);;
gap> M := MunnSemigroup(T);
<inverse partial perm semigroup of rank 60 with 7 generators>
gap> NrIdempotents(M);
60
gap> NrIdempotents(S);
60

7.2.2 RookMonoid

▷ RookMonoid(n) (operation)

Returns: An inverse monoid of partial permutations.
RookMonoid is a synonym for SymmetricInverseMonoid (Reference: SymmetricInverse-

Monoid).
Example

gap> S := RookMonoid(4);
<symmetric inverse monoid of degree 4>
gap> S = SymmetricInverseMonoid(4);
true

7.2.3 Inverse monoids of order-preserving partial permutations

▷ POI(n) (operation)

▷ PODI(n) (operation)

▷ POPI(n) (operation)

▷ PORI(n) (operation)

Returns: An inverse monoid of partial permutations related to a linear order.

POI(n)
POI(n) returns the inverse monoid of partial permutations that preserve the usual order on
{1,2, . . . ,n}, where n is a positive integer. POI(n) is generated by the n partial permutations:(

1 2 3 · · · n
− 1 2 · · · n−1

)
,

(
1 2 · · · i−1 i i+1 i+2 · · · n
1 2 · · · i−1 i+1 − i+2 · · · n

)
where i = 1, . . . ,n−1, and has

(2n
n

)
elements.

Semigroups 99

PODI(n)
PODI(n) returns the inverse monoid of partial permutations that preserve or reverse the usual
order on {1,2, . . . ,n}, where n is a positive integer. PODI(n) is generated by the generators of
POI(n), along with the permutation that reverses the usual order on {1,2, . . . ,n}. PODI(n) has(2n

n

)
−n2 −1 elements.

POPI(n)
POPI(n) returns the inverse monoid of partial permutations that preserve the orientation of
{1,2, . . . ,n}, where n is a positive integer. POPI(n) is generated by the partial permutations:(

1 2 · · · n−1 n
2 3 · · · n 1

)
,

(
1 2 · · · n−2 n−1 n
1 2 · · · n−2 n −

)
,

and has 1+ n
2

(2n
n

)
elements.

PORI(n)
PORI(n) returns the inverse monoid of partial permutations that preserve or reverse the orien-
tation of {1,2, . . . ,n}, where n is a positive integer. PORI(n) is generated by the generators of
POPI(n), along with the permutation that reverses the usual order on {1,2, . . . ,n}. PORI(n)
has n

2

(2n
n

)
−n(n+1) elements.

Example
gap> S := PORI(10);
<inverse partial perm monoid of rank 10 with 3 generators>
gap> S := POPI(10);
<inverse partial perm monoid of rank 10 with 2 generators>
gap> Size(S) = 1 + 5 * Binomial(20, 10);
true
gap> S := PODI(10);
<inverse partial perm monoid of rank 10 with 11 generators>
gap> S := POI(10);
<inverse partial perm monoid of rank 10 with 10 generators>
gap> Size(S) = Binomial(20, 10);
true
gap> IsSubsemigroup(PORI(10), PODI(10))
> and IsSubsemigroup(PORI(10), POPI(10))
> and IsSubsemigroup(PODI(10), POI(10))
> and IsSubsemigroup(POPI(10), POI(10));
true

7.3 Semigroups of bipartitions

In this section, we describe the operations in Semigroups that can be used to create bipartition semi-
groups belonging to several standard classes of example. See Chapter 3 for more information about
bipartitions.

7.3.1 PartitionMonoid

▷ PartitionMonoid(n) (operation)

▷ RookPartitionMonoid(n) (operation)

Semigroups 100

▷ SingularPartitionMonoid(n) (operation)

Returns: A bipartition monoid.
If n is a non-negative integer, then this operation returns the partition monoid of degree n . The

partition monoid of degree n is the monoid consisting of all the bipartitions of degree n .
SingularPartitionMonoid returns the ideal of the partition monoid consisting of the

non-invertible elements (i.e. those not in the group of units), when n is positive.
If n is positive, then RookPartitionMonoid returns submonoid of the partition monoid of de-

gree n + 1 consisting of those bipartitions with n + 1 and -n - 1 in the same block; see [HR05],
[Gro06], and [Eas19].

Example
gap> S := PartitionMonoid(4);
<regular bipartition *-monoid of size 4140, degree 4 with 4
generators>

gap> Size(S);
4140
gap> T := SingularPartitionMonoid(4);
<regular bipartition *-semigroup ideal of degree 4 with 1 generator>
gap> Size(S) - Size(T) = Factorial(4);
true
gap> S := RookPartitionMonoid(4);
<regular bipartition *-monoid of degree 5 with 5 generators>
gap> Size(S);
21147

7.3.2 BrauerMonoid

▷ BrauerMonoid(n) (operation)

▷ PartialBrauerMonoid(n) (operation)

▷ SingularBrauerMonoid(n) (operation)

Returns: A bipartition monoid.
If n is a non-negative integer, then this operation returns the Brauer monoid of degree n . The

Brauer monoid is the submonoid of the partition monoid consisting of those bipartitions where the
size of every block is 2.

PartialBrauerMonoid returns the partial Brauer monoid, which is the submonoid of the partition
monoid consisting of those bipartitions where the size of every block is at most 2. The partial Brauer
monoid contains the Brauer monoid as a submonoid.

SingularBrauerMonoid returns the ideal of the Brauer monoid consisting of the non-invertible
elements (i.e. those not in the group of units), when n is at least 2.

Example
gap> S := BrauerMonoid(4);
<regular bipartition *-monoid of degree 4 with 3 generators>
gap> IsSubsemigroup(S, JonesMonoid(4));
true
gap> Size(S);
105
gap> SingularBrauerMonoid(8);
<regular bipartition *-semigroup ideal of degree 8 with 1 generator>
gap> S := PartialBrauerMonoid(3);
<regular bipartition *-monoid of degree 3 with 8 generators>
gap> IsSubsemigroup(S, BrauerMonoid(3));

Semigroups 101

true
gap> Size(S);
76

7.3.3 JonesMonoid

▷ JonesMonoid(n) (operation)

▷ TemperleyLiebMonoid(n) (operation)

▷ SingularJonesMonoid(n) (operation)

Returns: A bipartition monoid.
If n is a non-negative integer, then this operation returns the Jones monoid of degree n . The Jones

monoid is the subsemigroup of the Brauer monoid consisting of those bipartitions that are planar;
see PlanarPartitionMonoid (7.3.9). The Jones monoid is sometimes referred to as the TEMPER-
LEY-LIEB MONOID.

SingularJonesMonoid returns the ideal of the Jones monoid consisting of the non-invertible
elements (i.e. those not in the group of units), when n is at least 2.

Example
gap> S := JonesMonoid(4);
<regular bipartition *-monoid of degree 4 with 3 generators>
gap> S = TemperleyLiebMonoid(4);
true
gap> SingularJonesMonoid(8);
<regular bipartition *-semigroup ideal of degree 8 with 1 generator>

7.3.4 PartialJonesMonoid

▷ PartialJonesMonoid(n) (operation)

Returns: A bipartition monoid.
If n is a non-negative integer, then PartialJonesMonoid returns the partial Jones monoid of

degree n . The partial Jones monoid is a subsemigroup of the partial Brauer monoid. An element of
the partial Brauer monoid is contained in the partial Jones monoid if the partition that it defines is
finer than the partition defined by some element of the Jones monoid. In other words, an element of
the partial Jones monoid can be formed from some element x of the Jones monoid by replacing some
blocks [a, b] of x by singleton blocks [a], [b].

Note that, in general, the partial Jones monoid of degree n is strictly contained in the Motzkin
monoid of the same degree.

See PartialBrauerMonoid (7.3.2), JonesMonoid (7.3.3), and MotzkinMonoid (7.3.6).
Example

gap> S := PartialJonesMonoid(4);
<regular bipartition *-monoid of degree 4 with 7 generators>
gap> T := JonesMonoid(4);
<regular bipartition *-monoid of degree 4 with 3 generators>
gap> U := MotzkinMonoid(4);
<regular bipartition *-monoid of degree 4 with 8 generators>
gap> IsSubsemigroup(U, S);
true
gap> IsSubsemigroup(S, T);
true
gap> Size(U);

Semigroups 102

323
gap> Size(S);
143
gap> Size(T);
14

7.3.5 AnnularJonesMonoid

▷ AnnularJonesMonoid(n) (operation)

Returns: A bipartition monoid.
If n is a non-negative integer, then AnnularJonesMonoid returns the annular Jones monoid of

degree n . The annular Jones monoid is the subsemigroup of the partition monoid consisting of all
annular bipartitions whose blocks have size 2 (annular bipartitions are defined in Chapter 3). See
BrauerMonoid (7.3.2).

Example
gap> S := AnnularJonesMonoid(4);
<regular bipartition *-monoid of degree 4 with 2 generators>

7.3.6 MotzkinMonoid

▷ MotzkinMonoid(n) (operation)

Returns: A bipartition monoid.
If n is a non-negative integer, then this operation returns the Motzkin monoid of degree n . The

Motzkin monoid is the subsemigroup of the partial Brauer monoid consisting of those bipartitions that
are planar (planar bipartitions are defined in Chapter 3).

Note that the Motzkin monoid of degree n contains the partial Jones monoid of degree n , but in
general, these monoids are not equal; see PartialJonesMonoid (7.3.4).

Example
gap> S := MotzkinMonoid(4);
<regular bipartition *-monoid of degree 4 with 8 generators>
gap> T := PartialJonesMonoid(4);
<regular bipartition *-monoid of degree 4 with 7 generators>
gap> IsSubsemigroup(S, T);
true
gap> Size(S);
323
gap> Size(T);
143

7.3.7 DualSymmetricInverseSemigroup

▷ DualSymmetricInverseSemigroup(n) (operation)

▷ DualSymmetricInverseMonoid(n) (operation)

▷ SingularDualSymmetricInverseMonoid(n) (operation)

▷ PartialDualSymmetricInverseMonoid(n) (operation)

Returns: An inverse bipartition monoid.
If n is a positive integer, then the operations DualSymmetricInverseSemigroup and

DualSymmetricInverseMonoid return the dual symmetric inverse monoid of degree n , which is
the subsemigroup of the partition monoid consisting of the block bijections of degree n .

Semigroups 103

SingularDualSymmetricInverseMonoid returns the ideal of the dual symmetric inverse
monoid consisting of the non-invertible elements (i.e. those not in the group of units), when n is
at least 2.

PartialDualSymmetricInverseMonoid returns the submonoid of the dual symmetric inverse
monoid of degree n + 1 consisting of those block bijections with n + 1 and -n - 1 in the same
block; see [KM11] and [KMU15].

See IsBlockBijection (3.5.16).
Example

gap> Number(PartitionMonoid(3), IsBlockBijection);
25
gap> S := DualSymmetricInverseSemigroup(3);
<inverse block bijection monoid of degree 3 with 3 generators>
gap> Size(S);
25
gap> S := PartialDualSymmetricInverseMonoid(5);
<inverse block bijection monoid of degree 6 with 4 generators>
gap> Size(S);
29072

7.3.8 UniformBlockBijectionMonoid

▷ UniformBlockBijectionMonoid(n) (operation)

▷ FactorisableDualSymmetricInverseMonoid(n) (operation)

▷ SingularUniformBlockBijectionMonoid(n) (operation)

▷ PartialUniformBlockBijectionMonoid(n) (operation)

▷ SingularFactorisableDualSymmetricInverseMonoid(n) (operation)

▷ PlanarUniformBlockBijectionMonoid(n) (operation)

▷ SingularPlanarUniformBlockBijectionMonoid(n) (operation)

Returns: An inverse bipartition monoid.
If n is a positive integer, then this operation returns the uniform block bijection monoid of degree

n . The uniform block bijection monoid is the submonoid of the partition monoid consisting of the
block bijections of degree n where the number of positive integers in a block equals the number
of negative integers in that block. The uniform block bijection monoid is also referred to as the
factorisable dual symmetric inverse monoid.

SingularUniformBlockBijectionMonoid returns the ideal of the uniform block bijection
monoid consisting of the non-invertible elements (i.e. those not in the group of units), when n is
at least 2.

PlanarUniformBlockBijectionMonoid returns the submonoid of the uniform block bijec-
tion monoid consisting of the planar elements (i.e. those in the planar partition monoid, see
PlanarPartitionMonoid (7.3.9)).

SingularPlanarUniformBlockBijectionMonoid returns the ideal of the planar uniform block
bijection monoid consisting of the non-invertible elements (i.e. those not in the group of units), when
n is at least 2.

PartialUniformBlockBijectionMonoid returns the submonoid of the uniform block bijection
monoid of degree n + 1 consisting of those uniform block bijection with n + 1 and -n - 1 in the
same block.

See IsUniformBlockBijection (3.5.17).

Semigroups 104

Example
gap> S := UniformBlockBijectionMonoid(4);
<inverse block bijection monoid of degree 4 with 3 generators>
gap> Size(PlanarUniformBlockBijectionMonoid(8));
128
gap> S := DualSymmetricInverseMonoid(4);
<inverse block bijection monoid of degree 4 with 3 generators>
gap> IsFactorisableInverseMonoid(S);
false
gap> S := UniformBlockBijectionMonoid(4);
<inverse block bijection monoid of degree 4 with 3 generators>
gap> IsFactorisableInverseMonoid(S);
true
gap> S := AsSemigroup(IsBipartitionSemigroup,
> SymmetricInverseMonoid(5));
<inverse bipartition monoid of degree 5 with 3 generators>
gap> IsFactorisableInverseMonoid(S);
true
gap> S := PartialUniformBlockBijectionMonoid(5);
<inverse block bijection monoid of degree 6 with 4 generators>
gap> NrIdempotents(S);
203
gap> IsFactorisableInverseMonoid(S);
true

7.3.9 PlanarPartitionMonoid

▷ PlanarPartitionMonoid(n) (operation)

▷ SingularPlanarPartitionMonoid(n) (operation)

Returns: A bipartition monoid.
If n is a positive integer, then this operation returns the planar partition monoid of degree n which

is the monoid consisting of all the planar bipartitions of degree n (planar bipartitions are defined in
Chapter 3).

SingularPlanarPartitionMonoid returns the ideal of the planar partition monoid consisting of
the non-invertible elements (i.e. those not in the group of units).

Example
gap> S := PlanarPartitionMonoid(3);
<regular bipartition *-monoid of degree 3 with 5 generators>
gap> Size(S);
132
gap> T := SingularPlanarPartitionMonoid(3);
<regular bipartition *-semigroup ideal of degree 3 with 1 generator>
gap> Size(T);
131
gap> Difference(S, T);
[<block bijection: [1, -1], [2, -2], [3, -3]>]

Semigroups 105

7.3.10 ModularPartitionMonoid

▷ ModularPartitionMonoid(m, n) (operation)

▷ SingularModularPartitionMonoid(m, n) (operation)

▷ PlanarModularPartitionMonoid(m, n) (operation)

▷ SingularPlanarModularPartitionMonoid(m, n) (operation)

Returns: A bipartition monoid.
If m and n are positive integers, then this operation returns the modular-m partition monoid of

degree n . The modular- m partition monoid is the submonoid of the partition monoid such that the
numbers of positive and negative integers contained in each block are congruent mod m .

SingularModularPartitionMonoid returns the ideal of the modular partition monoid consist-
ing of the non-invertible elements (i.e. those not in the group of units), when either m = n = 1 or
m, n > 1 .

PlanarModularPartitionMonoid returns the submonoid of the modular-m partition
monoid consisting of the planar elements (i.e. those in the planar partition monoid, see
PlanarPartitionMonoid (7.3.9)).

SingularPlanarModularPartitionMonoid returns the ideal of the planar modular partition
monoid consisting of the non-invertible elements (i.e. those not in the group of units), when either
m = n = 1 or m, n > 1 .

Example
gap> S := ModularPartitionMonoid(3, 6);
<regular bipartition *-monoid of degree 6 with 4 generators>
gap> Size(S);
36243
gap> S := SingularModularPartitionMonoid(1, 1);
<commutative inverse bipartition semigroup ideal of degree 1 with

1 generator>
gap> Size(SingularModularPartitionMonoid(2, 4));
355
gap> S := PlanarModularPartitionMonoid(4, 9);
<regular bipartition *-monoid of degree 9 with 14 generators>
gap> Size(S);
1795
gap> S := SingularPlanarModularPartitionMonoid(3, 5);
<regular bipartition *-semigroup ideal of degree 5 with 1 generator>
gap> Size(SingularPlanarModularPartitionMonoid(1, 2));
13

7.3.11 ApsisMonoid

▷ ApsisMonoid(m, n) (operation)

▷ SingularApsisMonoid(m, n) (operation)

▷ CrossedApsisMonoid(m, n) (operation)

▷ SingularCrossedApsisMonoid(m, n) (operation)

Returns: A bipartition monoid.
If m and n are positive integers, then this operation returns the m-apsis monoid of degree n .

The m-apsis monoid is the monoid of bipartitions generated when the diapses in generators of the
Jones monoid are replaced with m-apses. Note that an m-apsis is a block that contains precisely m
consecutive integers.

Semigroups 106

SingularApsisMonoid returns the ideal of the apsis monoid consisting of the non-invertible
elements (i.e. those not in the group of units), when m ≤ n .

CrossedApsisGeneratedMonoid returns the semigroup generated by the symmetric group of
degree n and the m-apsis monoid of degree n .

SingularCrossedApsisMonoid returns the ideal of the crossed apsis monoid consisting of the
non-invertible elements (i.e. those not in the group of units), when m <= n .

Example
gap> S := ApsisMonoid(3, 7);
<regular bipartition *-monoid of degree 7 with 5 generators>
gap> Size(S);
320
gap> T := SingularApsisMonoid(3, 7);
<regular bipartition *-semigroup ideal of degree 7 with 1 generator>
gap> Difference(S, T) = [One(S)];
true
gap> Size(CrossedApsisMonoid(2, 5));
945
gap> SingularCrossedApsisMonoid(4, 6);
<regular bipartition *-semigroup ideal of degree 6 with 1 generator>

7.4 Standard PBR semigroups

In this section, we describe the operations in Semigroups that can be used to create standard examples
of semigroups of partitioned binary relations (PBRs). See Chapter 4 for more information about PBRs.

7.4.1 FullPBRMonoid

▷ FullPBRMonoid(n) (operation)

Returns: A PBR monoid.
If n is a positive integer not greater than 2, then this operation returns the monoid consisting of all

of the partitioned binary relations (PBRs) of degree n ; called the full PBR monoid. There are 2 ^ ((2
* n) ^ 2) PBRs of degree n . The full PBR monoid of degree n is currently too large to compute
when n ≥ 3.

The full PBR monoid is not regular in general.
Example

gap> S := FullPBRMonoid(1);
<pbr monoid of degree 1 with 4 generators>
gap> S := FullPBRMonoid(2);
<pbr monoid of degree 2 with 10 generators>

7.5 Semigroups of matrices over a finite field

In this section, we describe the operations in Semigroups that can be used to create semigroups of
matrices over a finite field that belonging to several standard classes of example. See the section
‘Matrices over finite fields’ for more information about matrices over a finite field.

Semigroups 107

7.5.1 FullMatrixMonoid

▷ FullMatrixMonoid(d, q) (operation)

▷ GeneralLinearMonoid(d, q) (operation)

▷ GLM(d, q) (operation)

Returns: A matrix monoid.
These operations return the full matrix monoid of d by d matrices over the field with q elements.

The full matrix monoid, also known as the general linear monoid, with these parameters, is the monoid
consisting of all d by d matrices with entries from the field GF(q). This monoid has q ^ (d ^ 2)
elements.

Example
gap> S := FullMatrixMonoid(2, 4);
<general linear monoid 2x2 over GF(2^2)>
gap> Size(S);
256
gap> S = GeneralLinearMonoid(2, 4);
true
gap> GLM(2, 2);
<general linear monoid 2x2 over GF(2)>

7.5.2 SpecialLinearMonoid

▷ SpecialLinearMonoid(d, q) (operation)

▷ SLM(d, q) (operation)

Returns: A matrix monoid.
These operations return the special linear monoid of d by d matrices over the field with q elements.

The special linear monoid is the monoid consisting of all d by d matrices with entries from the field
GF(q) that have determinant 0 or 1. In other words, the special linear monoid is formed from the
general linear monoid of the same parameters by replacing its group of units (the general linear group)
by the special linear group.

Example
gap> S := SpecialLinearMonoid(2, 4);
<regular monoid of 2x2 matrices over GF(2^2) with 3 generators>
gap> S = SLM(2, 4);
true
gap> Size(S);
136

7.5.3 IsFullMatrixMonoid

▷ IsFullMatrixMonoid(S) (property)

▷ IsGeneralLinearMonoid(S) (property)

IsFullMatrixMonoid and IsGeneralLinearMonoid return true if the semigroup S was cre-
ated using either of the commands FullMatrixMonoid (7.5.1) or GeneralLinearMonoid (7.5.1)
and false otherwise.

Example
gap> S := RandomSemigroup(IsTransformationSemigroup, 4, 4);;
gap> IsFullMatrixMonoid(S);

Semigroups 108

false
gap> S := GeneralLinearMonoid(3, 3);
<general linear monoid 3x3 over GF(3)>
gap> IsFullMatrixMonoid(S);
true

7.6 Semigroups of boolean matrices

In this section, we describe the operations in Semigroups that can be used to create semigroups of
boolean matrices belonging to several standard classes of example. See the section ‘Boolean matrices’
for more information about boolean matrices.

7.6.1 FullBooleanMatMonoid

▷ FullBooleanMatMonoid(d) (operation)

Returns: The monoid of all boolean matrices of dimension d .
If d is a positive integer less than or equal to 5, then this operation returns the full boolean matrix

monoid of dimension d . The full boolean matrix monoid of dimension d is the monoid consisting of
all d by d boolean matrices, and has 2 ^ (n ^ 2) matrices.

FullBooleanMatMonoid returns a monoid with a generating set that is minimal in size. These
generating sets are pre-computed.

Example
gap> S := FullBooleanMatMonoid(3);
<monoid of 3x3 boolean matrices with 5 generators>
gap> Size(S);
512

7.6.2 RegularBooleanMatMonoid

▷ RegularBooleanMatMonoid(d) (operation)

Returns: A monoid of boolean matrices.
If d is a positive integer, then RegularBooleanMatMonoid returns the monoid generated

by the regular d by d boolean matrices. Note that this monoid is not regular in general.
RegularBooleanMatMonoid(d) is generated by the four boolean matrices A, B, C, D, whose true
entries are:

• A[i][i + 1] and A[n][1], for i ∈ {1, . . . ,n−1};

• B[1][2], B[2][1], and B[i][i] for i ∈ {3, . . . ,n};

• C[1][2] and C[i][i], for i ∈ {2, . . . ,n−1}; and

• D[1][2], D[i][i], for i ∈ {2, . . . ,n}, and D[n][1].

This monoid has nearly 2 ^ (n ^ 2) elements.
Example

gap> S := RegularBooleanMatMonoid(3);
<monoid of 3x3 boolean matrices with 4 generators>
gap> Size(S);
506

Semigroups 109

7.6.3 ReflexiveBooleanMatMonoid

▷ ReflexiveBooleanMatMonoid(d) (operation)

Returns: A monoid of boolean matrices.
If d is a positive integer less than or equal to 5, then this operation returns the monoid consisting

of all reflexive d by d boolean matrices. A boolean matrix mat is reflexive if each entry of its leading
diagonal is true, i.e. if mat[i][i] is true for all i ∈ {1, . . . ,d}.

The generating sets for the monoids returned by ReflexiveBooleanMatMonoid are
pre-computed, and read from a file. Small generating sets are not known for d ≥ 6.

Example
gap> S := ReflexiveBooleanMatMonoid(3);
<monoid of 3x3 boolean matrices with 8 generators>
gap> Size(S);
64

7.6.4 HallMonoid

▷ HallMonoid(d) (operation)

Returns: A monoid of boolean matrices.
If d is a positive integer less than or equal to 5, then this operation returns the monoid consisting

Hall matrices of degree d . A Hall matrix is a boolean matrix in which every column and every row
contains at least one true entry. Equivalently, a Hall matrix is a boolean matrix than contains a
permutation.

A Hall matrix of dimension d corresponds to a solution to Hall’s Marriage Problem, when there
are two collection of d people. Thus the number of solutions to Hall’s Marriage Problem in this
instance is the number of elements of HallMonoid(d).

The operation HallMonoid returns a monoid with a generating set that is minimal in size. These
generating sets are pre-computed, and a minimal generating set is not known for larger dimensions.

Example
gap> S := HallMonoid(3);
<monoid of 3x3 boolean matrices with 4 generators>
gap> Size(S);
247

7.6.5 GossipMonoid

▷ GossipMonoid(d) (operation)

Returns: A monoid of boolean matrices.
If d is a positive integer, then this operation returns the d by d gossip monoid. The gossip monoid

is defined to be the monoid generated by the collection of all d by d boolean matrices that define an
equivalence relation; see IsEquivalenceBooleanMat (5.3.16).

For d ≥ 2, GossipMonoid(d) returns a monoid with
(d

2

)
generators. The generating set is the

collection of boolean matrices that define an equivalence relation that has one equivalence class of
size 2, and no other non-trivial equivalence classes. Note that this generating set is strictly contained
within the collection of all equivalence relation boolean matrices.

The number of elements of GossipMonoid(d) is known for some small values of d — see
[BDF15] for more information about the gossip monoid, and its size for d ≤ 9.

Semigroups 110

Example
gap> S := GossipMonoid(3);
<monoid of 3x3 boolean matrices with 3 generators>
gap> Size(S);
11

7.6.6 TriangularBooleanMatMonoid

▷ TriangularBooleanMatMonoid(d) (operation)

▷ UnitriangularBooleanMatMonoid(d) (operation)

Returns: A monoid of boolean matrices.
If d is a positive integer, then TriangularBooleanMatMonoid returns the monoid consisting of

the upper-triangular d by d boolean matrices. A boolean matrix is upper-triangular if the entry in
row i, column j is false whenever i > j.

UnitriangularBooleanMatMonoid returns the subsemigroup of the
TriangularBooleanMatMonoid that consists of reflexive upper-triangular boolean matrices;
see ReflexiveBooleanMatMonoid (7.6.3).

Example
gap> S := TriangularBooleanMatMonoid(3);
<monoid of 3x3 boolean matrices with 6 generators>
gap> Size(S);
64
gap> T := UnitriangularBooleanMatMonoid(4);
<monoid of 4x4 boolean matrices with 6 generators>
gap> Size(T);
64

7.7 Semigroups of matrices over a semiring

In this section, we describe the operations in Semigroups that can be used to create semigroups of
matices over a semiring that belong to several standard classes of example. See Chapter 5 for more
information about matrices over a semiring.

7.7.1 FullTropicalMaxPlusMonoid

▷ FullTropicalMaxPlusMonoid(d, t) (operation)

Returns: A monoid of tropical max plus matrices.
If d = 2 and t is a positive integer, then FullTropicalMaxPlusMonoid returns the monoid

consisting of all d by d matrices with entries from the tropical max-plus semiring with threshold t .
A small generating set for larger values of d is not currently known.

This monoid contains (t + 2) ^ (d ^ 2) elements.
Example

gap> S := FullTropicalMaxPlusMonoid(2, 5);
<monoid of 2x2 tropical max-plus matrices with 24 generators>
gap> Size(S);
2401
gap> (5 + 2) ^ (2 ^ 2);
2401

Semigroups 111

7.7.2 FullTropicalMinPlusMonoid

▷ FullTropicalMinPlusMonoid(d, t) (operation)

Returns: A monoid of tropical min plus matrices.
If d is equal to 2 or 3, and t is a positive integer, then FullTropicalMinPlusMonoid returns

the monoid consisting of all d by d matrices with entries from the tropical min-plus semiring with
threshold t . A small generating set for larger values of d is not currently known.

This monoid contains (t + 2) ^ (d ^ 2) elements.
Example

gap> S := FullTropicalMinPlusMonoid(2, 3);
<monoid of 2x2 tropical min-plus matrices with 7 generators>
gap> Size(S);
625
gap> (3 + 2) ^ (2 ^ 2);
625

7.8 Examples in various representations

In this section, we describe the functions in Semigroups that can be used to create standard semi-
groups in various representations. For all of these examples, the default representation is as a semi-
group of transformations. In general, these functions do not return a representation of minimal degree.

7.8.1 TrivialSemigroup

▷ TrivialSemigroup([filt][,] [deg]) (function)

Returns: A trivial semigroup.
A TRIVIAL semigroup is a semigroup with precisely one element. This function returns a trivial

semigroup in the representation given by the filter filter , and (if possible) with the degree of the
representation given by the non-negative integer deg .

The optional argument filt may be one of the following:

• IsTransformationSemigroup (the default, if filt is not specified),

• IsPartialPermSemigroup,

• IsBipartitionSemigroup,

• IsBlockBijectionSemigroup,

• IsPBRSemigroup,

• IsBooleanMatSemigroup.

If the optional argument deg is not specified, then the smallest possible degree will be used.
Example

gap> S := TrivialSemigroup();
<trivial transformation group of degree 0 with 1 generator>
gap> Size(S);
1
gap> S := TrivialSemigroup(3);
<trivial transformation group of degree 3 with 1 generator>

Semigroups 112

gap> S := TrivialSemigroup(IsBipartitionSemigroup, 2);
<trivial block bijection group of degree 2 with 1 generator>
gap> Elements(S);
[<block bijection: [1, 2, -1, -2]>]

7.8.2 MonogenicSemigroup

▷ MonogenicSemigroup([filt,]m, r) (function)

Returns: A monogenic semigroup with index m and period r .
If m and r are positive integers, then this function returns a monogenic semigroup S with index m

and period r in the representation given by the filter filt .
The optional argument filt may be one of the following:

• IsTransformationSemigroup (the default, if filt is not specified),

• IsPartialPermSemigroup,

• IsBipartitionSemigroup,

• IsBlockBijectionSemigroup,

• IsPBRSemigroup,

• IsBooleanMatSemigroup.

The semigroup S is generated by a single element, f . S consists of the elements
f , f 2, . . . , f m, . . . , f m+r−1. The minimal ideal of S consists of the elements f m, . . . , f m+r−1 and is iso-
morphic to the cyclic group of order r.

See IsMonogenicSemigroup (12.1.11) for more information about monogenic semigroups.
Example

gap> S := MonogenicSemigroup(5, 3);
<commutative non-regular transformation semigroup of size 7, degree 8
with 1 generator>

gap> IsMonogenicSemigroup(S);
true
gap> I := MinimalIdeal(S);;
gap> IsGroupAsSemigroup(I);
true
gap> StructureDescription(I);
"C3"
gap> S := MonogenicSemigroup(IsBlockBijectionSemigroup, 9, 1);
<commutative non-regular block bijection semigroup of size 9,
degree 10 with 1 generator>

7.8.3 RectangularBand

▷ RectangularBand([filt,]m, n) (function)

Returns: An m by n rectangular band.
If m and n are positive integers, then this function returns a semigroup isomorphic to an m by n

rectangular band, in the representation given by the filter filt .
The optional argument filt may be one of the following:

Semigroups 113

• IsTransformationSemigroup (the default, if filt is not specified),

• IsBipartitionSemigroup,

• IsPBRSemigroup,

• IsBooleanMatSemigroup,

• IsReesMatrixSemigroup.

See IsRectangularBand (12.1.15) for more information about rectangular bands.
Example

gap> T := RectangularBand(5, 6);
<regular transformation semigroup of size 30, degree 10 with 6
generators>

gap> IsRectangularBand(T);
true
gap> S := RectangularBand(IsReesMatrixSemigroup, 4, 8);
<Rees matrix semigroup 4x8 over Group(())>
gap> IsRectangularBand(S);
true
gap> IsCompletelySimpleSemigroup(S) and IsHTrivial(S);
true

7.8.4 FreeSemilattice

▷ FreeSemilattice([filt,]n) (function)

Returns: A free semilattice with n generators.
If n is a positive integer, then this function returns a free semilattice with n generators in the

representation given by the filter filt . The optional argument filt may be one of the following:

• IsTransformationSemigroup (the default, if filt is not specified),

• IsTransformationMonoid,

• IsPartialPermSemigroup,

• IsPartialPermMonoid,

• IsFpSemigroup,

• IsFpMonoid,

• IsBipartitionSemigroup,

• IsBipartitionMonoid,

• IsPBRSemigroup,

• IsPBRMonoid,

• IsBooleanMatSemigroup,

• IsBooleanMatMonoid,

Semigroups 114

• IsNTPMatrixSemigroup,

• IsNTPMatrixMonoid,

• IsMaxPlusMatrixSemigroup,

• IsMaxPlusMatrixMonoid,

• IsMinPlusMatrixSemigroup,

• IsMinPlusMatrixMonoid,

• IsTropicalMaxPlusMatrixSemigroup,

• IsTropicalMaxPlusMatrixMonoid,

• IsTropicalMinPlusMatrixSemigroup,

• IsTropicalMinPlusMatrixMonoid,

• IsProjectiveMaxPlusMatrixSemigroup,

• IsProjectiveMaxPlusMatrixMonoid,

• IsIntegerMatrixSemigroup.

• IsIntegerMatrixMonoid.
Example

gap> S := FreeSemilattice(IsTransformationSemigroup, 5);
<inverse transformation semigroup of size 31, degree 6 with 5
generators>

gap> T := FreeSemilattice(IsPartialPermSemigroup, 3);
<inverse partial perm semigroup of size 7, rank 3 with 3 generators>
gap> U := FreeSemilattice(IsBooleanMatSemigroup, 4);
<inverse semigroup of size 15, 5x5 boolean matrices with 4 generators>

7.8.5 ZeroSemigroup

▷ ZeroSemigroup([filt,]n) (function)

Returns: A zero semigroup of order n .
If n is a positive integer, then this function returns a zero semigroup of order n in the representation

given by the filter filt .
The optional argument filt may be one of the following:

• IsTransformationSemigroup (the default, if filt is not specified),

• IsPartialPermSemigroup,

• IsBipartitionSemigroup,

• IsBlockBijectionSemigroup,

• IsPBRSemigroup,

Semigroups 115

• IsBooleanMatSemigroup,

• IsReesZeroMatrixSemigroup (provided that n > 1).

See IsZeroSemigroup (12.1.27) for more information about zero semigroups.
Example

gap> S := ZeroSemigroup(5);
<commutative non-regular transformation semigroup of size 5, degree 5
with 4 generators>

gap> IsZeroSemigroup(S);
true
gap> S := ZeroSemigroup(IsPartialPermSemigroup, 15);
<commutative non-regular partial perm semigroup of size 15, rank 14
with 14 generators>

gap> Size(S);
15
gap> z := MultiplicativeZero(S);
<empty partial perm>
gap> IsZeroSemigroup(S);
true
gap> ForAll(S, x -> ForAll(S, y -> x * y = z));
true

7.8.6 LeftZeroSemigroup

▷ LeftZeroSemigroup([filt,]n) (function)

▷ RightZeroSemigroup([filt,]n) (function)

Returns: A left zero (or right zero) semigroup of order n .
If n is a positive integer, then this function returns a left zero (or right zero, as appropriate) semi-

group of order n in the representation given by the filter filt . If filt is not specified then the default
representation is IsTransformationSemigroup.

The function LeftZeroSemigroup([filt,] n) simply calls RectangularBand([filt,] n,
1) and the function RightZeroSemigroup([filt,] n) simply calls RectangularBand([filt,]
1, n).

For more information about RectangularBand, including its permitted values of filt , see
RectangularBand (7.8.3). See IsLeftZeroSemigroup (12.1.10) and IsRightZeroSemigroup
(12.1.18) for more information about left zero and right zero semigroups.

Example
gap> S := LeftZeroSemigroup(20);
<transformation semigroup of degree 6 with 20 generators>
gap> IsLeftZeroSemigroup(S);
true
gap> ForAll(Tuples(S, 2), p -> p[1] * p[2] = p[1]);
true
gap> S := RightZeroSemigroup(IsBipartitionSemigroup, 5);
<regular bipartition semigroup of size 5, degree 3 with 5 generators>
gap> IsRightZeroSemigroup(S);
true

Semigroups 116

7.8.7 BrandtSemigroup

▷ BrandtSemigroup([[filt,]G,]n) (function)

Returns: An n by n Brandt semigroup over the group G .
If n is a positive integer, then this function returns an n by n Brandt semigroup over the group G

in the representation given by the filter filt .
The optional argument filt can be any of the following:

• IsPartialPermSemigroup (the default, if filt is not specified),

• IsReesZeroMatrixSemigroup,

• IsTransformationSemigroup,

• IsBipartitionSemigroup,

• IsPBRSemigroup,

• IsBooleanMatSemigroup,

• IsNTPMatrixSemigroup,

• IsMaxPlusMatrixSemigroup,

• IsMinPlusMatrixSemigroup,

• IsTropicalMaxPlusMatrixSemigroup,

• IsTropicalMinPlusMatrixSemigroup,

• IsProjectiveMaxPlusMatrixSemigroup,

• IsIntegerMatrixSemigroup.

The optional argument G defaults to a trivial permutation group. If present G must be a permutation
group, unless filt is IsReesZeroMatrixSemigroup when G may be any type of finite group.

See IsBrandtSemigroup (12.2.2) for more information about Brandt semigroups.
Example

gap> S := BrandtSemigroup(5);
<0-simple inverse partial perm semigroup of rank 5 with 4 generators>
gap> IsBrandtSemigroup(S);
true
gap> S := BrandtSemigroup(IsTransformationSemigroup, 15);
<0-simple transformation semigroup of degree 16 with 28 generators>
gap> Size(S);
226
gap> MultiplicativeZero(S);
Transformation([16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,

16, 16, 16])
gap> S := BrandtSemigroup(Group((1, 2)), 3);
<0-simple inverse partial perm semigroup of rank 6 with 3 generators>
gap> S := BrandtSemigroup(IsTransformationSemigroup, Group((1, 2)), 3);
<0-simple transformation semigroup of degree 7 with 5 generators>
gap> S := BrandtSemigroup(IsReesZeroMatrixSemigroup,

Semigroups 117

> DihedralGroup(4),
> 2);
<Rees 0-matrix semigroup 2x2 over <pc group of size 4 with
2 generators>>

7.9 Free bands

This chapter describes the functions in Semigroups for dealing with free bands. This part of the man-
ual and the functions described herein were originally written by Julius Jonušas, with later additions
by Reinis Cirpons, Tom Conti-Leslie, and Murray Whyte

A semigroup B is a free band on a non-empty set X if B is a band with a map f from B to X such
that for every band S and every map g from X to B there exists a unique homomorphism g′ from B to
S such that f g′ = g. The free band on a set X is unique up to isomorphism. Moreover, by the universal
property, every band can be expressed as a quotient of a free band.

For an alternative description of a free band. Suppose that X is a non-empty set and X+ a free
semigroup on X . Also suppose that b is the smallest congurance on X+ containing the set

{(w2,w) : w ∈ X+}.

Then the free band on X is isomorphic to the quotient of X+ by b. See Section 4.5 of [How95] for
more information on free bands.

7.9.1 FreeBand (for a given rank)

▷ FreeBand(rank[, name]) (function)

▷ FreeBand(name1, name2, .., .) (function)

▷ FreeBand(names) (function)

Returns: A free band.
Returns a free band on rank generators, for a positive integer rank . If rank is not specified, the

number of names is used. The resulting semigroup is always finite.
Example

gap> FreeBand(6);
<free band on the generators [x1, x2, x3, x4, x5, x6]>
gap> FreeBand(6, "b");
<free band on the generators [b1, b2, b3, b4, b5, b6]>
gap> FreeBand("a", "b", "c");
<free band on the generators [a, b, c]>
gap> FreeBand("a", "b", "c");
<free band on the generators [a, b, c]>
gap> S := FreeBand(["a", "b", "c"]);
<free band on the generators [a, b, c]>
gap> Size(S);
159
gap> gens := Generators(S);
[a, b, c]
gap> S.1 * S.2;
ab

Semigroups 118

7.9.2 IsFreeBandCategory

▷ IsFreeBandCategory (Category)

IsFreeBandCategory is the category of semigroups created using FreeBand (7.9.1).
Example

gap> IsFreeBandCategory(FreeBand(3));
true
gap> IsFreeBand(SymmetricGroup(6));
false

7.9.3 IsFreeBand (for a given semigroup)

▷ IsFreeBand(S) (property)

Returns: true or false.
IsFreeBand returns true if the given semigroup S is a free band.

Example
gap> IsFreeBand(FreeBand(3));
true
gap> IsFreeBand(SymmetricGroup(6));
false
gap> IsFreeBand(FullTransformationMonoid(7));
false

7.9.4 IsFreeBandElement

▷ IsFreeBandElement (Category)

IsFreeBandElement is a Category containing the elements of a free band.
Example

gap> IsFreeBandElement(Generators(FreeBand(4))[1]);
true
gap> IsFreeBandElement(Transformation([1, 3, 4, 1]));
false
gap> IsFreeBandElement((1, 2, 3, 4));
false

7.9.5 IsFreeBandElementCollection

▷ IsFreeBandElementCollection (Category)

Every collection of elements of a free band belongs to the category
IsFreeBandElementCollection. For example, every free band belongs to
IsFreeBandElementCollection.

7.9.6 IsFreeBandSubsemigroup

▷ IsFreeBandSubsemigroup (filter)

Semigroups 119

IsFreeBandSubsemigroup is a synonym for IsSemigroup and
IsFreeBandElementCollection.

Example
gap> S := FreeBand(2);
<free band on the generators [x1, x2]>
gap> x := S.1;
x1
gap> y := S.2;
x2
gap> new := Semigroup([x * y, x]);
<semigroup with 2 generators>
gap> IsFreeBand(new);
false
gap> IsFreeBandSubsemigroup(new);
true

7.9.7 ContentOfFreeBandElement

▷ ContentOfFreeBandElement(x) (attribute)

▷ ContentOfFreeBandElementCollection(coll) (attribute)

Returns: A list of integers
The content of a free band element x is the set of generators appearing in the word representing

the element x of the free band.
The function ContentOfFreeBandElement returns the content of free band element x repre-

sented as a list of integers, where 1 represents the first generator, 2 the second generator, and so on.
The function ContentOfFreeBandElementCollection returns the the least list C for the col-

lection of free band elements coll such that the content of every element in coll is contained in
C.

Example
gap> S := FreeBand(2);
<free band on the generators [x1, x2]>
gap> x := S.1;
x1
gap> y := S.2;
x2
gap> ContentOfFreeBandElement(x);
[1]
gap> ContentOfFreeBandElement(x * y);
[1, 2]
gap> ContentOfFreeBandElement(x * y * x);
[1, 2]
gap> ContentOfFreeBandElementCollection([x, y]);
[1, 2]

7.9.8 EqualInFreeBand

▷ EqualInFreeBand(u, v) (operation)

This operation takes a pair u and v of lists of positive integers or strings, representing words in a
free semigroup.

Semigroups 120

Where F is a free band over some alphabet containing the letters occurring in u and v , this opera-
tion returns true if u and v are equal in F, and false otherwise.

Note that this operation is for lists and strings, as opposed to FreeBandElement objects.
This is an implementation of an algorithm described by Jakub Radoszewski and Wojciech Rytter

in [RR10].
Example

gap> EqualInFreeBand("aa", "a");
true
gap> EqualInFreeBand("abcacba", "abcba");
true
gap> EqualInFreeBand("aab", "aac");
false
gap> EqualInFreeBand([1, 3, 3], [2]);
false

7.9.9 GreensDClassOfElement (for a free band and element)

▷ GreensDClassOfElement(S, x) (operation)

Returns: A Green’s D-class
Let S be a free band. Two elements of S are D-related if and only if they have the same content

i.e. the set of generators appearing in any factorization of the elements. Therefore, a D-class of a free
band element x is the set of elements of S which have the same content as x .

Example
gap> S := FreeBand(3, "b");
<free band on the generators [b1, b2, b3]>
gap> x := S.1 * S.2;
b1b2
gap> D := GreensDClassOfElement(S, x);
<Green’s D-class: b1b2>
gap> IsGreensDClass(D);
true

7.9.10 Operators

The following operators are also included for free band elements:

u * v
returns the product of two free band elements u and v .

u = v
checks if two free band elements are equal.

u < v
compares the sizes of the internal representations of two free band elements.

7.10 Graph inverse semigroups

In this chapter we describe a class of semigroups arising from directed graphs.

Semigroups 121

The functionality in Semigroups for graph inverse semigroups was written jointly by Zak Mesyan
(UCCS) and J. D. Mitchell (St Andrews). The functionality for graph inverse semigroup congruences
was written by Marina Anagnostopoulou-Merkouri (St Andrews).

7.10.1 GraphInverseSemigroup

▷ GraphInverseSemigroup(E) (operation)

Returns: A graph inverse semigroup.
If E is a digraph (i.e. it satisfies IsDigraph (Digraphs: IsDigraph)), then

GraphInverseSemigroup returns the graph inverse semigroup G(E) where, roughly speaking, el-
ements correspond to paths in the graph E .

Let us describe E as a digraph E = (E0,E1,r,s), where E0 is the set of vertices, E1 is the set
of edges, and r and s are functions E1 → E0 giving the range and source of an edge, respectively.
The graph inverse semigroup G(E) of E is the semigroup-with-zero generated by the sets E 0 and E 1,
together with a set of variables {e−1 | e ∈ E 1}, satisfying the following relations for all v,w ∈ E 0 and
e, f ∈ E 1:

(V) vw = δv,w · v,

(E1) s(e) · e = e · r(e) = e,

(E2) r(e) · e−1 = e−1 · s(e) = e−1,

(CK1)
e−1 · f = δe, f · r(e).

(Here δ is the Kronecker delta.) We define v−1 = v for each v ∈ E0, and for any path y = e1 . . .en

(e1 . . .en ∈ E1) we let y−1 = e−1
n . . .e−1

1 . With this notation, every nonzero element of G(E) can be
written uniquely as xy−1 for some paths x,y in E, by the CK1 relation.

For a more complete description, see [MM16].
Example

gap> gr := Digraph([[2, 5, 8, 10], [2, 3, 4, 5, 6, 8, 9, 10], [1],
> [3, 5, 7, 8, 10], [2, 5, 7], [3, 6, 7, 9, 10],
> [1, 4], [1, 5, 9], [1, 2, 7, 8], [3, 5]]);
<immutable digraph with 10 vertices, 37 edges>
gap> S := GraphInverseSemigroup(gr);
<infinite graph inverse semigroup with 10 vertices, 37 edges>
gap> GeneratorsOfInverseSemigroup(S);
[e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_10, e_11, e_12,

e_13, e_14, e_15, e_16, e_17, e_18, e_19, e_20, e_21, e_22, e_23,
e_24, e_25, e_26, e_27, e_28, e_29, e_30, e_31, e_32, e_33, e_34,
e_35, e_36, e_37, v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_10

]
gap> AssignGeneratorVariables(S);
gap> e_1 * e_1 ^ -1;
e_1e_1^-1
gap> e_1 ^ -1 * e_1 ^ -1;
0
gap> e_1 ^ -1 * e_1;
v_2

Semigroups 122

7.10.2 Range (for a graph inverse semigroup element)

▷ Range(x) (attribute)

▷ Source(x) (attribute)

Returns: A graph inverse semigroup element.
If x is an element of a graph inverse semigroup (i.e. it satisfies

IsGraphInverseSemigroupElement (7.10.4)), then Range and Source give, respectively, the
start and end vertices of x when viewed as a path in the digraph over which the semigroup is defined.

For a fuller description, see GraphInverseSemigroup (7.10.1).
Example

gap> gr := Digraph([[], [1], [3]]);;
gap> S := GraphInverseSemigroup(gr);;
gap> e := S.1;
e_1
gap> Source(e);
v_2
gap> Range(e);
v_1

7.10.3 IsVertex (for a graph inverse semigroup element)

▷ IsVertex(x) (operation)

Returns: true or false.
If x is an element of a graph inverse semigroup (i.e. it satisfies

IsGraphInverseSemigroupElement (7.10.4)), then this attribute returns true if x corresponds to a
vertex in the digraph over which the semigroup is defined, and false otherwise.

For a fuller description, see GraphInverseSemigroup (7.10.1).
Example

gap> gr := Digraph([[], [1], [3]]);;
gap> S := GraphInverseSemigroup(gr);;
gap> e := S.1;
e_1
gap> IsVertex(e);
false
gap> v := S.3;
v_1
gap> IsVertex(v);
true
gap> z := v * e;
0
gap> IsVertex(z);
false

7.10.4 IsGraphInverseSemigroup

▷ IsGraphInverseSemigroup(x) (filter)

▷ IsGraphInverseSemigroupElement(x) (filter)

Returns: true or false.

Semigroups 123

The category IsGraphInverseSemigroup contains any semigroup defined over
a digraph using the GraphInverseSemigroup (7.10.1) operation. The category
IsGraphInverseSemigroupElement contains any element contained in such a semigroup.

Example
gap> gr := Digraph([[], [1], [3]]);;
gap> S := GraphInverseSemigroup(gr);
<infinite graph inverse semigroup with 3 vertices, 2 edges>
gap> IsGraphInverseSemigroup(S);
true
gap> x := GeneratorsOfSemigroup(S)[1];
e_1
gap> IsGraphInverseSemigroupElement(x);
true

7.10.5 GraphOfGraphInverseSemigroup

▷ GraphOfGraphInverseSemigroup(S) (attribute)

Returns: A digraph.
If S is a graph inverse semigroup (i.e. it satisfies IsGraphInverseSemigroup (7.10.4)), then this

attribute returns the original digraph over which S was defined (most likely the argument given to
GraphInverseSemigroup (7.10.1) to create S).

Example
gap> gr := Digraph([[], [1], [3]]);
<immutable digraph with 3 vertices, 2 edges>
gap> S := GraphInverseSemigroup(gr);;
gap> GraphOfGraphInverseSemigroup(S);
<immutable digraph with 3 vertices, 2 edges>

7.10.6 IsGraphInverseSemigroupElementCollection

▷ IsGraphInverseSemigroupElementCollection (Category)

Every collection of elements of a graph inverse semigroup belongs to the category
IsGraphInverseSemigroupElementCollection. For example, every graph inverse semigroup be-
longs to IsGraphInverseSemigroupElementCollection.

7.10.7 IsGraphInverseSubsemigroup

▷ IsGraphInverseSubsemigroup (filter)

IsGraphInverseSubsemigroup is a synonym for IsSemigroup and IsInverseSemigroup and
IsGraphInverseSemigroupElementCollection.

See IsGraphInverseSemigroupElementCollection (7.10.6) and IsInverseSemigroup
(Reference: IsInverseSemigroup).

Example
gap> gr := Digraph([[], [1], [2]]);
<immutable digraph with 3 vertices, 2 edges>
gap> S := GraphInverseSemigroup(gr);
<finite graph inverse semigroup with 3 vertices, 2 edges>

Semigroups 124

gap> Elements(S);
[e_2^-1, e_1^-1, e_1^-1e_2^-1, 0, e_1, e_1e_1^-1, e_1e_1^-1e_2^-1,

e_2, e_2e_2^-1, e_2e_1, e_2e_1e_1^-1, e_2e_1e_1^-1e_2^-1, v_1, v_2,
v_3]

gap> T := InverseSemigroup(Elements(S){[3, 5]});;
gap> IsGraphInverseSubsemigroup(T);
true

7.10.8 VerticesOfGraphInverseSemigroup

▷ VerticesOfGraphInverseSemigroup(S) (attribute)

Returns: A list.
If S is a graph inverse semigroup (i.e. it satisfies IsGraphInverseSemigroup (7.10.4)), then this

attribute returns the list of vertices of S .
Example

gap> D := Digraph([[3, 4], [3, 4], [4], []]);
<immutable digraph with 4 vertices, 5 edges>
gap> S := GraphInverseSemigroup(D);
<finite graph inverse semigroup with 4 vertices, 5 edges>
gap> VerticesOfGraphInverseSemigroup(S);
[v_1, v_2, v_3, v_4]
gap> D := ChainDigraph(12);
<immutable chain digraph with 12 vertices>
gap> S := GraphInverseSemigroup(D);
<finite graph inverse semigroup with 12 vertices, 11 edges>
gap> VerticesOfGraphInverseSemigroup(S);
[v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_10, v_11, v_12]

7.10.9 IndexOfVertexOfGraphInverseSemigroup

▷ IndexOfVertexOfGraphInverseSemigroup(v) (attribute)

Returns: A positive integer.
If v is a vertex of a graph inverse semigroup (i.e. it satisfies IsGraphInverseSemigroup

(7.10.4)), then this attribute returns the index of this vertex in S .
Example

gap> D := Digraph([[3, 4], [3, 4], [4], []]);
<immutable digraph with 4 vertices, 5 edges>
gap> S := GraphInverseSemigroup(D);
<finite graph inverse semigroup with 4 vertices, 5 edges>
gap> IndexOfVertexOfGraphInverseSemigroup(v_1);
1
gap> IndexOfVertexOfGraphInverseSemigroup(v_3);
3

7.11 Free inverse semigroups

This chapter describes the functions in Semigroups for dealing with free inverse semigroups. This
part of the manual and the functions described herein were written by Julius Jonušas.

Semigroups 125

An inverse semigroup F is said to be free on a non-empty set X if there is a map f from F to X
such that for every inverse semigroup S and a map g from X to S there exists a unique homomorphism
g′ from F to S such that f g′ = g. Moreover, by this universal property, every inverse semigroup can
be expressed as a quotient of a free inverse semigroup.

The internal representation of an element of a free inverse semigroup uses a Munn tree. A Munn
tree is a directed tree with distinguished start and terminal vertices and where the edges are labeled
by generators so that two edges labeled by the same generator are only incident to the same vertex if
one of the edges is coming in and the other is leaving the vertex. For more information regarding free
inverse semigroups and the Munn representations see Section 5.10 of [How95].

See also (Reference: Inverse semigroups and monoids), (Reference: Partial permutations)
and (Reference: Free Groups, Monoids and Semigroups).

An element of a free inverse semigroup in Semigroups is displayed, by default, as a shortest word
corresponding to the element. However, there might be more than one word of the minimum length.
For example, if x and y are generators of a free inverse semigroups, then

xyy−1xx−1x−1 = xxx−1yy−1x−1.

See MinimalWord (7.11.7). Therefore we provide a another method for printing elements of a free
inverse semigroup: a unique canonical form. Suppose an element of a free inverse semigroup is given
as a Munn tree. Let L be the set of words corresponding to the shortest paths from the start vertex to
the leaves of the tree. Also let w be the word corresponding to the shortest path from the start vertex
to the terminal vertex. The word vv−1 is an idempotent for every v in L. The canonical form is given
by multiplying these idempotents, in shortlex order, and then postmultiplying by w. For example,
consider the word xyy−1xx−1x−1 again. The words corresponding to the paths to the leaves are in this
case xx and xy. And w is an empty word since start and terminal vertices are the same. Therefore, the
canonical form is

xxx−1x−1xyy−1x−1.

See CanonicalForm (7.11.6).

7.11.1 FreeInverseSemigroup (for a given rank)

▷ FreeInverseSemigroup(rank[, name]) (function)

▷ FreeInverseSemigroup(name1, name2, ...) (function)

▷ FreeInverseSemigroup(names) (function)

Returns: A free inverse semigroup.
Returns a free inverse semigroup on rank generators, where rank is a positive integer. If rank is

not specified, the number of names is used. If S is a free inverse semigroup, then the generators can
be accessed by S.1, S.2 and so on.

Example
gap> S := FreeInverseSemigroup(7);
<free inverse semigroup on the generators
[x1, x2, x3, x4, x5, x6, x7]>
gap> S := FreeInverseSemigroup(7, "s");
<free inverse semigroup on the generators
[s1, s2, s3, s4, s5, s6, s7]>
gap> S := FreeInverseSemigroup("a", "b", "c");
<free inverse semigroup on the generators [a, b, c]>
gap> S := FreeInverseSemigroup(["a", "b", "c"]);

Semigroups 126

<free inverse semigroup on the generators [a, b, c]>
gap> S.1;
a
gap> S.2;
b

7.11.2 IsFreeInverseSemigroupCategory

▷ IsFreeInverseSemigroupCategory(obj) (Category)

Every free inverse semigroup in GAP created by FreeInverseSemigroup (7.11.1) be-
longs to the category IsFreeInverseSemigroup. Basic operations for a free inverse semi-
group are: GeneratorsOfInverseSemigroup (Reference: GeneratorsOfInverseSemigroup) and
GeneratorsOfSemigroup (Reference: GeneratorsOfSemigroup). Elements of a free inverse semi-
group belong to the category IsFreeInverseSemigroupElement (7.11.4).

7.11.3 IsFreeInverseSemigroup

▷ IsFreeInverseSemigroup(S) (property)

Returns: true or false
Attempts to determine whether the given semigroup S is a free inverse semigroup.

7.11.4 IsFreeInverseSemigroupElement

▷ IsFreeInverseSemigroupElement (Category)

Every element of a free inverse semigroup belongs to the category
IsFreeInverseSemigroupElement.

7.11.5 IsFreeInverseSemigroupElementCollection

▷ IsFreeInverseSemigroupElementCollection (Category)

Every collection of elements of a free inverse semigroup belongs to the category
IsFreeInverseSemigroupElementCollection. For example, every free inverse semigroup be-
longs to IsFreeInverseSemigroupElementCollection.

7.11.6 CanonicalForm (for a free inverse semigroup element)

▷ CanonicalForm(w) (attribute)

Returns: A string.
Every element of a free inverse semigroup has a unique canonical form. If w is such an element,

then CanonicalForm returns the canonical form of w as a string.
Example

gap> S := FreeInverseSemigroup(3);
<free inverse semigroup on the generators [x1, x2, x3]>
gap> x := S.1; y := S.2;
x1

Semigroups 127

x2
gap> CanonicalForm(x ^ 3 * y ^ 3);
"x1x1x1x2x2x2x2^-1x2^-1x2^-1x1^-1x1^-1x1^-1x1x1x1x2x2x2"

7.11.7 MinimalWord (for free inverse semigroup element)

▷ MinimalWord(w) (attribute)

Returns: A string.
For an element w of a free inverse semigroup S, MinimalWord returns a word of minimal length

equal to w in S as a string.
Note that there maybe more than one word of minimal length which is equal to w in S.

Example
gap> S := FreeInverseSemigroup(3);
<free inverse semigroup on the generators [x1, x2, x3]>
gap> x := S.1;
x1
gap> y := S.2;
x2
gap> MinimalWord(x ^ 3 * y ^ 3);
"x1*x1*x1*x2*x2*x2"

7.11.8 Displaying free inverse semigroup elements

There is a way to change how GAP displays free inverse semigroup elements using the user pref-
erence FreeInverseSemigroupElementDisplay. See UserPreference (Reference: UserPrefer-
ence) for more information about user preferences.

There are two possible values for FreeInverseSemigroupElementDisplay:

minimal
With this option selected, GAP will display a shortest word corresponding to the free inverse
semigroup element. However, this shortest word is not unique. This is a default setting.

canonical
With this option selected, GAP will display a free inverse semigroup element in the canonical
form.

Example
gap> SetUserPreference("semigroups",
> "FreeInverseSemigroupElementDisplay",
> "minimal");
gap> S := FreeInverseSemigroup(2);
<free inverse semigroup on the generators [x1, x2]>
gap> S.1 * S.2;
x1*x2
gap> SetUserPreference("semigroups",
> "FreeInverseSemigroupElementDisplay",
> "canonical");
gap> S.1 * S.2;
x1x2x2^-1x1^-1x1x2

Semigroups 128

7.11.9 Operators for free inverse semigroup elements

w ^ -1
returns the semigroup inverse of the free inverse semigroup element w .

u * v
returns the product of two free inverse semigroup elements u and v .

u = v
checks if two free inverse semigroup elements are equal, by comparing their canonical forms.

Chapter 8

Standard constructions

In this chapter we describe some standard ways of constructing semigroups and monoids from other
semigroups that are available in the Semigroups package.

8.1 Products of semigroups

In this section, we describe the functions in Semigroups that can be used to create various products
of semigroups.

8.1.1 DirectProduct

▷ DirectProduct(S[, T, ...]) (function)

▷ DirectProductOp(list, S) (operation)

Returns: A transformation semigroup.
The function DirectProduct takes an arbitrary positive number of finite semigroups, and returns

a semigroup that is isomorphic to their direct product.
If these finite semigroups are all partial perm semigroups, all bipartition semigroups, or all PBR

semigroups, then DirectProduct returns a semigroup of the same type. Otherwise, DirectProduct
returns a transformation semigroup.

The operation DirectProductOp is included for consistency with the GAP library (see
DirectProductOp (Reference: DirectProductOp)). It takes exactly two arguments, namely a
non-empty list list of semigroups and one of these semigroups, S , and returns the same result
as CallFuncList(DirectProduct, list).

If D is the direct product of a collection of semigroups, then an embedding of the ith factor into D
can be accessed with the command Embedding(D, i), and a projection of D onto its ith factor can
be accessed with the command Projection(D, i); see Embedding (Reference: Embedding) and
Projection (Reference: Projection) for more information.

Example
gap> S := InverseMonoid([PartialPerm([2, 1])]);;
gap> T := InverseMonoid([PartialPerm([1, 2, 3])]);;
gap> D := DirectProduct(S, T);
<commutative inverse partial perm monoid of rank 5 with 1 generator>
gap> Elements(D);
[<identity partial perm on [1, 2, 3, 4, 5]>, (1,2)(3)(4)(5)]
gap> S := PartitionMonoid(2);;

129

Semigroups 130

gap> D := DirectProduct(S, S, S);; IsRegularSemigroup(D);; D;
<regular bipartition monoid of size 3375, degree 6 with 9 generators>
gap> S := Semigroup([PartialPerm([2, 5, 0, 1, 3]),
> PartialPerm([5, 2, 4, 3])]);;
gap> T := Semigroup([Bipartition([[1, -2], [2], [3, -1, -3]])]);;
gap> D := DirectProduct(S, T);
<transformation semigroup of size 122, degree 9 with 63 generators>
gap> Size(D) = Size(S) * Size(T);
true

8.1.2 WreathProduct

▷ WreathProduct(M, S) (operation)

Returns: A transformation semigroup.
If M is a transformation monoid (or a permutation group) of degree m, and S is a transformation

semigroup (or permutation group) of degree s, the operation WreathProduct(M, S) returns the
wreath product of M and S , in terms of an embedding in the full transformation monoid of degree m *
s.

Example
gap> T := FullTransformationMonoid(3);;
gap> C := Group((1, 3));;
gap> W := WreathProduct(T, C);;
gap> Size(W);
39366
gap> WW := WreathProduct(C, T);;
gap> Size(WW);
216

8.2 Dual semigroups

The dual semigroup of a semigroup S is the semigroup with the same underlying set of elements but
with reversed multiplication; this is anti-isomorphic to S. In Semigroups a semigroup and its dual
are represented with disjoint sets of elements.

8.2.1 DualSemigroup

▷ DualSemigroup(S) (attribute)

Returns: The dual semigroup of the given semigroup.
The dual semigroup of a semigroup S is the semigroup with the same underlying set as S , but with

multiplication reversed; this is anti-isomorphic to S . This attribute returns a semigroup isomorphic to
the dual semigroup of S .

Example

gap> S := Semigroup([Transformation([1, 4, 3, 2, 2]),
> Transformation([5, 4, 4, 1, 2])]);;
gap> D := DualSemigroup(S);
<dual semigroup of <transformation semigroup of degree 5 with 2
generators>>

gap> Size(S) = Size(D);

Semigroups 131

true
gap> NrDClasses(S) = NrDClasses(D);
true

8.2.2 IsDualSemigroupRep

▷ IsDualSemigroupRep(sgrp) (Category)

Returns: Returns true if sgrp lies in the category of dual semigroups.
Semigroups created using DualSemigroup (8.2.1) normally lie in this category. The exception is

semigroups which are the dual of semigroups already lying in this category. That is, a semigroup lies
in the category IsDualSemigroupRep if and only if the corresponding dual semigroup does not. Note
that this is not a Representation in the GAP sense, and will likely be renamed in a future major release
of the package.

Example

gap> S := Semigroup([Transformation([3, 5, 1, 1, 2]),
> Transformation([1, 2, 4, 4, 3])]);
<transformation semigroup of degree 5 with 2 generators>
gap> D := DualSemigroup(S);
<dual semigroup of <transformation semigroup of degree 5 with 2
generators>>

gap> IsDualSemigroupRep(D);
true
gap> R := DualSemigroup(D);
<transformation semigroup of degree 5 with 2 generators>
gap> IsDualSemigroupRep(R);
false
gap> R = S;
true
gap> T := Range(IsomorphismTransformationSemigroup(D));
<transformation semigroup of size 16, degree 17 with 2 generators>
gap> IsDualSemigroupRep(T);
false
gap> x := Representative(D);
<Transformation([3, 5, 1, 1, 2]) in the dual semigroup>
gap> V := Semigroup(x);
<dual semigroup of <commutative transformation semigroup of degree 5
with 1 generator>>

gap> IsDualSemigroupRep(V);
true

8.2.3 IsDualSemigroupElement

▷ IsDualSemigroupElement(elt) (Category)

Returns: Returns true if elt has the representation of a dual semigroup element.
Elements of a dual semigroup obtained using AntiIsomorphismDualSemigroup (8.2.4)

normally lie in this category. The exception is elements obtained by applying the map
AntiIsomorphismDualSemigroup (8.2.4) to elements already in this category. That is, the elements
of a semigroup lie in the category IsDualSemigroupElement if and only if the elements of the cor-
responding dual semigroup do not.

Semigroups 132

Example

gap> S := SingularPartitionMonoid(4);;
gap> D := DualSemigroup(S);;
gap> s := GeneratorsOfSemigroup(S)[1];;
gap> map := AntiIsomorphismDualSemigroup(S);;
gap> t := s ^ map;
<<block bijection: [1, 2, -1, -2], [3, -3], [4, -4]>

in the dual semigroup>
gap> IsDualSemigroupElement(t);
true
gap> inv := InverseGeneralMapping(map);;
gap> x := t ^ inv;
<block bijection: [1, 2, -1, -2], [3, -3], [4, -4]>
gap> IsDualSemigroupElement(x);
false

8.2.4 AntiIsomorphismDualSemigroup

▷ AntiIsomorphismDualSemigroup(S) (attribute)

Returns: An anti-isomorphism from S to the corresponding dual semigroup.
The dual semigroup of S mathematically has the same underlying set as S , but is represented

with a different set of elements in Semigroups. This function returns a mapping which is an
anti-isomorphism from S to its dual.

Example

gap> S := PartitionMonoid(3);
<regular bipartition *-monoid of size 203, degree 3 with 4 generators>
gap> map := AntiIsomorphismDualSemigroup(S);
MappingByFunction(<regular bipartition *-monoid of size 203,
degree 3 with 4 generators>, <dual semigroup of

<regular bipartition *-monoid of size 203, degree 3 with 4 generators>
>, function(x) ... end, function(x) ... end)

gap> inv := InverseGeneralMapping(map);;
gap> x := Bipartition([[1, -2], [2, -3], [3, -1]]);
<block bijection: [1, -2], [2, -3], [3, -1]>
gap> y := Bipartition([[1], [2, -2], [3, -3], [-1]]);
<bipartition: [1], [2, -2], [3, -3], [-1]>
gap> (x ^ map) * (y ^ map) = (y * x) ^ map;
true
gap> x ^ map;
<<block bijection: [1, -2], [2, -3], [3, -1]>

in the dual semigroup>

8.3 Strong semilattices of semigroups

In this section, we describe how Semigroups can be used to create and manipulate strong semilattices
of semigroups (SSSs). Strong semilattices of semigroups are described, for example, in Section 4.1 of
[How95]. They consist of a meet-semilattice Y along with a collection of semigroups Sa for each a in
Y , and a collection of homomorphisms fab : Sa → Sb for each a and b in Y such that a ≥ b.

Semigroups 133

The product of two elements x ∈ Sa,y ∈ Sb is defined to lie in the semigroup Sc, corresponding to
the meet c of a,b ∈ Y . The exact element of Sc equal to the product is obtained using the homomor-
phisms of the SSS: xy = (x fac)(y fbc).

8.3.1 StrongSemilatticeOfSemigroups

▷ StrongSemilatticeOfSemigroups(D, L, H) (operation)

Returns: A strong semilattice of semigroups.
If D is a digraph, L is a list of semigroups, and H is a list of lists of maps, then this function returns

a corresponding IsStrongSemilatticeOfSemigroups object. The format of the arguments is not
required to be exactly analogous to Howie’s description above, but consistency amongst the arguments
is required:

• D must be a digraph whose DigraphReflexiveTransitiveClosure (Digraphs: DigraphRe-
flexiveTransitiveClosure) is a meet-semilattice. For example, Digraph([2, 3], [4],
[4], []]) is valid and produces a semilattice where the meet of 2 and 3 is 1. See
IsMeetSemilatticeDigraph (Digraphs: IsMeetSemilatticeDigraph).

• L must contain as many semigroups as there are vertices in D .

• H must be a list with as many elements as there are vertices in D . Each element of H must itself be
a (possibly empty) list with as many entries as the corresponding vertex of D has out-edges. The
entries of each sublist must be the corresponding homomorphisms: for example, if D is entered
as above, then H[1][2] must be the homomorphism f31, i.e. H[1][2] is an IsMapping object
whose domain is a superset of L[3] and whose range is a subset of L[1].

Note that in the example above, the edge 1 → 4 is not entered as part of the argument D , but it
is still an edge in the reflexive transitive closure of D . When creating the object, GAP creates the
homomorphism f41 by composing the mappings along paths that lead from 4 to 1, and checks that
composing along all possible paths produces the same result.

8.3.2 SSSE

▷ SSSE(SSS, n, x) (operation)

Returns: An element of a strong semilattice of semigroups.
If n is a vertex of the underlying semilattice of the strong semilattice of semigroups SSS , and if x

is an element of the n th semigroup of SSS , then this function returns the element of SSS which lies in
semigroup number n and which corresponds to the element x in that semigroup.

This function returns an IsSSSE (8.3.3) object. SSSEs from the same strong semilattice of semi-
groups can be compared and multiplied.

Example
gap> D := Digraph([[2, 3], [4], [4], []]);;
gap> S4 := FullTransformationMonoid(2);;
gap> S3 := FullTransformationMonoid(3);;
gap> pairs := [[Transformation([1, 2]), Transformation([2, 1])]];;
gap> cong := SemigroupCongruence(S4, pairs);;
gap> S2 := S4 / cong;;
gap> S1 := TrivialSemigroup();;
gap> L := [S1, S2, S3, S4];;
gap> idfn := t -> IdentityTransformation;;

Semigroups 134

gap> f21 := SemigroupHomomorphismByFunction(S2, S1, idfn);;
gap> f31 := SemigroupHomomorphismByFunction(S3, S1, idfn);;
gap> f42 := HomomorphismQuotientSemigroup(cong);;
gap> f43 := SemigroupHomomorphismByFunction(S4, S3, IdFunc);;
gap> H := [[f21, f31], [f42], [f43], []];;
gap> SSS := StrongSemilatticeOfSemigroups(D, L, H);
<strong semilattice of 4 semigroups>
gap> Size(SSS);
34
gap> x := SSSE(SSS, 3, Elements(S3)[10]);
SSSE(3, Transformation([2, 1, 1]))
gap> y := SSSE(SSS, 4, Elements(S4)[1]);
SSSE(4, Transformation([1, 1]))
gap> x * y;
SSSE(3, Transformation([1, 1, 1]))

8.3.3 IsSSSE

▷ IsSSSE(obj) (filter)

Returns: true or false.
All elements of an SSS belong in the category IsSSSE (for "Strong Semilattice of Semigroups

Element").

8.3.4 IsStrongSemilatticeOfSemigroups

▷ IsStrongSemilatticeOfSemigroups(obj) (filter)

Returns: true or false.
Every Strong Semilattice of Semigroups in GAP belongs to the category

IsStrongSemilatticeOfSemigroups. Basic operations in this category allow the user to recover
the three essential elements of an SSS object: SemilatticeOfStrongSemilatticeOfSemigroups
(8.3.5), SemigroupsOfStrongSemilatticeOfSemigroups (8.3.6), and
HomomorphismsOfStrongSemilatticeOfSemigroups (8.3.7).

8.3.5 SemilatticeOfStrongSemilatticeOfSemigroups

▷ SemilatticeOfStrongSemilatticeOfSemigroups(SSS) (attribute)

Returns: A meet-semilattice digraph.
If SSS is a strong semilattice of semigroups, this function returns the underlying semilattice struc-

ture as a digraph. Note that this may not be equal to the digraph passed as input when SSS was created:
rather, it is the reflexive transitive closure of the input digraph.

8.3.6 SemigroupsOfStrongSemilatticeOfSemigroups

▷ SemigroupsOfStrongSemilatticeOfSemigroups(SSS) (attribute)

Returns: A list of semigroups.
If SSS is a strong semilattice of semigroups, this function returns the list of semigroups that make

up SSS . The position of a semigroup in the list corresponds to the node of the semilattice where that
semigroup lies.

Semigroups 135

8.3.7 HomomorphismsOfStrongSemilatticeOfSemigroups

▷ HomomorphismsOfStrongSemilatticeOfSemigroups(SSS) (attribute)

Returns: A list of lists of mappings.
If SSS is a strong semilattice of n semigroups, this function returns an n×n list where the (i, j)th

entry of the list is the homomorphism f ji, provided i ≤ j in the semilattice. If this last condition is not
true, then the entry is fail.

8.4 McAlister triple semigroups

In this section, we describe the functions in GAP for creating and computing with McAlister triple
semigroups and their subsemigroups. This implementation is based on the section in Chapter 5 of
[How95] but differs from the treatment in Howie by using right actions instead of left. Some defini-
tions found in the documentation are changed for this reason.

The importance of the McAlister triple semigroups lies in the fact that they are exactly the
E-unitary inverse semigroups, which are an important class in the study of inverse semigroups.

First we define E-unitary inverse semigroups. It is standard to denote the subsemigroup of a
semigroup consisting of its idempotents by E. A semigroup S is said to be E-unitary if for all e in E
and for all s in S:

• es ∈ E implies s ∈ E,

• se ∈ E implies s ∈ E.

For inverse semigroups these two conditions are equivalent. We are only interested in E-unitary
inverse semigroups. Before defining McAlister triple semigroups we define a McAlister triple. A
McAlister triple is a triple (G,X,Y) which consists of:

• a partial order X,

• a subset Y of X,

• a group G which acts on X, on the right, by order automorphisms. That means for all A,B ∈ X
and for all g ∈ G: A ≤ B if and only if Ag ≤ Bg.

Furthermore, (G,X,Y) must satisfy the following four properties to be a McAlister triple:

M1 Y is a subset of X which is a join-semilattice together with the restriction of the order relation of
X to Y.

M2 Y is an order ideal of X. That is to say, for all A ∈ X and for all B ∈ Y: if A ≤ B, then A ∈ Y.

M3 Every element of X is the image of some element in Y moved by an element of G. That is to say,
for every A ∈ X, there exists some B ∈ Y and there exists g ∈ G such that A = Bg.

M4 Finally, for all g ∈ G, the intersection {yg : y ∈ Y} ∩ Y is non-empty.

We may define an E-unitary inverse semigroup using a McAlister triple. Given (G,X,Y) let M(G,X,Y)
be the set of all pairs (A,g) in Y x G such that A acted on by the inverse of g is in Y together with
multiplication defined by

(A,g)*(B,h) = (Join(A,Bg^-1),hg)

Semigroups 136

where Join is the natural join operation of the semilattice and Bg^-1 is B acted on by the inverse
of g. With this operation, M(G,X,Y) is a semigroup which we call a McAlister triple semigroup
over (G,X,Y). In fact every McAlister triple semigroup is an E-unitary inverse semigroup and every
E-unitary inverse semigroup is isomorphic to some McAlister triple semigroup. Note that there need
not be a unique McAlister triple semigroup for a particular McAlister triple because in general there
is more than one way for a group to act on a partial order.

8.4.1 IsMcAlisterTripleSemigroup

▷ IsMcAlisterTripleSemigroup(S) (filter)

Returns: true or false.
This function returns true if S is a McAlister triple semigroup. A McAlister triple semigroup is

a special representation of an E-unitary inverse semigroup IsEUnitaryInverseSemigroup (12.2.3)
created by McAlisterTripleSemigroup (8.4.2).

8.4.2 McAlisterTripleSemigroup

▷ McAlisterTripleSemigroup(G, X, Y[, act]) (operation)

Returns: A McAlister triple semigroup.
The following documentation covers the technical information needed to create McAlister triple

semigroups in GAP, the underlying theory can be read in the introduction to Chapter 8.4.
In this implementation the partial order X of a McAlister triple is represented by a Digraph

(Digraphs: Digraph) object X . The digraph represents a partial order in the sense that vertices are the
elements of the partial order and the order relation is defined by A ≤ B if and only if there is an edge
from B to A. The semilattice Y of the McAlister triple should be an induced subdigraph Y of X and the
DigraphVertexLabels (Digraphs: DigraphVertexLabels) must correspond to the vertices of X on
which Y is induced. That means that the following:

Y = InducedSubdigraph(X, DigraphVertexLabels(Y))
must return true. Herein if we say that a vertex A of X is ’in’ Y then we mean there is a vertex of

Y whose label is A. Alternatively the user may choose to give the argument Y as the vertices of X on
which Y is the induced subdigraph.

A McAlister triple semigroup is created from a quadruple (G, X, Y, act) where:

• G is a finite group.

• X is a digraph satisfying IsPartialOrderDigraph (Digraphs: IsPartialOrderDigraph).

• Y is a digraph satisfying IsJoinSemilatticeDigraph (Digraphs: IsJoinSemilatticeDi-
graph) which is an induced subdigraph of X satisfying the aforementioned labeling criteria.
Furthermore the OutNeighbours (Digraphs: OutNeighbours) of each vertex of X which is in
Y must contain only vertices which are in Y .

• act is a function which takes as its first argument a vertex of the digraph X , its second argu-
ment should be an element of G , and it must return a vertex of X . act must be a right action,
meaning that act(A,gh)=act(act(A,g),h) holds for all A in X and g,h ∈ G . Furthermore
the permutation representation of this action must be a subgroup of the automorphism group of
X . That means we require the following to return true:

IsSubgroup(AutomorphismGroup(X), Image(ActionHomomorphism(G,
DigraphVertices(X), act));

Semigroups 137

Furthermore every vertex of X must be in the orbit of some vertex of X which is in Y . Finally,
act must fix the vertex of X which is the minimal vertex of Y , i.e. the unique vertex of Y whose
only out-neighbour is itself.

For user convenience, there are multiple versions of McAlisterTripleSemigroup. When the argu-
ment act is omitted it is assumed to be OnPoints (Reference: OnPoints). Additionally, the semi-
lattice argument Y may be replaced by a homogeneous list sub_ver of vertices of X . When sub_ver
is provided, McAlisterTripleSemigroup is called with Y equalling InducedSubdigraph(X,
sub_ver) with the appropriate labels.

Example
gap> x := Digraph([[1], [1, 2], [1, 2, 3], [1, 4], [1, 4, 5]]);
<immutable digraph with 5 vertices, 11 edges>
gap> y := InducedSubdigraph(x, [1, 4, 5]);
<immutable digraph with 3 vertices, 6 edges>
gap> DigraphVertexLabels(y);
[1, 4, 5]
gap> A := AutomorphismGroup(x);
Group([(2,4)(3,5)])
gap> S := McAlisterTripleSemigroup(A, x, y, OnPoints);
<McAlister triple semigroup over Group([(2,4)(3,5)])>
gap> T := McAlisterTripleSemigroup(A, x, y);
<McAlister triple semigroup over Group([(2,4)(3,5)])>
gap> S = T;
false
gap> IsIsomorphicSemigroup(S, T);
true

8.4.3 McAlisterTripleSemigroupGroup

▷ McAlisterTripleSemigroupGroup(S) (attribute)

Returns: A group.
Returns the group used to create the McAlister triple semigroup S via

McAlisterTripleSemigroup (8.4.2).

8.4.4 McAlisterTripleSemigroupPartialOrder

▷ McAlisterTripleSemigroupPartialOrder(S) (attribute)

Returns: A partial order digraph.
Returns the IsPartialOrderDigraph (Digraphs: IsPartialOrderDigraph) used to create the

McAlister triple semigroup S via McAlisterTripleSemigroup (8.4.2).

8.4.5 McAlisterTripleSemigroupSemilattice

▷ McAlisterTripleSemigroupSemilattice(S) (attribute)

Returns: A join-semilattice digraph.
Returns the IsJoinSemilatticeDigraph (Digraphs: IsJoinSemilatticeDigraph) used to create

the McAlister triple semigroup S via McAlisterTripleSemigroup (8.4.2).

Semigroups 138

8.4.6 McAlisterTripleSemigroupAction

▷ McAlisterTripleSemigroupAction(S) (attribute)

Returns: A function.
Returns the action used to create the McAlister triple semigroup S via

McAlisterTripleSemigroup (8.4.2).

8.4.7 IsMcAlisterTripleSemigroupElement

▷ IsMcAlisterTripleSemigroupElement(x) (filter)

▷ IsMTSE(x) (filter)

Returns: true or false.
Returns true if x is an element of a McAlister triple semigroup; in particular, this returns true

if x has been created by McAlisterTripleSemigroupElement (8.4.8). The functions IsMTSE and
IsMcAlisterTripleSemigroupElement are synonyms. The mathematical description of these ob-
jects can be found in the introduction to Chapter 8.4.

8.4.8 McAlisterTripleSemigroupElement

▷ McAlisterTripleSemigroupElement(S, A, g) (operation)

▷ MTSE(S, A, g) (operation)

Returns: A McAlister triple semigroup element.
Returns the McAlister triple semigroup element of the McAlister triple semigroup S which

corresponds to a label A of a vertex from the McAlisterTripleSemigroupSemilattice (8.4.5)
of S and a group element g of the McAlisterTripleSemigroupGroup (8.4.3) of S . The pair
(A,g) only represents an element of S if the following holds: A acted on by the inverse of g (via
McAlisterTripleSemigroupAction (8.4.6)) is a vertex of the join-semilattice of S .

The functions MTSE and McAlisterTripleSemigroupElement are synonyms.
Example

gap> x := Digraph([[1], [1, 2], [1, 2, 3], [1, 4], [1, 4, 5]]);
<immutable digraph with 5 vertices, 11 edges>
gap> y := InducedSubdigraph(x, [1, 2, 3]);
<immutable digraph with 3 vertices, 6 edges>
gap> A := AutomorphismGroup(x);
Group([(2,4)(3,5)])
gap> S := McAlisterTripleSemigroup(A, x, y, OnPoints);
<McAlister triple semigroup over Group([(2,4)(3,5)])>
gap> T := McAlisterTripleSemigroup(A, x, y);
<McAlister triple semigroup over Group([(2,4)(3,5)])>
gap> S = T;
false
gap> IsIsomorphicSemigroup(S, T);
true
gap> a := MTSE(S, 1, (2, 4)(3, 5));
(1, (2,4)(3,5))
gap> b := MTSE(S, 2, ());
(2, ())
gap> a * a;
(1, ())
gap> IsMTSE(a * a);

Semigroups 139

true
gap> a = MTSE(T, 1, (2, 4)(3, 5));
false
gap> a * b;
(1, (2,4)(3,5))

Chapter 9

Ideals

In this chapter we describe the various ways that an ideal of a semigroup can be created and manipu-
lated in Semigroups.

We write ideal to mean two-sided ideal everywhere in this chapter.
The methods in the Semigroups package apply to any ideal of a semigroup that is created us-

ing the function SemigroupIdeal (9.1.1) or SemigroupIdealByGenerators. Anything that can be
calculated for a semigroup defined by a generating set can also be found for an ideal. This works par-
ticularly well for regular ideals, since such an ideal can be represented using a similar data structure
to that used to represent a semigroup defined by a generating set but without the necessity to find a
generating set for the ideal. Many methods for non-regular ideals rely on first finding a generating
set for the ideal, which can be costly (but not nearly as costly as an exhaustive enumeration of the
elements of the ideal). We plan to improve the functionality of Semigroups for non-regular ideals in
the future.

9.1 Creating ideals

9.1.1 SemigroupIdeal

▷ SemigroupIdeal(S, obj1, obj2, .., .) (function)

Returns: An ideal of a semigroup.
If obj1 , obj2 , .. . are (any combination) of elements of the semigroup S or collections of elements

of S (including subsemigroups and ideals of S), then SemigroupIdeal returns the 2-sided ideal of
the semigroup S generated by the union of obj1 , obj2 ,

The Parent (Reference: Parent) of the ideal returned by this function is S .
Example

gap> S := SymmetricInverseMonoid(10);
<symmetric inverse monoid of degree 10>
gap> I := SemigroupIdeal(S, PartialPerm([1, 2]));
<inverse partial perm semigroup ideal of rank 10 with 1 generator>
gap> Size(I);
4151
gap> I := SemigroupIdeal(S, I, Idempotents(S));
<inverse partial perm semigroup ideal of rank 10 with 1025 generators>

140

Semigroups 141

9.1.2 Ideals (for a semigroup)

▷ Ideals(S) (attribute)

Returns: An list of ideals.
If S is a finite non-empty semigroup, then this attribute returns a list of the non-empty two-sided

ideals of S .
The ideals are returned in no particular order, and each ideal uses the minimum possible number

of generators (see GeneratorsOfSemigroupIdeal (9.2.1)).
Example

gap> S := Semigroup([Transformation([4, 3, 4, 1]),
> Transformation([4, 3, 2, 2])]);
<transformation semigroup of degree 4 with 2 generators>
gap> Ideals(S);
[<non-regular transformation semigroup ideal of degree 4 with

1 generator>,
<non-regular transformation semigroup ideal of degree 4 with

1 generator>,
<non-regular transformation semigroup ideal of degree 4 with

2 generators>,
<regular transformation semigroup ideal of degree 4 with 1 generator>,
<non-regular transformation semigroup ideal of degree 4 with

1 generator>,
<regular transformation semigroup ideal of degree 4 with 1 generator>
]

9.2 Attributes of ideals

9.2.1 GeneratorsOfSemigroupIdeal

▷ GeneratorsOfSemigroupIdeal(I) (attribute)

Returns: The generators of an ideal of a semigroup.
This function returns the generators of the two-sided ideal I , which were used to defined I when

it was created.
If I is an ideal of a semigroup, then I is defined to be the least 2-sided ideal of a semigroup S

containing a set J of elements of S. The set J is said to generate I .
The notion of the generators of an ideal is distinct from the notion of the generators of a semigroup

or monoid. In particular, the semigroup generated by the generators of an ideal is not, in general,
equal to that ideal. Use GeneratorsOfSemigroup (Reference: GeneratorsOfSemigroup) to obtain
a semigroup generating set for an ideal, but beware that this can be very costly.

Example
gap> S := Semigroup(
> Bipartition([[1, 2, 3, 4, -1], [-2, -4], [-3]]),
> Bipartition([[1, 2, 3, -3], [4], [-1], [-2, -4]]),
> Bipartition([[1, 3, -2], [2, 4], [-1, -3, -4]]),
> Bipartition([[1], [2, 3, 4], [-1, -3, -4], [-2]]),
> Bipartition([[1], [2, 4, -2], [3, -4], [-1], [-3]]));;
gap> I := SemigroupIdeal(S, S.1 * S.2 * S.5);;
gap> GeneratorsOfSemigroupIdeal(I);
[<bipartition: [1, 2, 3, 4, -4], [-1], [-2], [-3]>]

Semigroups 142

gap> I = Semigroup(GeneratorsOfSemigroupIdeal(I));
false

9.2.2 MinimalIdealGeneratingSet

▷ MinimalIdealGeneratingSet(I) (attribute)

Returns: A minimal set ideal generators of an ideal.
This function returns a minimal set of elements of the parent of the semigroup ideal I required to

generate I as an ideal.
The notion of the generators of an ideal is distinct from the notion of the generators of a semigroup

or monoid. In particular, the semigroup generated by the generators of an ideal is not, in general,
equal to that ideal. Use GeneratorsOfSemigroup (Reference: GeneratorsOfSemigroup) to obtain
a semigroup generating set for an ideal, but beware that this can be very costly.

Example
gap> S := Monoid([
> Bipartition([[1, 2, 3, -2], [4], [-1, -4], [-3]]),
> Bipartition([[1, 4, -2, -4], [2, -1, -3], [3]])]);;
gap> I := SemigroupIdeal(S, S);;
gap> MinimalIdealGeneratingSet(I);
[<block bijection: [1, -1], [2, -2], [3, -3], [4, -4]>]

9.2.3 SupersemigroupOfIdeal

▷ SupersemigroupOfIdeal(I) (attribute)

Returns: An ideal of a semigroup.
The Parent (Reference: Parent) of an ideal is the semigroup in which the ideal was created,

i.e. the first argument of SemigroupIdeal (9.1.1) or SemigroupIdealByGenerators. This function
returns the semigroup containing the generators of the semigroup (i.e. GeneratorsOfSemigroup
(Reference: GeneratorsOfSemigroup)) which are used to compute the ideal.

For a regular semigroup ideal, SupersemigroupOfIdeal will always be the top most semigroup
used to create any of the predecessors of the current ideal. For example, if S is a semigroup, I is a
regular ideal of S, and J is an ideal of I, then Parent(J) is I and SupersemigroupOfIdeal(J) is S.
This is to avoid computing a generating set for I, in this example, which is expensive and unnecessary
since I is regular (in which case the Green’s relations of I are just restrictions of the Green’s relations
on S).

If S is a semigroup, I is a non-regular ideal of S, J is an ideal of I, then
SupersemigroupOfIdeal(J) is I, since we currently have to use GeneratorsOfSemigroup(I)
to compute anything about I other than its size and membership.

Example
gap> S := FullTransformationSemigroup(8);
<full transformation monoid of degree 8>
gap> x := Transformation([2, 6, 7, 2, 6, 1, 1, 5]);;
gap> D := DClass(S, x);
<Green’s D-class: Transformation([2, 6, 7, 2, 6, 1, 1, 5])>
gap> R := PrincipalFactor(D);
<Rees 0-matrix semigroup 1050x56 over Group([(2,8,7,4,3), (3,4)])>
gap> S := Semigroup(List([1 .. 10], x -> Random(R)));
<subsemigroup of 1050x56 Rees 0-matrix semigroup with 10 generators>

Semigroups 143

gap> I := SemigroupIdeal(S, MultiplicativeZero(S));
<regular Rees 0-matrix semigroup ideal with 1 generator>
gap> SupersemigroupOfIdeal(I);
<subsemigroup of 1050x56 Rees 0-matrix semigroup with 10 generators>
gap> J := SemigroupIdeal(I, Representative(MinimalDClass(S)));
<regular Rees 0-matrix semigroup ideal with 1 generator>
gap> Parent(J) = I;
true
gap> SupersemigroupOfIdeal(J) = I;
false

Chapter 10

Green’s relations

In this chapter we describe the functions in Semigroups for computing Green’s classes and related
properties of semigroups.

10.1 Creating Green’s classes and representatives

In this section, we describe the methods in the Semigroups package for creating Green’s classes.

10.1.1 XClassOfYClass

▷ DClassOfHClass(class) (method)

▷ DClassOfLClass(class) (method)

▷ DClassOfRClass(class) (method)

▷ LClassOfHClass(class) (method)

▷ RClassOfHClass(class) (method)

Returns: A Green’s class.
XClassOfYClass returns the X-class containing the Y-class class where X and Y should be

replaced by an appropriate choice of D, H, L, and R.
Note that if it is not known to GAP whether or not the representative of class is an element of

the semigroup containing class , then no attempt is made to check this.
The same result can be produced using:

Example
First(GreensXClasses(S), x -> Representative(x) in class);

but this might be substantially slower. Note that XClassOfYClass is also likely to be faster than
Example

GreensXClassOfElement(S, Representative(class));

DClass can also be used as a synonym for DClassOfHClass, DClassOfLClass, and
DClassOfRClass; LClass as a synonym for LClassOfHClass; and RClass as a synonym for
RClassOfHClass. See also GreensDClassOfElement (Reference: GreensDClassOfElement) and
GreensDClassOfElementNC (10.1.3).

Example
gap> S := Semigroup(Transformation([1, 3, 2]),
> Transformation([2, 1, 3]),

144

Semigroups 145

> Transformation([3, 2, 1]),
> Transformation([1, 3, 1]));;
gap> R := GreensRClassOfElement(S, Transformation([3, 2, 1]));
<Green’s R-class: Transformation([3, 2, 1])>
gap> DClassOfRClass(R);
<Green’s D-class: Transformation([3, 2, 1])>
gap> IsGreensDClass(DClassOfRClass(R));
true
gap> S := InverseSemigroup(
> PartialPerm([2, 6, 7, 0, 0, 9, 0, 1, 0, 5]),
> PartialPerm([3, 8, 1, 9, 0, 4, 10, 5, 0, 6]));
<inverse partial perm semigroup of rank 10 with 2 generators>
gap> x := S.1;
[3,7][8,1,2,6,9][10,5]
gap> H := HClass(S, x);
<Green’s H-class: [3,7][8,1,2,6,9][10,5]>
gap> R := RClassOfHClass(H);
<Green’s R-class: [3,7][8,1,2,6,9][10,5]>
gap> L := LClass(H);;
gap> L = LClass(S, PartialPerm([1, 2, 0, 0, 5, 6, 7, 0, 9]));
true
gap> DClass(R) = DClass(L);
true
gap> DClass(H) = DClass(L);
true

10.1.2 GreensXClassOfElement

▷ GreensDClassOfElement(X, f) (operation)

▷ DClass(X, f) (operation)

▷ GreensHClassOfElement(X, f) (operation)

▷ GreensHClassOfElement(R, i, j) (operation)

▷ HClass(X, f) (operation)

▷ HClass(R, i, j) (operation)

▷ GreensLClassOfElement(X, f) (operation)

▷ LClass(X, f) (operation)

▷ GreensRClassOfElement(X, f) (operation)

▷ RClass(X, f) (operation)

Returns: A Green’s class.
These functions produce essentially the same output as the GAP library functions with the same

names; see GreensDClassOfElement (Reference: GreensDClassOfElement). The main difference
is that these functions can be applied to a wider class of objects:

GreensDClassOfElement and DClass
X must be a semigroup.

GreensHClassOfElement and HClass
X can be a semigroup, R-class, L -class, or D-class. If R is a IxJ Rees matrix semigroup
or a Rees 0-matrix semigroup, and i and j are integers of the corresponding index sets, then
GreensHClassOfElement returns the H -class in row i and column j .

Semigroups 146

GreensLClassOfElement and LClass
X can be a semigroup or D-class.

GreensRClassOfElement and RClass
X can be a semigroup or D-class.

Note that GreensXClassOfElement and XClass are synonyms and have identical output. The shorter
command is provided for the sake of convenience.

10.1.3 GreensXClassOfElementNC

▷ GreensDClassOfElementNC(X, f) (operation)

▷ DClassNC(X, f) (operation)

▷ GreensHClassOfElementNC(X, f) (operation)

▷ HClassNC(X, f) (operation)

▷ GreensLClassOfElementNC(X, f) (operation)

▷ LClassNC(X, f) (operation)

▷ GreensRClassOfElementNC(X, f) (operation)

▷ RClassNC(X, f) (operation)

Returns: A Green’s class.
These functions are essentially the same as GreensDClassOfElement (10.1.2) except that no

effort is made to verify if f is an element of X . More precisely, GreensXClassOfElementNC and
XClassNC first check if f has already been shown to be an element of X . If it is not known to GAP if
f is an element of X , then no further attempt to verify this is made.

Note that GreensXClassOfElementNC and XClassNC are synonyms and have identical output.
The shorter command is provided for the sake of convenience.

It can be quicker to compute the class of an element using GreensRClassOfElementNC, say, than
using GreensRClassOfElement if it is known a priori that f is an element of X . On the other hand,
if f is not an element of X , then the results of this computation are unpredictable.

For example, if
Example

x := Transformation([15, 18, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20]);

in the semigroup X of order-preserving mappings on 20 points, then
Example

GreensRClassOfElementNC(X, x);

returns an answer relatively quickly, whereas
Example

GreensRClassOfElement(X, x)

can take a significant amount of time to return a value.
See also GreensRClassOfElement (Reference: GreensRClassOfElement) and

RClassOfHClass (10.1.1).
Example

gap> S := RandomSemigroup(IsTransformationSemigroup, 2, 1000);;
gap> x := [1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1];;
gap> x := EvaluateWord(Generators(S), x);;
gap> R := GreensRClassOfElementNC(S, x);;

Semigroups 147

gap> Size(R);
1
gap> L := GreensLClassOfElementNC(S, x);;
gap> Size(L);
1
gap> x := PartialPerm([2, 3, 4, 5, 0, 0, 6, 8, 10, 11]);;
gap> L := LClass(POI(11), x);
<Green’s L-class: [1,2,3,4,5][7,6][9,10,11](8)>
gap> Size(L);
165

10.1.4 GreensXClasses

▷ GreensDClasses(obj) (method)

▷ DClasses(obj) (method)

▷ GreensHClasses(obj) (method)

▷ HClasses(obj) (method)

▷ GreensJClasses(obj) (method)

▷ JClasses(obj) (method)

▷ GreensLClasses(obj) (method)

▷ LClasses(obj) (method)

▷ GreensRClasses(obj) (method)

▷ RClasses(obj) (method)

Returns: A list of Green’s classes.
These functions produce essentially the same output as the GAP library functions with the same

names; see GreensDClasses (Reference: GreensDClasses). The main difference is that these func-
tions can be applied to a wider class of objects:

GreensDClasses and DClasses
X should be a semigroup.

GreensHClasses and HClasses
X can be a semigroup, R-class, L -class, or D-class.

GreensLClasses and LClasses
X can be a semigroup or D-class.

GreensRClasses and RClasses
X can be a semigroup or D-class.

Note that GreensXClasses and XClasses are synonyms and have identical output. The shorter
command is provided for the sake of convenience.

See also DClassReps (10.1.5), IteratorOfDClassReps (10.2.1), IteratorOfDClasses
(10.2.2), and NrDClasses (10.1.9).

Example
gap> S := Semigroup(Transformation([3, 4, 4, 4]),
> Transformation([4, 3, 1, 2]));;
gap> GreensDClasses(S);
[<Green’s D-class: Transformation([3, 4, 4, 4])>,

<Green’s D-class: Transformation([4, 3, 1, 2])>,

Semigroups 148

<Green’s D-class: Transformation([4, 4, 4, 4])>]
gap> GreensRClasses(S);
[<Green’s R-class: Transformation([3, 4, 4, 4])>,

<Green’s R-class: Transformation([4, 3, 1, 2])>,
<Green’s R-class: Transformation([4, 4, 4, 4])>,
<Green’s R-class: Transformation([4, 4, 3, 4])>,
<Green’s R-class: Transformation([4, 3, 4, 4])>,
<Green’s R-class: Transformation([4, 4, 4, 3])>]

gap> D := GreensDClasses(S)[1];
<Green’s D-class: Transformation([3, 4, 4, 4])>
gap> GreensLClasses(D);
[<Green’s L-class: Transformation([3, 4, 4, 4])>,

<Green’s L-class: Transformation([1, 2, 2, 2])>]
gap> GreensRClasses(D);
[<Green’s R-class: Transformation([3, 4, 4, 4])>,

<Green’s R-class: Transformation([4, 4, 3, 4])>,
<Green’s R-class: Transformation([4, 3, 4, 4])>,
<Green’s R-class: Transformation([4, 4, 4, 3])>]

gap> R := GreensRClasses(D)[1];
<Green’s R-class: Transformation([3, 4, 4, 4])>
gap> GreensHClasses(R);
[<Green’s H-class: Transformation([3, 4, 4, 4])>,

<Green’s H-class: Transformation([1, 2, 2, 2])>]
gap> S := InverseSemigroup([
> PartialPerm([2, 4, 1]), PartialPerm([3, 0, 4, 1])]);;
gap> GreensDClasses(S);
[<Green’s D-class: <identity partial perm on [1, 2, 4]>>,

<Green’s D-class: <identity partial perm on [1, 3, 4]>>,
<Green’s D-class: <identity partial perm on [1, 3]>>,
<Green’s D-class: <identity partial perm on [4]>>,
<Green’s D-class: <empty partial perm>>]

gap> GreensLClasses(S);
[<Green’s L-class: <identity partial perm on [1, 2, 4]>>,

<Green’s L-class: [4,2,1,3]>,
<Green’s L-class: <identity partial perm on [1, 3, 4]>>,
<Green’s L-class: <identity partial perm on [1, 3]>>,
<Green’s L-class: [3,1,2]>, <Green’s L-class: [1,4][3,2]>,
<Green’s L-class: [1,3,4]>, <Green’s L-class: [3,1,4]>,
<Green’s L-class: [1,2](3)>,
<Green’s L-class: <identity partial perm on [4]>>,
<Green’s L-class: [4,1]>, <Green’s L-class: [4,3]>,
<Green’s L-class: [4,2]>, <Green’s L-class: <empty partial perm>>]

gap> D := GreensDClasses(S)[3];
<Green’s D-class: <identity partial perm on [1, 3]>>
gap> GreensLClasses(D);
[<Green’s L-class: <identity partial perm on [1, 3]>>,

<Green’s L-class: [3,1,2]>, <Green’s L-class: [1,4][3,2]>,
<Green’s L-class: [1,3,4]>, <Green’s L-class: [3,1,4]>,
<Green’s L-class: [1,2](3)>]

gap> GreensRClasses(D);
[<Green’s R-class: <identity partial perm on [1, 3]>>,

<Green’s R-class: [2,1,3]>, <Green’s R-class: [2,3][4,1]>,

Semigroups 149

<Green’s R-class: [4,3,1]>, <Green’s R-class: [4,1,3]>,
<Green’s R-class: [2,1](3)>]

10.1.5 XClassReps

▷ DClassReps(obj) (attribute)

▷ HClassReps(obj) (attribute)

▷ LClassReps(obj) (attribute)

▷ RClassReps(obj) (attribute)

Returns: A list of representatives.
XClassReps returns a list of the representatives of the Green’s classes of obj , which can be a

semigroup, D-, L -, or R-class where appropriate.
The same output can be obtained by calling, for example:

Example
List(GreensXClasses(obj), Representative);

Note that if the Green’s classes themselves are not required, then XClassReps will return an answer
more quickly than the above, since the Green’s class objects are not created.

See also GreensDClasses (10.1.4), IteratorOfDClassReps (10.2.1), IteratorOfDClasses
(10.2.2), and NrDClasses (10.1.9).

Example
gap> S := Semigroup(Transformation([3, 4, 4, 4]),
> Transformation([4, 3, 1, 2]));;
gap> DClassReps(S);
[Transformation([3, 4, 4, 4]), Transformation([4, 3, 1, 2]),

Transformation([4, 4, 4, 4])]
gap> LClassReps(S);
[Transformation([3, 4, 4, 4]), Transformation([1, 2, 2, 2]),

Transformation([4, 3, 1, 2]), Transformation([4, 4, 4, 4]),
Transformation([2, 2, 2, 2]), Transformation([3, 3, 3, 3]),
Transformation([1, 1, 1, 1])]

gap> D := GreensDClasses(S)[1];
<Green’s D-class: Transformation([3, 4, 4, 4])>
gap> LClassReps(D);
[Transformation([3, 4, 4, 4]), Transformation([1, 2, 2, 2])]
gap> RClassReps(D);
[Transformation([3, 4, 4, 4]), Transformation([4, 4, 3, 4]),

Transformation([4, 3, 4, 4]), Transformation([4, 4, 4, 3])]
gap> R := GreensRClasses(D)[1];;
gap> HClassReps(R);
[Transformation([3, 4, 4, 4]), Transformation([1, 2, 2, 2])]
gap> S := SymmetricInverseSemigroup(6);;
gap> e := InverseSemigroup(Idempotents(S));;
gap> M := MunnSemigroup(e);;
gap> L := LClassNC(M, PartialPerm([51, 63], [51, 47]));;
gap> HClassReps(L);
[<identity partial perm on [47, 51]>, [27,47](51), [50,47](51),

[64,47](51), [63,47](51), [59,47](51)]

Semigroups 150

10.1.6 MinimalDClass

▷ MinimalDClass(S) (attribute)

Returns: The minimal D-class of a semigroup.
The minimal ideal of a semigroup is the least ideal with respect to containment. MinimalDClass

returns the D-class corresponding to the minimal ideal of the semigroup S . Equivalently,
MinimalDClass returns the minimal D-class with respect to the partial order of D-classes.

It is significantly easier to find the minimal D-class of a semigroup, than to find its D-classes.
See also PartialOrderOfDClasses (10.1.10), IsGreensLessThanOrEqual (Reference:

IsGreensLessThanOrEqual), MinimalIdeal (11.8.1) and RepresentativeOfMinimalIdeal
(11.8.2).

Example
gap> D := MinimalDClass(JonesMonoid(8));
<Green’s D-class: <bipartition: [1, 2], [3, 4], [5, 6],

[7, 8], [-1, -2], [-3, -4], [-5, -6], [-7, -8]>>
gap> S := InverseSemigroup(
> PartialPerm([1, 2, 3, 5, 7, 8, 9], [2, 6, 9, 1, 5, 3, 8]),
> PartialPerm([1, 3, 4, 5, 7, 8, 9], [9, 4, 10, 5, 6, 7, 1]));;
gap> MinimalDClass(S);
<Green’s D-class: <empty partial perm>>

10.1.7 MaximalXClasses

▷ MaximalDClasses(S) (attribute)

▷ MaximalLClasses(S) (attribute)

▷ MaximalRClasses(S) (attribute)

Returns: The maximal D , L , or R-classes of a semigroup.
Let X be one of Green’s D-, L -, or R-relations. Then MaximalXClasses returns the maximal

Green’s X-classes with respect to the partial order of X-classes.
See also PartialOrderOfDClasses (10.1.10), IsGreensLessThanOrEqual (Reference: Is-

GreensLessThanOrEqual), and MinimalDClass (10.1.6).
Example

gap> MaximalDClasses(BrauerMonoid(8));
[<Green’s D-class: <block bijection: [1, -1], [2, -2],

[3, -3], [4, -4], [5, -5], [6, -6], [7, -7],
[8, -8]>>]

gap> MaximalDClasses(FullTransformationMonoid(5));
[<Green’s D-class: IdentityTransformation>]
gap> S := Semigroup(
> PartialPerm([1, 2, 3, 4, 5, 6, 7], [3, 8, 1, 4, 5, 6, 7]),
> PartialPerm([1, 2, 3, 6, 8], [2, 6, 7, 1, 5]),
> PartialPerm([1, 2, 3, 4, 6, 8], [4, 3, 2, 7, 6, 5]),
> PartialPerm([1, 2, 4, 5, 6, 7, 8], [7, 1, 4, 2, 5, 6, 3]));;
gap> MaximalDClasses(S);
[<Green’s D-class: [2,8](1,3)(4)(5)(6)(7)>,

<Green’s D-class: [8,3](1,7,6,5,2)(4)>]

Semigroups 151

10.1.8 NrRegularDClasses

▷ NrRegularDClasses(S) (attribute)

▷ RegularDClasses(S) (attribute)

Returns: A positive integer, or a list.
NrRegularDClasses returns the number of regular D-classes of the semigroup S .
RegularDClasses returns a list of the regular D-classes of the semigroup S .
See also IsRegularGreensClass (10.3.2) and IsRegularDClass (Reference: IsRegularD-

Class).
Example

gap> S := Semigroup(Transformation([1, 3, 4, 1, 3, 5]),
> Transformation([5, 1, 6, 1, 6, 3]));;
gap> NrRegularDClasses(S);
3
gap> NrDClasses(S);
7
gap> AsSet(RegularDClasses(S));
[<Green’s D-class: Transformation([1, 4, 1, 1, 4, 3])>,

<Green’s D-class: Transformation([1, 1, 1, 1, 1])>,
<Green’s D-class: Transformation([1, 1, 1, 1, 1, 1])>]

10.1.9 NrXClasses

▷ NrDClasses(obj) (attribute)

▷ NrHClasses(obj) (attribute)

▷ NrLClasses(obj) (attribute)

▷ NrRClasses(obj) (attribute)

Returns: A positive integer.
NrXClasses returns the number of Green’s classes in obj where obj can be a semigroup, D-,

L -, or R-class where appropriate. If the actual Green’s classes are not required, then it is more
efficient to use

Example
NrHClasses(obj)

than
Example

Length(HClasses(obj))

since the Green’s classes themselves are not created when NrXClasses is called.
See also GreensRClasses (10.1.4), GreensRClasses (Reference: GreensRClasses),

IteratorOfRClasses (10.2.2), and
Example

gap> S := Semigroup(
> Transformation([1, 2, 5, 4, 3, 8, 7, 6]),
> Transformation([1, 6, 3, 4, 7, 2, 5, 8]),
> Transformation([2, 1, 6, 7, 8, 3, 4, 5]),
> Transformation([3, 2, 3, 6, 1, 6, 1, 2]),
> Transformation([5, 2, 3, 6, 3, 4, 7, 4]));;
gap> x := Transformation([2, 5, 4, 7, 4, 3, 6, 3]);;
gap> R := RClass(S, x);

Semigroups 152

<Green’s R-class: Transformation([2, 5, 4, 7, 4, 3, 6, 3])>
gap> NrHClasses(R);
12
gap> D := DClass(R);
<Green’s D-class: Transformation([2, 5, 4, 7, 4, 3, 6, 3])>
gap> NrHClasses(D);
72
gap> L := LClass(S, x);
<Green’s L-class: Transformation([2, 5, 4, 7, 4, 3, 6, 3])>
gap> NrHClasses(L);
6
gap> NrHClasses(S);
1555
gap> S := Semigroup(Transformation([4, 6, 5, 2, 1, 3]),
> Transformation([6, 3, 2, 5, 4, 1]),
> Transformation([1, 2, 4, 3, 5, 6]),
> Transformation([3, 5, 6, 1, 2, 3]),
> Transformation([5, 3, 6, 6, 6, 2]),
> Transformation([2, 3, 2, 6, 4, 6]),
> Transformation([2, 1, 2, 2, 2, 4]),
> Transformation([4, 4, 1, 2, 1, 2]));;
gap> NrRClasses(S);
150
gap> Size(S);
6342
gap> x := Transformation([1, 3, 3, 1, 3, 5]);;
gap> D := DClass(S, x);
<Green’s D-class: Transformation([1, 3, 3, 1, 3, 5])>
gap> NrRClasses(D);
87
gap> S := SymmetricInverseSemigroup(10);;
gap> NrDClasses(S); NrRClasses(S); NrHClasses(S); NrLClasses(S);
11
1024
184756
1024
gap> S := POPI(10);;
gap> NrDClasses(S);
11
gap> NrRClasses(S);
1024

10.1.10 PartialOrderOfXClasses

▷ PartialOrderOfDClasses(S) (attribute)

▷ PartialOrderOfLClasses(S) (attribute)

▷ PartialOrderOfRClasses(S) (attribute)

Returns: A digraph.
Let X be one of Green’s D-, L -, or R-relations. Then PartialOrderOfXClasses returns

a digraph D where OutNeighbours(D)[i] contains every j such that GreensXClasses(S)[j] is
immediately less than GreensXClasses(S)[i] in the partial order of X-classes of S . The reflexive

Semigroups 153

transitive closure of the digraph D is the partial order of X-classes of S (in the sense of the digraphs
package).

The partial order on the X-classes is defined as follows.

Green’s D-relation:
x ≤ y if and only if S1xS1 is a subset of S1yS1.

Green’s L -relation:
x ≤ y if and only if S1x is a subset of S1y.

Green’s R-relation:
x ≤ y if and only if xS1 is a subset of yS1.

See also GreensDClasses (10.1.4), GreensDClasses (Reference: GreensDClasses),
IsGreensLessThanOrEqual (Reference: IsGreensLessThanOrEqual), and \< (10.3.1).

Example
gap> S := Semigroup(Transformation([2, 4, 1, 2]),
> Transformation([3, 3, 4, 1]));;
gap> PartialOrderOfDClasses(S);
<immutable digraph with 4 vertices, 3 edges>
gap> IsGreensLessThanOrEqual(GreensDClasses(S)[1],
> GreensDClasses(S)[2]);
false
gap> IsGreensLessThanOrEqual(GreensDClasses(S)[2],
> GreensDClasses(S)[1]);
false
gap> IsGreensLessThanOrEqual(GreensDClasses(S)[3],
> GreensDClasses(S)[1]);
true
gap> S := InverseSemigroup(
> PartialPerm([1, 2, 3], [1, 3, 4]),
> PartialPerm([1, 3, 5], [5, 1, 3]));;
gap> Size(S);
58
gap> PartialOrderOfDClasses(S);
<immutable digraph with 5 vertices, 4 edges>
gap> IsGreensLessThanOrEqual(GreensDClasses(S)[1],
> GreensDClasses(S)[2]);
false
gap> IsGreensLessThanOrEqual(GreensDClasses(S)[5],
> GreensDClasses(S)[2]);
true
gap> IsGreensLessThanOrEqual(GreensDClasses(S)[3],
> GreensDClasses(S)[4]);
false
gap> IsGreensLessThanOrEqual(GreensDClasses(S)[4],
> GreensDClasses(S)[3]);
true

10.1.11 LengthOfLongestDClassChain

▷ LengthOfLongestDClassChain(S) (attribute)

Returns: A non-negative integer.

Semigroups 154

If S is a semigroup, then LengthOfLongestDClassChain returns the length of the longest chain
in the partial order defined by PartialOrderOfDClasses(S). See PartialOrderOfDClasses
(10.1.10).

The partial order on the D-classes is defined by x ≤ y if and only if S1xS1 is a subset of S1yS1. A
chain of D-classes is a collection of n D-classes D1,D2, . . .Dn such that D1 < D2 < · · · < Dn. The
length of such a chain is n - 1.

Example
gap> S := TrivialSemigroup();;
gap> LengthOfLongestDClassChain(S);
0
gap> T := ZeroSemigroup(5);;
gap> LengthOfLongestDClassChain(T);
1
gap> U := MonogenicSemigroup(14, 7);;
gap> LengthOfLongestDClassChain(U);
13
gap> V := FullTransformationMonoid(6);
<full transformation monoid of degree 6>
gap> LengthOfLongestDClassChain(V);
5

10.1.12 IsGreensDGreaterThanFunc

▷ IsGreensDGreaterThanFunc(S) (attribute)

Returns: A function.
IsGreensDGreaterThanFunc(S) returns a function func such that for any two elements x and

y of S , func(x, y) return true if the D-class of x in S is greater than or equal to the D-class of y
in S under the usual ordering of Green’s D-classes of a semigroup.

Example
gap> S := Semigroup(Transformation([1, 3, 4, 1, 3]),
> Transformation([2, 4, 1, 5, 5]),
> Transformation([2, 5, 3, 5, 3]),
> Transformation([5, 5, 1, 1, 3]));;
gap> reps := ShallowCopy(AsSet(DClassReps(S)));
[Transformation([1, 1, 1, 1, 1]),

Transformation([1, 3, 1, 3, 3]),
Transformation([1, 3, 4, 1, 3]),
Transformation([2, 4, 1, 5, 5])]

gap> Sort(reps, IsGreensDGreaterThanFunc(S));
gap> reps;
[Transformation([2, 4, 1, 5, 5]),

Transformation([1, 3, 4, 1, 3]),
Transformation([1, 3, 1, 3, 3]),
Transformation([1, 1, 1, 1, 1])]

gap> IsGreensLessThanOrEqual(DClass(S, reps[2]),
> DClass(S, reps[1]));
true
gap> S := DualSymmetricInverseMonoid(4);;
gap> IsGreensDGreaterThanFunc(S)(S.1, S.3);
true
gap> IsGreensDGreaterThanFunc(S)(S.3, S.1);

Semigroups 155

false
gap> IsGreensLessThanOrEqual(DClass(S, S.3),
> DClass(S, S.1));
true
gap> IsGreensLessThanOrEqual(DClass(S, S.1),
> DClass(S, S.3));
false

10.2 Iterators and enumerators of classes and representatives

In this section, we describe the methods in the Semigroups package for incrementally determining
Green’s classes or their representatives.

10.2.1 IteratorOfXClassReps

▷ IteratorOfDClassReps(S) (operation)

▷ IteratorOfHClassReps(S) (operation)

▷ IteratorOfLClassReps(S) (operation)

Returns: An iterator.
Returns an iterator of the representatives of the Green’s classes contained in the semigroup S . See

(Reference: Iterators) for more information on iterators.
See also GreensRClasses (Reference: GreensRClasses), GreensRClasses (10.1.4), and

IteratorOfRClasses (10.2.2).

10.2.2 IteratorOfXClasses

▷ IteratorOfDClasses(S) (operation)

▷ IteratorOfRClasses(S) (operation)

Returns: An iterator.
Returns an iterator of the Green’s classes in the semigroup S . See (Reference: Iterators) for

more information on iterators.
This function is useful if you are, for example, looking for an R-class of a semigroup with a

particular property but do not necessarily want to compute all of the R-classes.
See also GreensRClasses (10.1.4), GreensRClasses (Reference: GreensRClasses), and

NrRClasses (10.1.9).
The transformation semigroup in the example below has 25147892 elements but it only takes a

fraction of a second to find a non-trivial R-class. The inverse semigroup of partial permutations in
the example below has size 158122047816 but it only takes a fraction of a second to find an R-class
with more than 1000 elements.

Example
gap> gens := [Transformation([2, 4, 1, 5, 4, 4, 7, 3, 8, 1]),
> Transformation([3, 2, 8, 8, 4, 4, 8, 6, 5, 7]),
> Transformation([4, 10, 6, 6, 1, 2, 4, 10, 9, 7]),
> Transformation([6, 2, 2, 4, 9, 9, 5, 10, 1, 8]),
> Transformation([6, 4, 1, 6, 6, 8, 9, 6, 2, 2]),
> Transformation([6, 8, 1, 10, 6, 4, 9, 1, 9, 4]),
> Transformation([8, 6, 2, 3, 3, 4, 8, 6, 2, 9]),
> Transformation([9, 1, 2, 8, 1, 5, 9, 9, 9, 5]),

Semigroups 156

> Transformation([9, 3, 1, 5, 10, 3, 4, 6, 10, 2]),
> Transformation([10, 7, 3, 7, 1, 9, 8, 8, 4, 10])];;
gap> S := Semigroup(gens);;
gap> iter := IteratorOfRClasses(S);
<iterator>
gap> for R in iter do
> if Size(R) > 1 then
> break;
> fi;
> od;
gap> R;
<Green’s R-class: Transformation([6, 4, 1, 6, 6, 8, 9, 6, 2, 2])>
gap> Size(R);
21600
gap> S := InverseSemigroup(
> PartialPerm([1, 2, 3, 4, 5, 6, 7, 10, 11, 19, 20],
> [19, 4, 11, 15, 3, 20, 1, 14, 8, 13, 17]),
> PartialPerm([1, 2, 3, 4, 6, 7, 8, 14, 15, 16, 17],
> [15, 14, 20, 19, 4, 5, 1, 13, 11, 10, 3]),
> PartialPerm([1, 2, 4, 6, 7, 8, 9, 10, 14, 15, 18],
> [7, 2, 17, 10, 1, 19, 9, 3, 11, 16, 18]),
> PartialPerm([1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16],
> [8, 3, 18, 1, 4, 13, 12, 7, 19, 20, 2, 11]),
> PartialPerm([1, 2, 3, 4, 5, 6, 7, 9, 11, 15, 16, 17, 20],
> [7, 17, 13, 4, 6, 9, 18, 10, 11, 19, 5, 2, 8]),
> PartialPerm([1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 18],
> [10, 20, 11, 7, 13, 8, 4, 9, 2, 18, 17, 6, 15]),
> PartialPerm([1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 17, 18],
> [10, 20, 18, 1, 14, 16, 9, 5, 15, 4, 8, 12, 19, 11]),
> PartialPerm([1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 15, 16, 19, 20],
> [13, 6, 1, 2, 11, 7, 16, 18, 9, 10, 4, 14, 15, 5, 17]),
> PartialPerm([1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 20],
> [5, 3, 12, 9, 20, 15, 8, 16, 13, 1, 17, 11, 14, 10, 2]),
> PartialPerm([1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 13, 17, 18, 19, 20],
> [8, 3, 9, 20, 2, 12, 14, 15, 4, 18, 13, 1, 17, 19, 5]));;
gap> iter := IteratorOfRClasses(S);
<iterator>
gap> repeat
> R := NextIterator(iter);
> until Size(R) > 1000;
gap> R;
<Green’s R-class: [8,19,14][11,4][13,15,5][17,20]>
gap> Size(R);
10020240

10.3 Properties of Green’s classes

In this section, we describe the properties and operators of Green’s classes that are available in the
Semigroups package.

Semigroups 157

10.3.1 Less than for Green’s classes

▷ \<(left-expr, right-expr) (method)

Returns: true or false.
The Green’s class left-expr is less than or equal to right-expr if they belong to the same

semigroup and the representative of left-expr is less than the representative of right-expr under
<; see also Representative (Reference: Representative).

Please note that this is not the usual order on the Green’s classes of a semigroup as defined in
(Reference: Green’s Relations). See also IsGreensLessThanOrEqual (Reference: IsGreens-
LessThanOrEqual).

Example
gap> S := FullTransformationSemigroup(4);;
gap> A := GreensRClassOfElement(S, Transformation([2, 1, 3, 1]));
<Green’s R-class: Transformation([2, 1, 3, 1])>
gap> B := GreensRClassOfElement(S, Transformation([1, 2, 3, 4]));
<Green’s R-class: IdentityTransformation>
gap> A < B;
false
gap> B < A;
true
gap> IsGreensLessThanOrEqual(A, B);
true
gap> IsGreensLessThanOrEqual(B, A);
false
gap> S := SymmetricInverseSemigroup(4);;
gap> A := GreensJClassOfElement(S, PartialPerm([1, 3, 4]));;
gap> B := GreensJClassOfElement(S, PartialPerm([3, 1]));;
gap> A < B;
true
gap> B < A;
false
gap> IsGreensLessThanOrEqual(A, B);
false
gap> IsGreensLessThanOrEqual(B, A);
true

10.3.2 IsRegularGreensClass

▷ IsRegularGreensClass(class) (property)

Returns: true or false.
This function returns true if class is a regular Green’s class and false if it is not. See also

IsRegularDClass (Reference: IsRegularDClass), IsGroupHClass (Reference: IsGroupHClass),
GroupHClassOfGreensDClass (Reference: GroupHClassOfGreensDClass), GroupHClass
(10.4.1), NrIdempotents (11.10.2), Idempotents (11.10.1), and IsRegularSemigroupElement
(Reference: IsRegularSemigroupElement).

The function IsRegularDClass produces the same output as the GAP library functions with the
same name; see IsRegularDClass (Reference: IsRegularDClass).

Example
gap> S := Monoid(Transformation([10, 8, 7, 4, 1, 4, 10, 10, 7, 2]),
> Transformation([5, 2, 5, 5, 9, 10, 8, 3, 8, 10]));;

Semigroups 158

gap> f := Transformation([1, 1, 10, 8, 8, 8, 1, 1, 10, 8]);;
gap> R := RClass(S, f);;
gap> IsRegularGreensClass(R);
true
gap> S := Monoid(Transformation([2, 3, 4, 5, 1, 8, 7, 6, 2, 7]),
> Transformation([3, 8, 7, 4, 1, 4, 3, 3, 7, 2]));;
gap> f := Transformation([3, 8, 7, 4, 1, 4, 3, 3, 7, 2]);;
gap> R := RClass(S, f);;
gap> IsRegularGreensClass(R);
false
gap> NrIdempotents(R);
0
gap> S := Semigroup(Transformation([2, 1, 3, 1]),
> Transformation([3, 1, 2, 1]),
> Transformation([4, 2, 3, 3]));;
gap> f := Transformation([4, 2, 3, 3]);;
gap> L := GreensLClassOfElement(S, f);;
gap> IsRegularGreensClass(L);
false
gap> R := GreensRClassOfElement(S, f);;
gap> IsRegularGreensClass(R);
false
gap> g := Transformation([4, 4, 4, 4]);;
gap> IsRegularSemigroupElement(S, g);
true
gap> IsRegularGreensClass(LClass(S, g));
true
gap> IsRegularGreensClass(RClass(S, g));
true
gap> IsRegularDClass(DClass(S, g));
true
gap> DClass(S, g) = RClass(S, g);
false

10.3.3 IsGreensClassNC

▷ IsGreensClassNC(class) (property)

Returns: true or false.
A Green’s class class of a semigroup S satisfies IsGreensClassNC if it was not known to GAP

that the representative of class was an element of S at the point that class was created.

10.4 Attributes of Green’s classes

In this section, we describe the attributes of Green’s classes that are available in the Semigroups
package.

10.4.1 GroupHClass

▷ GroupHClass(class) (attribute)

Returns: A group H -class of the D-class class if it is regular and fail if it is not.

Semigroups 159

GroupHClass is a synonym for GroupHClassOfGreensDClass (Reference: GroupHClassOf-
GreensDClass).

See also IsGroupHClass (Reference: IsGroupHClass), IsRegularDClass (Reference: IsReg-
ularDClass), IsRegularGreensClass (10.3.2), and IsRegularSemigroup (12.1.17).

Example
gap> S := Semigroup(Transformation([2, 6, 7, 2, 6, 1, 1, 5]),
> Transformation([3, 8, 1, 4, 5, 6, 7, 1]));;
gap> IsRegularSemigroup(S);
false
gap> iter := IteratorOfDClasses(S);;
gap> repeat D := NextIterator(iter); until IsRegularDClass(D);
gap> D;
<Green’s D-class: Transformation([6, 1, 1, 6, 1, 2, 2, 6])>
gap> NrIdempotents(D);
12
gap> NrRClasses(D);
8
gap> NrLClasses(D);
4
gap> GroupHClass(D);
<Green’s H-class: Transformation([1, 2, 2, 1, 2, 6, 6, 1])>
gap> GroupHClassOfGreensDClass(D);
<Green’s H-class: Transformation([1, 2, 2, 1, 2, 6, 6, 1])>
gap> StructureDescription(GroupHClass(D));
"S3"
gap> repeat D := NextIterator(iter); until not IsRegularDClass(D);
gap> D;
<Green’s D-class: Transformation([7, 5, 2, 2, 6, 1, 1, 2])>
gap> IsRegularDClass(D);
false
gap> GroupHClass(D);
fail
gap> S := InverseSemigroup(
> PartialPerm([2, 1, 6, 0, 3]), PartialPerm([3, 5, 2, 0, 0, 6]));;
gap> x := PartialPerm([1 .. 3], [6, 3, 1]);;
gap> First(DClasses(S), x -> not IsTrivial(GroupHClass(x)));
<Green’s D-class: <identity partial perm on [1, 2]>>
gap> StructureDescription(GroupHClass(last));
"C2"

10.4.2 SchutzenbergerGroup

▷ SchutzenbergerGroup(class) (attribute)

Returns: A group.
SchutzenbergerGroup returns the generalized Schutzenberger group (defined below) of the R-,

D-, L -, or H -class class .
If f is an element of a semigroup of transformations or partial permutations and im(f) denotes

the image of f, then the generalized Schutzenberger group of im(f) is the permutation group

{g|im(f) : im(f ∗g) = im(f)}.

Semigroups 160

The generalized Schutzenberger group of the kernel ker(f) of a transformation f or the domain
dom(f) of a partial permutation f is defined analogously.

The generalized Schutzenberger group of a Green’s class is then defined as follows.

R-class
The generalized Schutzenberger group of the image or range of the representative of the
R-class.

L -class
The generalized Schutzenberger group of the kernel or domain of the representative of the
L -class.

H -class
The intersection of the generalized Schutzenberger groups of the R- and L -class containing
the H -class.

D-class
The intersection of the generalized Schutzenberger groups of the R- and L -class containing
the representative of the D-class.

The output of this attribute is difficult to describe for other types of semigroup. However, a general
description is given in [EEMP19].

Example
gap> S := Semigroup(Transformation([4, 4, 3, 5, 3]),
> Transformation([5, 1, 1, 4, 1]),
> Transformation([5, 5, 4, 4, 5]));;
gap> f := Transformation([5, 5, 4, 4, 5]);;
gap> SchutzenbergerGroup(RClass(S, f));
Group([(4,5)])
gap> S := InverseSemigroup(
> PartialPerm([1, 2, 3, 7],
> [9, 2, 4, 8]),
> PartialPerm([1, 2, 6, 7, 8, 9, 10],
> [6, 8, 4, 5, 9, 1, 3]),
> PartialPerm([1, 2, 3, 5, 6, 7, 8, 9],
> [7, 4, 1, 6, 9, 5, 2, 3]));;
gap> List(DClasses(S), SchutzenbergerGroup);
[Group(()), Group(()), Group(()), Group(()), Group([(4,9)]),

Group(()), Group(()), Group([(5,8,6), (5,8)]), Group(()),
Group(()), Group(()), Group(()), Group(()), Group(()),
Group([(1,7,5,6,9,3)]), Group([(1,6)(3,5)]), Group(()),
Group(()), Group(()), Group(()), Group(()), Group(()), Group(())]

10.4.3 StructureDescriptionSchutzenbergerGroups

▷ StructureDescriptionSchutzenbergerGroups(S) (attribute)

Returns: Distinct structure descriptions of the Schutzenberger groups of a semigroup.
StructureDescriptionSchutzenbergerGroups returns the distinct values of

StructureDescription (Reference: StructureDescription) when it is applied to the Schutzen-
berger groups of the R-classes of the semigroup S .

Semigroups 161

Example
gap> S := Semigroup([
> PartialPerm([1, 2, 3], [2, 5, 4]),
> PartialPerm([1, 2, 3], [4, 1, 2]),
> PartialPerm([1, 2, 3], [5, 2, 3]),
> PartialPerm([1, 2, 4, 5], [2, 1, 4, 3]),
> PartialPerm([1, 2, 5], [2, 3, 5]),
> PartialPerm([1, 2, 3, 5], [2, 3, 5, 4]),
> PartialPerm([1, 2, 3, 5], [4, 2, 5, 1]),
> PartialPerm([1, 2, 3, 5], [5, 2, 4, 3]),
> PartialPerm([1, 2, 5], [5, 4, 3])]);;
gap> StructureDescriptionSchutzenbergerGroups(S);
["1", "C2", "S3"]
gap> S := Monoid(
> Bipartition([[1, 2, 5, -1, -2], [3, 4, -3, -5], [-4]]),
> Bipartition([[1, 2, -2], [3, -1], [4], [5], [-3, -4], [-5]]),
> Bipartition([[1], [2, 3, -5], [4, -3], [5, -2], [-1, -4]]));
<bipartition monoid of degree 5 with 3 generators>
gap> StructureDescriptionSchutzenbergerGroups(S);
["1", "C2"]

10.4.4 StructureDescriptionMaximalSubgroups

▷ StructureDescriptionMaximalSubgroups(S) (attribute)

Returns: Distinct structure descriptions of the maximal subgroups of a semigroup.
StructureDescriptionMaximalSubgroups returns the distinct values of

StructureDescription (Reference: StructureDescription) when it is applied to the maxi-
mal subgroups of the semigroup S .

Example
gap> S := DualSymmetricInverseSemigroup(6);
<inverse block bijection monoid of degree 6 with 3 generators>
gap> StructureDescriptionMaximalSubgroups(S);
["1", "C2", "S3", "S4", "S5", "S6"]
gap> S := Semigroup(
> PartialPerm([1, 3, 4, 5, 8],
> [8, 3, 9, 4, 5]),
> PartialPerm([1, 2, 3, 4, 8],
> [10, 4, 1, 9, 6]),
> PartialPerm([1, 2, 3, 4, 5, 6, 7, 10],
> [4, 1, 6, 7, 5, 3, 2, 10]),
> PartialPerm([1, 2, 3, 4, 6, 8, 10],
> [4, 9, 10, 3, 1, 5, 2]));;
gap> StructureDescriptionMaximalSubgroups(S);
["1", "C2", "C3", "C4"]

10.4.5 MultiplicativeNeutralElement (for an H-class)

▷ MultiplicativeNeutralElement(H) (method)

Returns: A semigroup element or fail.
If the H -class H of a semigroup S is a subgroup of S, then MultiplicativeNeutralElement

returns the identity of H . If H is not a subgroup of S, then fail is returned.

Semigroups 162

Example
gap> S := Semigroup([PartialPerm([1, 5, 2]),
> PartialPerm([2, 0, 4]), PartialPerm([4, 1, 5]),
> PartialPerm([1, 0, 3, 0, 4]), PartialPerm([1, 2, 0, 3, 5]),
> PartialPerm([1, 3, 2, 0, 5]), PartialPerm([5, 0, 0, 4, 3])]);;
gap> H := HClass(S, PartialPerm([1, 2]));;
gap> MultiplicativeNeutralElement(H);
<identity partial perm on [1, 2]>
gap> H := HClass(S, PartialPerm([1, 4]));;
gap> MultiplicativeNeutralElement(H);
fail

10.4.6 StructureDescription (for an H-class)

▷ StructureDescription(class) (attribute)

Returns: A string or fail.
StructureDescription returns the value of StructureDescription (Reference: Structure-

Description) when it is applied to a group isomorphic to the group H -class class . If class is not
a group H -class, then fail is returned.

Example
gap> S := Semigroup(
> PartialPerm([1, 2, 3, 4, 6, 7, 8, 9],
> [1, 9, 4, 3, 5, 2, 10, 7]),
> PartialPerm([1, 2, 4, 7, 8, 9],
> [6, 2, 4, 9, 1, 3]));;
gap> H := HClass(S, PartialPerm([1, 2, 3, 4, 7, 9],
> [1, 7, 3, 4, 9, 2]));;
gap> StructureDescription(H);
"C6"

10.4.7 InjectionPrincipalFactor

▷ InjectionPrincipalFactor(D) (attribute)

▷ InjectionNormalizedPrincipalFactor(D) (attribute)

▷ IsomorphismReesMatrixSemigroup(D) (attribute)

Returns: A injective mapping.
If the D-class D is a subsemigroup of a semigroup S, then the principal factor of D is just D itself.

If D is not a subsemigroup of S, then the principal factor of D is the semigroup with elements D and a
new element 0 with multiplication of x,y ∈ D defined by:

xy =
{

x∗ y (in S) if x∗ y ∈ D
0 if xy ̸∈ D.

InjectionPrincipalFactor returns an injective function from the D-class D to a Rees (0-)matrix
semigroup, which contains the principal factor of D as a subsemigroup.

If D is a subsemigroup of its parent semigroup, then the function returned by
InjectionPrincipalFactor or IsomorphismReesMatrixSemigroup is an isomorphism from D
to a Rees matrix semigroup; see ReesMatrixSemigroup (Reference: ReesMatrixSemigroup).

If D is not a semigroup, then the function returned by InjectionPrincipalFactor is an
injective function from D to a Rees 0-matrix semigroup isomorphic to the principal factor of

Semigroups 163

D ; see ReesZeroMatrixSemigroup (Reference: ReesZeroMatrixSemigroup). In this case,
IsomorphismReesMatrixSemigroup and IsomorphismReesZeroMatrixSemigroup returns an er-
ror.

InjectionNormalizedPrincipalFactor returns the composition of
InjectionPrincipalFactor with RZMSNormalization (6.5.6) or RMSNormalization (6.5.7) as
appropriate.

See also PrincipalFactor (10.4.8).
Example

gap> S := InverseSemigroup(
> PartialPerm([1, 2, 3, 6, 8, 10],
> [2, 6, 7, 9, 1, 5]),
> PartialPerm([1, 2, 3, 4, 6, 7, 8, 10],
> [3, 8, 1, 9, 4, 10, 5, 6]));;
gap> x := PartialPerm([1, 2, 5, 6, 7, 9],
> [1, 2, 5, 6, 7, 9]);;
gap> D := GreensDClassOfElement(S, x);
<Green’s D-class: <identity partial perm on [1, 2, 5, 6, 7, 9]>>
gap> R := Range(InjectionPrincipalFactor(D));
<Rees 0-matrix semigroup 3x3 over Group(())>
gap> MatrixOfReesZeroMatrixSemigroup(R);
[[(), 0, 0], [0, (), 0], [0, 0, ()]]
gap> Size(R);
10
gap> Size(D);
9
gap> S := Semigroup(
> Bipartition([[1, 2, 3, -3, -5], [4], [5, -2], [-1, -4]]),
> Bipartition([[1, 3, 5], [2, 4, -3], [-1, -2, -4, -5]]),
> Bipartition([[1, 5, -2, -4], [2, 3, 4, -1, -5], [-3]]),
> Bipartition([[1, 5, -1, -2, -3], [2, 4, -4], [3, -5]]));;
gap> D := GreensDClassOfElement(S,
> Bipartition([[1, 5, -2, -4], [2, 3, 4, -1, -5], [-3]]));
<Green’s D-class: <bipartition: [1, 5, -2, -4], [2, 3, 4, -1, -5]

, [-3]>>
gap> InjectionNormalizedPrincipalFactor(D);
MappingByFunction(<Green’s D-class: <bipartition: [1, 5, -2, -4],

[2, 3, 4, -1, -5], [-3]>>, <Rees matrix semigroup 1x1 over
Group([(1,2)])>, function(x) ... end, function(x) ... end)

10.4.8 PrincipalFactor

▷ PrincipalFactor(D) (attribute)

▷ NormalizedPrincipalFactor(D) (attribute)

Returns: A Rees (0-)matrix semigroup.
If D is a D-class of semigroup, then PrincipalFactor(D) is just shorthand for

Range(InjectionPrincipalFactor(D)), and NormalizedPrincipalFactor(D) is shorthand
for Range(InjectionNormalizedPrincipalFactor(D)).

See InjectionPrincipalFactor (10.4.7) and InjectionNormalizedPrincipalFactor
(10.4.7) for more details.

Semigroups 164

Example
gap> S := Semigroup([PartialPerm([1, 2, 3], [1, 3, 4]),
> PartialPerm([1, 2, 3], [2, 5, 3]),
> PartialPerm([1, 2, 3, 4], [2, 4, 1, 5]),
> PartialPerm([1, 3, 5], [5, 1, 3])]);;
gap> PrincipalFactor(MinimalDClass(S));
<Rees matrix semigroup 1x1 over Group(())>
gap> MultiplicativeZero(S);
<empty partial perm>
gap> S := Semigroup(
> Bipartition([[1, 2, 3, 4, 5, -1, -3], [-2, -5], [-4]]),
> Bipartition([[1, -5], [2, 3, 4, 5, -1, -3], [-2, -4]]),
> Bipartition([[1, 5, -4], [2, 4, -1, -5], [3, -2, -3]]));;
gap> D := MinimalDClass(S);
<Green’s D-class: <bipartition: [1, 2, 3, 4, 5, -1, -3],

[-2, -5], [-4]>>
gap> NormalizedPrincipalFactor(D);
<Rees matrix semigroup 1x5 over Group(())>

10.5 Operations for Green’s relations and classes

In this section, we describe some operations related to Green’s classes that are available in the Semi-
groups package.

10.5.1 LeftGreensMultiplier

▷ LeftGreensMultiplier(S, a, b) (operation)

▷ RightGreensMultiplier(S, a, b) (operation)

Returns: An element.
If S is a semigroup, and a and b are L -related elements of S , then LeftGreensMultiplier

returns an element s such that s * a = b . The element s is of the same type as the elements of
S but may or may not be an element of S . In particular, if S is not a monoid and a = b , then
One(GeneratorsOfSemigroup(S)) or an adjoined identity may be returned. Even if a <> b , then
it is not guaranteed that the returned element s will belong to S . It is guaranteed that the left action
of s on the elements of the L -class of a is the same as the left action of an element of S with the
identity adjoined.

LeftGreensMultiplier gives an error if a and b are not L -related elements of S .
The operation RightGreensMultiplier is defined analogously.

Example
gap> S := Semigroup(Transformation([4, 4, 3, 5, 3]),
> Transformation([5, 1, 1, 4, 1]),
> Transformation([5, 5, 4, 4, 5]));;
gap> a := Transformation([5, 5, 4, 4, 5]);;
gap> LeftGreensMultiplier(S, a, a);
Transformation([1, 1, 3, 3, 1])
gap> RightGreensMultiplier(S, a, a);
Transformation([5, 5, 5, 4, 5])
gap> b := Transformation([5, 4, 4, 5, 4]);
Transformation([5, 4, 4, 5, 4])

Semigroups 165

gap> s := LeftGreensMultiplier(S, a, b);
Transformation([1, 3, 3, 1, 3])
gap> s * a;
Transformation([5, 4, 4, 5, 4])
gap> b := Transformation([4, 4, 5, 5, 4]);
Transformation([4, 4, 5, 5, 4])
gap> s := RightGreensMultiplier(S, a, b);
Transformation([4, 4, 4, 5, 4])
gap> a * s = b;
true

Chapter 11

Attributes and operations for semigroups

In this chapter we describe the methods that are available in Semigroups for determining the attributes
of a semigroup, and the operations which can be applied to a semigroup.

11.1 Accessing the elements of a semigroup

11.1.1 AsListCanonical

▷ AsListCanonical(S) (attribute)

▷ EnumeratorCanonical(S) (attribute)

▷ IteratorCanonical(S) (operation)

Returns: A list, enumerator, or iterator.
When the argument S is a semigroup satisfying CanUseFroidurePin (6.1.4), AsListCanonical

returns a list of the elements of S in the order they are enumerated by the Froidure-Pin Algorithm.
This is the same as the order used to index the elements of S in RightCayleyDigraph (11.2.1) and
LeftCayleyDigraph (11.2.1).

EnumeratorCanonical and IteratorCanonical return an enumerator and an iterator where
the elements are ordered in the same way as AsListCanonical. Using EnumeratorCanonical
or IteratorCanonical will often use less memory than AsListCanonical, but may have
slightly worse performance if the elements of the semigroup are looped over repeatedly.
EnumeratorCanonical returns the same list as AsListCanonical if AsListCanonical has ever
been called for S .

If S is an acting semigroup, then the value returned by AsList may not equal the value returned by
AsListCanonical. AsListCanonical exists so that there is a method for obtaining the elements of
S in the particular order used by RightCayleyDigraph (11.2.1) and LeftCayleyDigraph (11.2.1).

See also PositionCanonical (11.1.2).
Example

gap> S := Semigroup(Transformation([1, 3, 2]));;
gap> AsListCanonical(S);
[Transformation([1, 3, 2]), IdentityTransformation]
gap> IteratorCanonical(S);
<iterator>
gap> EnumeratorCanonical(S);
[Transformation([1, 3, 2]), IdentityTransformation]
gap> S := Monoid([Matrix(IsBooleanMat, [[1, 0, 0],
> [0, 1, 0],

166

Semigroups 167

> [0, 1, 0]])]);
<commutative monoid of 3x3 boolean matrices with 1 generator>
gap> it := IteratorCanonical(S);
<iterator>
gap> NextIterator(it);
Matrix(IsBooleanMat, [[1, 0, 0], [0, 1, 0], [0, 0, 1]])
gap> en := EnumeratorCanonical(S);
<enumerator of <commutative monoid of size 2, 3x3 boolean matrices
with 1 generator>>

gap> en[1];
Matrix(IsBooleanMat, [[1, 0, 0], [0, 1, 0], [0, 0, 1]])
gap> Position(en, en[1]);
1
gap> Length(en);
2

11.1.2 PositionCanonical

▷ PositionCanonical(S, x) (operation)

Returns: A positive integer or fail.
When the argument S is a semigroup satisfying CanUseFroidurePin (6.1.4) and x is an element

of S , PositionCanonical returns the position of x in AsListCanonical(S) or equivalently the
position of x in EnumeratorCanonical(S).

See also AsListCanonical (11.1.1) and EnumeratorCanonical (11.1.1).
Example

gap> S := FullTropicalMaxPlusMonoid(2, 3);
<monoid of 2x2 tropical max-plus matrices with 13 generators>
gap> x := Matrix(IsTropicalMaxPlusMatrix, [[1, 3], [2, 1]], 3);
Matrix(IsTropicalMaxPlusMatrix, [[1, 3], [2, 1]], 3)
gap> PositionCanonical(S, x);
234
gap> EnumeratorCanonical(S)[234] = x;
true

11.1.3 Enumerate

▷ Enumerate(S[, limit]) (operation)

Returns: A semigroup (the argument).
If S is a semigroup with representation CanUseFroidurePin (6.1.4) and limit is a positive

integer, then this operation can be used to enumerate at least limit elements of S , or Size(S)
elements if this is less than limit , using the Froidure-Pin Algorithm.

If the optional second argument limit is not given, then the semigroup is enumerated until all of
its elements have been found.

Example
gap> S := FullTransformationMonoid(7);
<full transformation monoid of degree 7>
gap> Enumerate(S, 1000);
<full transformation monoid of degree 7>

Semigroups 168

11.1.4 IsEnumerated

▷ IsEnumerated(S) (operation)

Returns: true or false.
If S is a semigroup with representation CanUseFroidurePin (6.1.4), then this operation returns

true if the Froidure-Pin Algorithm has been run to completion (i.e. all of the elements of S have
been found) and false if S has not been fully enumerated.

11.2 Cayley graphs

11.2.1 RightCayleyDigraph

▷ RightCayleyDigraph(S) (attribute)

▷ LeftCayleyDigraph(S) (attribute)

Returns: A digraph.
When the argument S is a semigroup satisfying CanUseFroidurePin (6.1.4),

RightCayleyDigraph returns the right Cayley graph of S , as a Digraph (Digraphs: Di-
graph) digraph where vertex OutNeighbours(digraph)[i][j] is PositionCanonical(S,
AsListCanonical(S)[i] * GeneratorsOfSemigroup(S)[j]). The digraph returned by
LeftCayleyDigraph is defined analogously.

The digraph returned by this attribute belongs to the category IsCayleyDigraph (Digraphs:
IsCayleyDigraph), the semigroup S and the generators used to create the digraph can be recovered
from the digraph using SemigroupOfCayleyDigraph (Digraphs: SemigroupOfCayleyDigraph)
and GeneratorsOfCayleyDigraph (Digraphs: GeneratorsOfCayleyDigraph).

Example
gap> S := FullTransformationMonoid(2);
<full transformation monoid of degree 2>
gap> RightCayleyDigraph(S);
<immutable multidigraph with 4 vertices, 12 edges>
gap> LeftCayleyDigraph(S);
<immutable multidigraph with 4 vertices, 12 edges>

11.3 Random elements of a semigroup

11.3.1 Random (for a semigroup)

▷ Random(S) (method)

Returns: A random element.
This function returns a random element of the semigroup S . If the elements of S have been

calculated, then one of these is chosen randomly. Otherwise, if the data structure for S is known, then
a random element of a randomly chosen R-class is returned. If the data structure for S has not been
calculated, then a short product (at most 2 * Length(GeneratorsOfSemigroup(S))) of generators
is returned.

Semigroups 169

11.4 Properties of elements in a semigroup

11.4.1 IndexPeriodOfSemigroupElement

▷ IndexPeriodOfSemigroupElement(x) (operation)

Returns: A list of two positive integers.
If x is a semigroup element, then IndexPeriodOfSemigroupElement(x) returns the pair [m,

r], where m and r are the least positive integers such that x^(m + r) = x ^ m. The number m is
known as the index of x , and the numberr is known as the period of x .

Example
gap> x := Transformation([2, 6, 3, 5, 6, 1]);;
gap> IndexPeriodOfSemigroupElement(x);
[2, 3]
gap> m := IndexPeriodOfSemigroupElement(x)[1];;
gap> r := IndexPeriodOfSemigroupElement(x)[2];;
gap> x ^ (m + r) = x ^ m;
true
gap> x := PartialPerm([0, 2, 3, 0, 5]);
<identity partial perm on [2, 3, 5]>
gap> IsIdempotent(x);
true
gap> IndexPeriodOfSemigroupElement(x);
[1, 1]

11.4.2 SmallestIdempotentPower

▷ SmallestIdempotentPower(x) (attribute)

Returns: A positive integer.
If x is a semigroup element, then SmallestIdempotentPower(x) returns the least positive inte-

ger n such that x^n is an idempotent. The smallest idempotent power of x is the least multiple of the
period of x that is greater than or equal to the index of x ; see IndexPeriodOfSemigroupElement
(11.4.1).

Example
gap> x := Transformation([4, 1, 4, 5, 1]);
Transformation([4, 1, 4, 5, 1])
gap> SmallestIdempotentPower(x);
3
gap> ForAll([1 .. 2], i -> not IsIdempotent(x ^ i));
true
gap> IsIdempotent(x ^ 3);
true
gap> x := Bipartition([[1, 2, -3, -4], [3, -5], [4, -1], [5, -2]]);
<block bijection: [1, 2, -3, -4], [3, -5], [4, -1], [5, -2]>
gap> SmallestIdempotentPower(x);
4
gap> ForAll([1 .. 3], i -> not IsIdempotent(x ^ i));
true
gap> x := PartialPerm([]);
<empty partial perm>
gap> SmallestIdempotentPower(x);
1

Semigroups 170

gap> IsIdempotent(x);
true

11.5 Operations for elements in a semigroup

11.5.1 OneInverseOfSemigroupElement

▷ OneInverseOfSemigroupElement(S, x) (attribute)

Returns: One inverse of an element of a semigroup.
OneInverseOfSemigroupElement returns one inverse of the element x in the semigroup S and

returns fail if this element has no inverse in S . x in the semigroup S .
Example

gap> S := FullTransformationMonoid(4);
<full transformation monoid of degree 4>
gap> s := Transformation([2, 3, 1, 1]);
Transformation([2, 3, 1, 1])
gap> OneInverseOfSemigroupElement(S, s);
Transformation([3, 1, 2, 2])
gap> e := IdentityTransformation;
IdentityTransformation
gap> OneInverseOfSemigroupElement(S, e);
IdentityTransformation
gap> F := FreeSemigroup(1);
<free semigroup on the generators [s1]>
gap> OneInverseOfSemigroupElement(F, F.1);
Error, the semigroup is not finite

11.6 Expressing semigroup elements as words in generators

It is possible to express an element of a semigroup as a word in the generators of that semigroup. This
section describes how to accomplish this in Semigroups.

11.6.1 EvaluateWord

▷ EvaluateWord(gens, w) (operation)

Returns: A semigroup element.
The argument gens should be a collection of generators of a semigroup and the argument w should

be a list of positive integers less than or equal to the length of gens . This operation evaluates the word
w in the generators gens . More precisely, EvaluateWord(gens, w) returns the equivalent of:

Example
Product(List(w, i -> gens[i]));

see also Factorization (11.6.2).

for elements of a semigroup
When gens is a list of elements of a semigroup and w is a list of positive integers less than or
equal to the length of gens , this operation returns the product gens[w[1]] * gens[w[2]] *
.. . * gens[w[n]] when the length of w is n.

Semigroups 171

for elements of an inverse semigroup
When gens is a list of elements with a semigroup inverse and w is a list of non-zero
integers whose absolute value does not exceed the length of gens , this operation returns
the product gens[AbsInt(w[1])] ^ SignInt(w[1]) * .. . * gens[AbsInt(w[n])]
^ SignInt(w[n]) where n is the length of w .

Note that EvaluateWord(gens, []) returns One(gens) if gens belongs to the category
IsMultiplicativeElementWithOne (Reference: IsMultiplicativeElementWithOne).

Example
gap> gens := [
> Transformation([2, 4, 4, 6, 8, 8, 6, 6]),
> Transformation([2, 7, 4, 1, 4, 6, 5, 2]),
> Transformation([3, 6, 2, 4, 2, 2, 2, 8]),
> Transformation([4, 3, 6, 4, 2, 1, 2, 6]),
> Transformation([4, 5, 1, 3, 8, 5, 8, 2])];;
gap> S := Semigroup(gens);;
gap> x := Transformation([1, 4, 6, 1, 7, 2, 7, 6]);;
gap> word := Factorization(S, x);
[4, 2]
gap> EvaluateWord(gens, word);
Transformation([1, 4, 6, 1, 7, 2, 7, 6])
gap> S := SymmetricInverseMonoid(10);;
gap> x := PartialPerm([2, 6, 7, 0, 0, 9, 0, 1, 0, 5]);
[3,7][8,1,2,6,9][10,5]
gap> word := Factorization(S, x);
[-2, -2, -2, -2, -3, -2, -2, -2, -2, -2, 5, 2, 5, 5, 2, 5, 2, 2, 2,

2, -3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2]
gap> EvaluateWord(GeneratorsOfSemigroup(S), word);
[3,7][8,1,2,6,9][10,5]

11.6.2 Factorization

▷ Factorization(S, x) (operation)

Returns: A word in the generators.

for semigroups
When S is a semigroup and x belongs to S , Factorization return a word in the generators of
S that is equal to x . In this case, a word is a list of positive integers where an entry i corresponds
to GeneratorsOfSemigroups(S)[i]. More specifically,

Example
EvaluateWord(GeneratorsOfSemigroup(S), Factorization(S, x)) = x;

for inverse semigroups
When S is an inverse semigroup and x belongs to S , Factorization return a word in
the generators of S that is equal to x . In this case, a word is a list of non-zero integers
where an entry i corresponds to GeneratorsOfSemigroup(S)[i] and -i corresponds to
GeneratorsOfSemigroup(S)[i] ^ -1. As in the previous case,

Example
EvaluateWord(GeneratorsOfSemigroup(S), Factorization(S, x)) = x;

Semigroups 172

Note that Factorization does not always return a word of minimum length; see
MinimalFactorization (11.6.3).

See also EvaluateWord (11.6.1) and GeneratorsOfSemigroup (Reference: GeneratorsOf-
Semigroup).

Example
gap> gens := [Transformation([2, 2, 9, 7, 4, 9, 5, 5, 4, 8]),
> Transformation([4, 10, 5, 6, 4, 1, 2, 7, 1, 2])];;
gap> S := Semigroup(gens);;
gap> x := Transformation([1, 10, 2, 10, 1, 2, 7, 10, 2, 7]);;
gap> word := Factorization(S, x);
[2, 2, 1, 2]
gap> EvaluateWord(gens, word);
Transformation([1, 10, 2, 10, 1, 2, 7, 10, 2, 7])
gap> S := SymmetricInverseMonoid(8);
<symmetric inverse monoid of degree 8>
gap> x := PartialPerm([1, 2, 3, 4, 5, 8], [7, 1, 4, 3, 2, 6]);
[5,2,1,7][8,6](3,4)
gap> word := Factorization(S, x);
[-2, -2, -2, -2, -2, -2, 2, 4, 4, 2, 3, 2, -3, -2, -2, 3, 2, -3, -2,

-2, 4, -3, -4, 2, 2, 3, -2, -3, 4, -3, -4, 2, 2, 3, -2, -3, 2, 2,
3, -2, -3, 2, 2, 3, -2, -3, 4, -3, -4, 3, 2, -3, -2, -2, 3, 2, -3,
-2, -2, 4, 3, -4, 3, 2, -3, -2, -2, 3, 2, -3, -2, -2, 3, 2, 2, 3,
2, 2, 2, 2]

gap> EvaluateWord(GeneratorsOfSemigroup(S), word);
[5,2,1,7][8,6](3,4)
gap> S := DualSymmetricInverseMonoid(6);;
gap> x := S.1 * S.2 * S.3 * S.2 * S.1;
<block bijection: [1, 6, -4], [2, -2, -3], [3, -5], [4, -6],
[5, -1]>

gap> word := Factorization(S, x);
[-2, -2, -2, -2, -2, 4, 2]
gap> EvaluateWord(GeneratorsOfSemigroup(S), word);
<block bijection: [1, 6, -4], [2, -2, -3], [3, -5], [4, -6],
[5, -1]>

11.6.3 MinimalFactorization

▷ MinimalFactorization(S, x) (operation)

Returns: A minimal word in the generators.
This operation returns a minimal length word in the generators of the semigroup S that equals

the element x . In this case, a word is a list of positive integers where an entry i corresponds to
GeneratorsOfSemigroups(S)[i]. More specifically,

Example
EvaluateWord(GeneratorsOfSemigroup(S), MinimalFactorization(S, x)) = x;

MinimalFactorization involves exhaustively enumerating S until the element x is found, and
so MinimalFactorization may be less efficient than Factorization (11.6.2) for some semigroups.

Unlike Factorization (11.6.2) this operation does not distinguish between semigroups and
inverse semigroups. See also EvaluateWord (11.6.1) and GeneratorsOfSemigroup (Reference:
GeneratorsOfSemigroup).

Semigroups 173

Example
gap> S := Semigroup(Transformation([2, 2, 9, 7, 4, 9, 5, 5, 4, 8]),
> Transformation([4, 10, 5, 6, 4, 1, 2, 7, 1, 2]));
<transformation semigroup of degree 10 with 2 generators>
gap> x := Transformation([8, 8, 2, 2, 9, 2, 8, 8, 9, 9]);
Transformation([8, 8, 2, 2, 9, 2, 8, 8, 9, 9])
gap> Factorization(S, x);
[1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1]
gap> MinimalFactorization(S, x);
[1, 2, 1, 1, 1, 1, 2, 2, 1]

11.6.4 NonTrivialFactorization

▷ NonTrivialFactorization(S, x) (operation)

Returns: A non-trivial word in the generators, or fail.
When S is a semigroup and x belongs to S , this operation returns a non-trivial word in the gen-

erators of the semigroup S that equals x , if one exists. The definition of a word in the generators
is the same as given in Factorization (11.6.2) for semigroups and inverse semigroups. A word is
non-trivial if it has length two or more.

If no non-trivial word for x exists, then x is an indecomposable element of S and this operation
returns fail; see IndecomposableElements (11.7.6).

When x does not belong to GeneratorsOfSemigroup(S), any factorization of x is non-trivial.
In this case, NonTrivialFactorization returns the same word as Factorization (11.6.2).

See also EvaluateWord (11.6.1) and GeneratorsOfSemigroup (Reference: GeneratorsOf-
Semigroup).

Example
gap> x := Transformation([5, 4, 2, 1, 3]);;
gap> y := Transformation([4, 4, 2, 4, 1]);;
gap> S := Semigroup([x, y]);
<transformation semigroup of degree 5 with 2 generators>
gap> NonTrivialFactorization(S, x * y);
[1, 2]
gap> Factorization(S, x);
[1]
gap> NonTrivialFactorization(S, x);
[1, 1, 1, 1, 1, 1]
gap> Factorization(S, y);
[2]
gap> NonTrivialFactorization(S, y);
[2, 1, 1, 1, 1, 1]
gap> z := PartialPerm([2]);;
gap> S := Semigroup(z);
<commutative partial perm semigroup of rank 1 with 1 generator>
gap> NonTrivialFactorization(S, z);
fail

Semigroups 174

11.7 Generating sets

11.7.1 Generators

▷ Generators(S) (attribute)

Returns: A list of generators.
Generators returns a generating set that can be used to define the semigroup S . The generators

of a monoid or inverse semigroup S , say, can be defined in several ways, for example, including or
excluding the identity element, including or not the inverses of the generators. Generators uses
the definition that returns the least number of generators. If no generating set for S is known, then
GeneratorsOfSemigroup is used by default.

for a group
Generators(S) is a synonym for GeneratorsOfGroup (Reference: GeneratorsOfGroup).

for an ideal of semigroup
Generators(S) is a synonym for GeneratorsOfSemigroupIdeal (9.2.1).

for a semigroup
Generators(S) is a synonym for GeneratorsOfSemigroup (Reference: GeneratorsOf-
Semigroup).

for a monoid
Generators(S) is a synonym for GeneratorsOfMonoid (Reference: GeneratorsOf-
Monoid).

for an inverse semigroup
Generators(S) is a synonym for GeneratorsOfInverseSemigroup (Reference: Genera-
torsOfInverseSemigroup).

for an inverse monoid
Generators(S) is a synonym for GeneratorsOfInverseMonoid (Reference: Generator-
sOfInverseMonoid).

Example
gap> M := Monoid([
> Transformation([1, 4, 6, 2, 5, 3, 7, 8, 9, 9]),
> Transformation([6, 3, 2, 7, 5, 1, 8, 8, 9, 9])]);;
gap> GeneratorsOfSemigroup(M);
[IdentityTransformation,

Transformation([1, 4, 6, 2, 5, 3, 7, 8, 9, 9]),
Transformation([6, 3, 2, 7, 5, 1, 8, 8, 9, 9])]

gap> GeneratorsOfMonoid(M);
[Transformation([1, 4, 6, 2, 5, 3, 7, 8, 9, 9]),

Transformation([6, 3, 2, 7, 5, 1, 8, 8, 9, 9])]
gap> Generators(M);
[Transformation([1, 4, 6, 2, 5, 3, 7, 8, 9, 9]),

Transformation([6, 3, 2, 7, 5, 1, 8, 8, 9, 9])]
gap> S := Semigroup(Generators(M));;
gap> Generators(S);
[Transformation([1, 4, 6, 2, 5, 3, 7, 8, 9, 9]),

Transformation([6, 3, 2, 7, 5, 1, 8, 8, 9, 9])]

Semigroups 175

gap> GeneratorsOfSemigroup(S);
[Transformation([1, 4, 6, 2, 5, 3, 7, 8, 9, 9]),

Transformation([6, 3, 2, 7, 5, 1, 8, 8, 9, 9])]

11.7.2 SmallGeneratingSet

▷ SmallGeneratingSet(coll) (attribute)

▷ SmallSemigroupGeneratingSet(coll) (attribute)

▷ SmallMonoidGeneratingSet(coll) (attribute)

▷ SmallInverseSemigroupGeneratingSet(coll) (attribute)

▷ SmallInverseMonoidGeneratingSet(coll) (attribute)

Returns: A small generating set for a semigroup.
The attributes SmallXGeneratingSet return a relatively small generating subset of the collection

of elements coll , which can also be a semigroup. The returned value of SmallXGeneratingSet,
where applicable, has the property that

Example
X(SmallXGeneratingSet(coll)) = X(coll);

where X is any of Semigroup (Reference: Semigroup), Monoid (Reference: Monoid),
InverseSemigroup (Reference: InverseSemigroup), or InverseMonoid (Reference: Inverse-
Monoid).

If the number of generators for S is already relatively small, then these functions will often return
the original generating set. These functions may return different results in different GAP sessions.

SmallGeneratingSet returns the smallest of the returned values of SmallXGeneratingSet
which is applicable to coll ; see Generators (11.7.1).

As neither irredundancy, nor minimal length are proven, these functions usually return an answer
much more quickly than IrredundantGeneratingSubset (11.7.3). These functions can be used
whenever a small generating set is desired which does not necessarily needs to be minimal.

Example
gap> S := Semigroup([
> Transformation([1, 2, 3, 2, 4]),
> Transformation([1, 5, 4, 3, 2]),
> Transformation([2, 1, 4, 2, 2]),
> Transformation([2, 4, 4, 2, 1]),
> Transformation([3, 1, 4, 3, 2]),
> Transformation([3, 2, 3, 4, 1]),
> Transformation([4, 4, 3, 3, 5]),
> Transformation([5, 1, 5, 5, 3]),
> Transformation([5, 4, 3, 5, 2]),
> Transformation([5, 5, 4, 5, 5])]);;
gap> SmallGeneratingSet(S);
[Transformation([1, 5, 4, 3, 2]), Transformation([3, 2, 3, 4, 1]),

Transformation([5, 4, 3, 5, 2]), Transformation([1, 2, 3, 2, 4]),
Transformation([4, 4, 3, 3, 5])]

gap> S := RandomInverseMonoid(IsPartialPermMonoid, 10000, 10);;
gap> SmallGeneratingSet(S);
[[1 .. 10] -> [3, 2, 4, 5, 6, 1, 7, 10, 9, 8],

[1 .. 10] -> [5, 10, 8, 9, 3, 2, 4, 7, 6, 1],
[1, 3, 4, 5, 6, 7, 8, 9, 10] -> [1, 6, 4, 8, 2, 10, 7, 3, 9]]

Semigroups 176

gap> M := MathieuGroup(24);;
gap> mat := List([1 .. 1000], x -> Random(M));;
gap> Append(mat, [1 .. 1000] * 0);
gap> mat := List([1 .. 138], x -> List([1 .. 57], x -> Random(mat)));;
gap> R := ReesZeroMatrixSemigroup(M, mat);;
gap> U := Semigroup(List([1 .. 200], x -> Random(R)));
<subsemigroup of 57x138 Rees 0-matrix semigroup with 100 generators>
gap> Length(SmallGeneratingSet(U));
84
gap> S := RandomSemigroup(IsBipartitionSemigroup, 100, 4);
<bipartition semigroup of degree 4 with 96 generators>
gap> Length(SmallGeneratingSet(S));
13

11.7.3 IrredundantGeneratingSubset

▷ IrredundantGeneratingSubset(coll) (operation)

Returns: A list of irredundant generators.
If coll is a collection of elements of a semigroup, then this function returns a subset U of coll

such that no element of U is generated by the other elements of U.
Example

gap> S := Semigroup([
> Transformation([5, 1, 4, 6, 2, 3]),
> Transformation([1, 2, 3, 4, 5, 6]),
> Transformation([4, 6, 3, 4, 2, 5]),
> Transformation([5, 4, 6, 3, 1, 3]),
> Transformation([2, 2, 6, 5, 4, 3]),
> Transformation([3, 5, 5, 1, 2, 4]),
> Transformation([6, 5, 1, 3, 3, 4]),
> Transformation([1, 3, 4, 3, 2, 1])]);;
gap> IrredundantGeneratingSubset(S);
[Transformation([1, 3, 4, 3, 2, 1]),

Transformation([2, 2, 6, 5, 4, 3]),
Transformation([3, 5, 5, 1, 2, 4]),
Transformation([5, 1, 4, 6, 2, 3]),
Transformation([5, 4, 6, 3, 1, 3]),
Transformation([6, 5, 1, 3, 3, 4])]

gap> S := RandomInverseMonoid(IsPartialPermMonoid, 1000, 10);
<inverse partial perm monoid of degree 10 with 1000 generators>
gap> SmallGeneratingSet(S);
[[1 .. 10] -> [6, 5, 1, 9, 8, 3, 10, 4, 7, 2],

[1 .. 10] -> [1, 4, 6, 2, 8, 5, 7, 10, 3, 9],
[1, 2, 3, 4, 6, 7, 8, 9] -> [7, 5, 10, 1, 8, 4, 9, 6]
[1 .. 9] -> [4, 3, 5, 7, 10, 9, 1, 6, 8]]

gap> IrredundantGeneratingSubset(last);
[[1 .. 9] -> [4, 3, 5, 7, 10, 9, 1, 6, 8],

[1 .. 10] -> [1, 4, 6, 2, 8, 5, 7, 10, 3, 9],
[1 .. 10] -> [6, 5, 1, 9, 8, 3, 10, 4, 7, 2]]

gap> S := RandomSemigroup(IsBipartitionSemigroup, 1000, 4);
<bipartition semigroup of degree 4 with 749 generators>
gap> SmallGeneratingSet(S);

Semigroups 177

[<bipartition: [1, -3], [2, -2], [3, -1], [4, -4]>,
<bipartition: [1, 3, -2], [2, -1, -3], [4, -4]>,
<bipartition: [1, -4], [2, 4, -1, -3], [3, -2]>,
<bipartition: [1, -1, -3], [2, -4], [3, 4, -2]>,
<bipartition: [1, -2, -4], [2], [3, -3], [4, -1]>,
<bipartition: [1, -2], [2, -1, -3], [3, 4, -4]>,
<bipartition: [1, 3, -1], [2, -3], [4, -2, -4]>,
<bipartition: [1, -1], [2, 4, -4], [3, -2, -3]>,
<bipartition: [1, 3, -1], [2, -2], [4, -3, -4]>,
<bipartition: [1, 2, -2], [3, -1, -4], [4, -3]>,
<bipartition: [1, -2, -3], [2, -4], [3], [4, -1]>,
<bipartition: [1, -1], [2, 4, -3], [3, -2], [-4]>,
<bipartition: [1, -3], [2, -1], [3, 4, -4], [-2]>,
<bipartition: [1, 2, -4], [3, -1], [4, -2], [-3]>,
<bipartition: [1, -3], [2, -4], [3, -1, -2], [4]>]

gap> IrredundantGeneratingSubset(last);
[<bipartition: [1, 2, -4], [3, -1], [4, -2], [-3]>,

<bipartition: [1, 3, -1], [2, -2], [4, -3, -4]>,
<bipartition: [1, 3, -2], [2, -1, -3], [4, -4]>,
<bipartition: [1, -1], [2, 4, -3], [3, -2], [-4]>,
<bipartition: [1, -3], [2, -1], [3, 4, -4], [-2]>,
<bipartition: [1, -3], [2, -2], [3, -1], [4, -4]>,
<bipartition: [1, -3], [2, -4], [3, -1, -2], [4]>,
<bipartition: [1, -2, -3], [2, -4], [3], [4, -1]>,
<bipartition: [1, -2, -4], [2], [3, -3], [4, -1]>]

11.7.4 MinimalSemigroupGeneratingSet

▷ MinimalSemigroupGeneratingSet(S) (attribute)

▷ MinimalMonoidGeneratingSet(S) (attribute)

▷ MinimalInverseSemigroupGeneratingSet(S) (attribute)

▷ MinimalInverseMonoidGeneratingSet(S) (attribute)

Returns: A minimal generating set for a semigroup.
The attribute MinimalXGeneratingSet returns a minimal generating set for the semigroup S ,

with respect to length. The returned value of MinimalXGeneratingSet, where applicable, is a mini-
mal-length list of elements of S with the property that

Example
X(MinimalXGeneratingSet(S)) = S;

where X is one of Semigroup (Reference: Semigroup), Monoid (Reference: Monoid),
InverseSemigroup (Reference: InverseSemigroup), or InverseMonoid (Reference: Inverse-
Monoid).

For many types of semigroup, it is not currently possible to find a MinimalXGeneratingSet with
the Semigroups package.

See also SmallGeneratingSet (11.7.2) and IrredundantGeneratingSubset (11.7.3).
Example

gap> S := MonogenicSemigroup(3, 6);;
gap> MinimalSemigroupGeneratingSet(S);
[Transformation([2, 3, 4, 5, 6, 1, 6, 7, 8])]

Semigroups 178

gap> S := FullTransformationMonoid(4);;
gap> MinimalSemigroupGeneratingSet(S);
[Transformation([1, 4, 2, 3]), Transformation([4, 3, 1, 2]),

Transformation([1, 2, 3, 1])]
gap> S := Monoid([
> PartialPerm([2, 3, 4, 5, 1, 0, 6, 7]),
> PartialPerm([3, 4, 5, 1, 2, 0, 0, 6])]);
<partial perm monoid of rank 8 with 2 generators>
gap> IsMonogenicMonoid(S);
true
gap> MinimalMonoidGeneratingSet(S);
[[8,7,6](1,2,3,4,5)]

11.7.5 GeneratorsSmallest (for a semigroup)

▷ GeneratorsSmallest(S) (attribute)

Returns: A set of elements.
For a semigroup S , GeneratorsSmallest returns the lexicographically least set of elements X

such that X generates S as a semigroup, and such that X is lexicographically ordered and has the
property that each X[i] is not generated by X[1], X[2], ..., X[i-1].

It can be difficult to find the set of generators X, and it might contain a substantial proportion of
the elements of S .

Two semigroups have the same set of elements if and only if their smallest generating sets are
equal. However, due to the complexity of determining the GeneratorsSmallest, this is not the
method used by the Semigroups package when comparing semigroups.

Example
gap> S := Monoid([
> Transformation([1, 3, 4, 1]),
> Transformation([2, 4, 1, 2]),
> Transformation([3, 1, 1, 3]),
> Transformation([3, 3, 4, 1])]);
<transformation monoid of degree 4 with 4 generators>
gap> GeneratorsSmallest(S);
[Transformation([1, 1, 1, 1]), Transformation([1, 1, 1, 2]),

Transformation([1, 1, 1, 3]), Transformation([1, 1, 1]),
Transformation([1, 1, 2, 1]), Transformation([1, 1, 2, 2]),
Transformation([1, 1, 3, 1]), Transformation([1, 1, 3, 3]),
Transformation([1, 1]), Transformation([1, 1, 4, 1]),
Transformation([1, 2, 1, 1]), Transformation([1, 2, 2, 1]),
IdentityTransformation, Transformation([1, 3, 1, 1]),
Transformation([1, 3, 4, 1]), Transformation([2, 1, 1, 2]),
Transformation([2, 2, 2]), Transformation([2, 4, 1, 2]),
Transformation([3, 3, 3]), Transformation([3, 3, 4, 1])]

gap> T := Semigroup(Bipartition([[1, 2, 3], [4, -1], [-2], [-3], [-4]]),
> Bipartition([[1, -3, -4], [2, 3, 4, -2], [-1]]),
> Bipartition([[1, 2, 3, 4, -2], [-1, -4], [-3]]),
> Bipartition([[1, 2, 3, 4], [-1], [-2], [-3, -4]]),
> Bipartition([[1, 2, -1, -2], [3, 4, -3], [-4]]));
<bipartition semigroup of degree 4 with 5 generators>
gap> GeneratorsSmallest(T);
[<bipartition: [1, 2, 3, 4, -1, -2, -3], [-4]>,

Semigroups 179

<bipartition: [1, 2, 3, 4, -1, -2], [-3], [-4]>,
<bipartition: [1, 2, 3, 4, -1], [-2], [-3], [-4]>,
<bipartition: [1, 2, 3, 4, -2, -3, -4], [-1]>,
<bipartition: [1, 2, 3, 4, -2], [-1, -4], [-3]>,
<bipartition: [1, 2, 3, 4, -2], [-1], [-3, -4]>,
<bipartition: [1, 2, 3, 4, -3], [-1, -2], [-4]>,
<bipartition: [1, 2, 3, 4], [-1, -2, -3], [-4]>,
<bipartition: [1, 2, 3, 4, -3, -4], [-1], [-2]>,
<bipartition: [1, 2, 3], [4, -1, -2, -3], [-4]>,
<bipartition: [1, 2, -1, -2], [3, 4, -3], [-4]>,
<bipartition: [1, -3], [2, 3, 4, -1, -2], [-4]>,
<bipartition: [1, -3, -4], [2, 3, 4, -2], [-1]>]

11.7.6 IndecomposableElements

▷ IndecomposableElements(S) (attribute)

Returns: A list of elements.
If S is a semigroup, then this attribute returns the set of elements of S that are not decomposable.

A element of S is decomposable if it can be written as the product of two elements in S . An element
of S is indecomposable if it is not decomposable.

See also IsSurjectiveSemigroup (12.1.6).
Note that any generating set for S contains each indecomposable element of S . Thus

IndecomposableElements(S) is a subset of GeneratorsOfSemigroup(S).
Example

gap> S := Semigroup([
> Transformation([1, 1, 2, 3]),
> Transformation([1, 1, 1, 2])]);
<transformation semigroup of degree 4 with 2 generators>
gap> x := IndecomposableElements(S);
[Transformation([1, 1, 2, 3])]
gap> IsSubset(GeneratorsOfSemigroup(S), x);
true
gap> T := FullTransformationMonoid(10);
<full transformation monoid of degree 10>
gap> IndecomposableElements(T);
[]
gap> B := ZeroSemigroup(IsBipartitionSemigroup, 3);
<commutative non-regular bipartition semigroup of size 3, degree 4
with 2 generators>

gap> IndecomposableElements(B);
[<bipartition: [1, 2, 3, -1], [4, -2], [-3], [-4]>,

<bipartition: [1, 2, 4, -1], [3, -2], [-3], [-4]>]

11.8 Minimal ideals and multiplicative zeros

In this section we describe the attributes of a semigroup that can be found using the Semigroups
package.

Semigroups 180

11.8.1 MinimalIdeal

▷ MinimalIdeal(S) (attribute)

Returns: The minimal ideal of a semigroup.
The minimal ideal of a semigroup is the least ideal with respect to containment.
It is significantly easier to find the minimal D-class of a semigroup, than to find its D-classes.
See also RepresentativeOfMinimalIdeal (11.8.2), PartialOrderOfDClasses (10.1.10),

IsGreensLessThanOrEqual (Reference: IsGreensLessThanOrEqual), and MinimalDClass
(10.1.6).

Example
gap> S := Semigroup(
> Transformation([3, 4, 1, 3, 6, 3, 4, 6, 10, 1]),
> Transformation([8, 2, 3, 8, 4, 1, 3, 4, 9, 7]));;
gap> MinimalIdeal(S);
<simple transformation semigroup ideal of degree 10 with 1 generator>
gap> Elements(MinimalIdeal(S));
[Transformation([1, 1, 1, 1, 1, 1, 1, 1, 1, 1]),

Transformation([3, 3, 3, 3, 3, 3, 3, 3, 3, 3]),
Transformation([4, 4, 4, 4, 4, 4, 4, 4, 4, 4]),
Transformation([6, 6, 6, 6, 6, 6, 6, 6, 6, 6]),
Transformation([8, 8, 8, 8, 8, 8, 8, 8, 8, 8])]

gap> x := Transformation([8, 8, 8, 8, 8, 8, 8, 8, 8, 8]);;
gap> D := DClass(S, x);;
gap> ForAll(GreensDClasses(S), x -> IsGreensLessThanOrEqual(D, x));
true
gap> MinimalIdeal(POI(10));
<partial perm group of rank 0>
gap> MinimalIdeal(BrauerMonoid(6));
<simple bipartition *-semigroup ideal of degree 6 with 1 generator>

11.8.2 RepresentativeOfMinimalIdeal

▷ RepresentativeOfMinimalIdeal(S) (attribute)

▷ RepresentativeOfMinimalDClass(S) (attribute)

Returns: An element of the minimal ideal of a semigroup.
The minimal ideal of a semigroup is the least ideal with respect to containment.
This method returns a representative element of the minimal ideal of S without having to create the

minimal ideal itself. In general, beyond being a member of the minimal ideal, the returned element
is not guaranteed to have any special properties. However, the element will coincide with the zero
element of S if one exists.

This method works particularly well if S is a semigroup of transformations or partial permutations.
See also MinimalIdeal (11.8.1) and MinimalDClass (10.1.6).

Example
gap> S := SymmetricInverseSemigroup(10);;
gap> RepresentativeOfMinimalIdeal(S);
<empty partial perm>
gap> B := Semigroup([
> Bipartition([[1, 2], [3, 6, -2], [4, 5, -3, -4], [-1, -6], [-5]]),
> Bipartition([[1, -1], [2], [3], [4, -3], [5, 6, -5, -6],
> [-2, -4]])]);;

Semigroups 181

gap> RepresentativeOfMinimalIdeal(B);
<bipartition: [1, 2], [3, 6], [4, 5], [-1, -5, -6],
[-2, -4], [-3]>

gap> S := Semigroup(Transformation([5, 1, 6, 2, 2, 4]),
> Transformation([3, 5, 5, 1, 6, 2]));;
gap> RepresentativeOfMinimalDClass(S);
Transformation([5, 6, 6, 3, 3, 5])
gap> MinimalDClass(S);
<Green’s D-class: Transformation([5, 6, 6, 3, 3, 5])>

11.8.3 MultiplicativeZero

▷ MultiplicativeZero(S) (attribute)

Returns: The zero element of a semigroup.
MultiplicativeZero returns the zero element of the semigroup S if it exists and fail if it does

not. See also MultiplicativeZero (Reference: MultiplicativeZero).
Example

gap> S := Semigroup(Transformation([1, 4, 2, 6, 6, 5, 2]),
> Transformation([1, 6, 3, 6, 2, 1, 6]));;
gap> MultiplicativeZero(S);
Transformation([1, 1, 1, 1, 1, 1, 1])
gap> S := Semigroup(Transformation([2, 8, 3, 7, 1, 5, 2, 6]),
> Transformation([3, 5, 7, 2, 5, 6, 3, 8]),
> Transformation([6, 7, 4, 1, 4, 1, 6, 2]),
> Transformation([8, 8, 5, 1, 7, 5, 2, 8]));;
gap> MultiplicativeZero(S);
fail
gap> S := InverseSemigroup(
> PartialPerm([1, 3, 4], [5, 3, 1]),
> PartialPerm([1, 2, 3, 4], [4, 3, 1, 2]),
> PartialPerm([1, 3, 4, 5], [2, 4, 5, 3]));;
gap> MultiplicativeZero(S);
<empty partial perm>
gap> S := PartitionMonoid(6);
<regular bipartition *-monoid of size 4213597, degree 6 with 4
generators>

gap> MultiplicativeZero(S);
fail
gap> S := DualSymmetricInverseMonoid(6);
<inverse block bijection monoid of degree 6 with 3 generators>
gap> MultiplicativeZero(S);
<block bijection: [1, 2, 3, 4, 5, 6, -1, -2, -3, -4, -5, -6]>

11.8.4 UnderlyingSemigroupOfSemigroupWithAdjoinedZero

▷ UnderlyingSemigroupOfSemigroupWithAdjoinedZero(S) (attribute)

Returns: A semigroup, or fail.
If S is a semigroup for which the property IsSemigroupWithAdjoinedZero (12.1.20) is true,

(i.e. S has a MultiplicativeZero (11.8.3) and the set S \ {0} is a subsemigroup of S), then this
method returns the semigroup S \{0}.

Semigroups 182

Otherwise, if S is a semigroup for which the property IsSemigroupWithAdjoinedZero (12.1.20)
is false, then this method returns fail.

Example
gap> S := Semigroup([
> Transformation([2, 3, 4, 5, 1, 6]),
> Transformation([2, 1, 3, 4, 5, 6]),
> Transformation([6, 6, 6, 6, 6, 6])]);
<transformation semigroup of degree 6 with 3 generators>
gap> MultiplicativeZero(S);
Transformation([6, 6, 6, 6, 6, 6])
gap> G := UnderlyingSemigroupOfSemigroupWithAdjoinedZero(S);
<transformation semigroup of degree 5 with 2 generators>
gap> IsGroupAsSemigroup(G);
true
gap> IsZeroGroup(S);
true
gap> S := SymmetricInverseMonoid(6);;
gap> MultiplicativeZero(S);
<empty partial perm>
gap> G := UnderlyingSemigroupOfSemigroupWithAdjoinedZero(S);
fail

11.9 Group of units and identity elements

11.9.1 GroupOfUnits

▷ GroupOfUnits(S) (attribute)

Returns: The group of units of a semigroup or fail.
GroupOfUnits returns the group of units of the semigroup S as a subsemigroup of S if it exists

and returns fail if it does not. Use IsomorphismPermGroup (6.5.5) if you require a permutation
representation of the group of units.

If a semigroup S has an identity e, then the group of units of S is the set of those s in S such that
there exists t in S where s*t=t*s=e. Equivalently, the group of units is the H -class of the identity
of S .

See also GreensHClassOfElement (Reference: GreensHClassOfElement),
IsMonoidAsSemigroup (12.1.13), and MultiplicativeNeutralElement (Reference: Mul-
tiplicativeNeutralElement).

Example
gap> S := Semigroup(
> Transformation([1, 2, 5, 4, 3, 8, 7, 6]),
> Transformation([1, 6, 3, 4, 7, 2, 5, 8]),
> Transformation([2, 1, 6, 7, 8, 3, 4, 5]),
> Transformation([3, 2, 3, 6, 1, 6, 1, 2]),
> Transformation([5, 2, 3, 6, 3, 4, 7, 4]));;
gap> Size(S);
5304
gap> StructureDescription(GroupOfUnits(S));
"C2 x S4"
gap> S := InverseSemigroup(
> PartialPerm([1, 2, 3, 4, 5, 6, 7, 8, 9, 10],

Semigroups 183

> [2, 4, 5, 3, 6, 7, 10, 9, 8, 1]),
> PartialPerm([1, 2, 3, 4, 5, 6, 7, 8, 10],
> [8, 2, 3, 1, 4, 5, 10, 6, 9]));;
gap> StructureDescription(GroupOfUnits(S));
"C8"
gap> S := InverseSemigroup(
> PartialPerm([1, 3, 4], [4, 3, 5]),
> PartialPerm([1, 2, 3, 5], [3, 1, 5, 2]));;
gap> GroupOfUnits(S);
fail
gap> S := Semigroup(
> Bipartition([[1, 2, 3, -1, -3], [-2]]),
> Bipartition([[1, -1], [2, 3, -2, -3]]),
> Bipartition([[1, -2], [2, -3], [3, -1]]),
> Bipartition([[1], [2, 3, -2], [-1, -3]]));;
gap> StructureDescription(GroupOfUnits(S));
"C3"

11.10 Idempotents

11.10.1 Idempotents

▷ Idempotents(obj[, n]) (attribute)

Returns: A list of idempotents.
The argument obj should be a semigroup, D-class, H -class, L -class, or R-class.
If the optional second argument n is present and obj is a semigroup, then a list of the idempotents

in obj of rank n is returned. If you are only interested in the idempotents of a given rank, then the
second version of the function will probably be faster. However, if the optional second argument is
present, then nothing is stored in obj and so every time the function is called the computation must
be repeated.

This functions produce essentially the same output as the GAP library function with the same
name; see Idempotents (Reference: Idempotents). The main difference is that this function can be
applied to a wider class of objects as described above.

See also IsRegularDClass (Reference: IsRegularDClass), IsRegularGreensClass (10.3.2)
IsGroupHClass (Reference: IsGroupHClass), NrIdempotents (11.10.2), and GroupHClass
(10.4.1).

Example
gap> S := Semigroup(Transformation([2, 3, 4, 1]),
> Transformation([3, 3, 1, 1]));;
gap> Idempotents(S, 1);
[]
gap> AsSet(Idempotents(S, 2));
[Transformation([1, 1, 3, 3]), Transformation([1, 3, 3, 1]),

Transformation([2, 2, 4, 4]), Transformation([4, 2, 2, 4])]
gap> AsSet(Idempotents(S));
[Transformation([1, 1, 3, 3]), IdentityTransformation,

Transformation([1, 3, 3, 1]), Transformation([2, 2, 4, 4]),
Transformation([4, 2, 2, 4])]

gap> x := Transformation([2, 2, 4, 4]);;
gap> R := GreensRClassOfElement(S, x);;

Semigroups 184

gap> Idempotents(R);
[Transformation([1, 1, 3, 3]), Transformation([2, 2, 4, 4])]
gap> x := Transformation([4, 2, 2, 4]);;
gap> L := GreensLClassOfElement(S, x);;
gap> AsSet(Idempotents(L));
[Transformation([2, 2, 4, 4]), Transformation([4, 2, 2, 4])]
gap> D := DClassOfLClass(L);;
gap> AsSet(Idempotents(D));
[Transformation([1, 1, 3, 3]), Transformation([1, 3, 3, 1]),

Transformation([2, 2, 4, 4]), Transformation([4, 2, 2, 4])]
gap> L := GreensLClassOfElement(S, Transformation([3, 1, 1, 3]));;
gap> AsSet(Idempotents(L));
[Transformation([1, 1, 3, 3]), Transformation([1, 3, 3, 1])]
gap> H := GroupHClass(D);
<Green’s H-class: Transformation([1, 1, 3, 3])>
gap> Idempotents(H);
[Transformation([1, 1, 3, 3])]
gap> S := InverseSemigroup(
> PartialPerm([10, 6, 3, 4, 9, 0, 1]),
> PartialPerm([6, 10, 7, 4, 8, 2, 9, 1]));;
gap> Idempotents(S, 1);
[<identity partial perm on [4]>]
gap> Idempotents(S, 0);
[]

11.10.2 NrIdempotents

▷ NrIdempotents(obj) (attribute)

Returns: A positive integer.
This function returns the number of idempotents in obj where obj can be a semigroup, D-,

L -, H -, or R-class. If the actual idempotents are not required, then it is more efficient to use
NrIdempotents(obj) than Length(Idempotents(obj)) since the idempotents themselves are not
created when NrIdempotents is called.

See also Idempotents (Reference: Idempotents) and Idempotents (11.10.1),
IsRegularDClass (Reference: IsRegularDClass), IsRegularGreensClass (10.3.2)
IsGroupHClass (Reference: IsGroupHClass), and GroupHClass (10.4.1).

Example
gap> S := Semigroup(Transformation([2, 3, 4, 1]),
> Transformation([3, 3, 1, 1]));;
gap> NrIdempotents(S);
5
gap> f := Transformation([2, 2, 4, 4]);;
gap> R := GreensRClassOfElement(S, f);;
gap> NrIdempotents(R);
2
gap> f := Transformation([4, 2, 2, 4]);;
gap> L := GreensLClassOfElement(S, f);;
gap> NrIdempotents(L);
2
gap> D := DClassOfLClass(L);;
gap> NrIdempotents(D);

Semigroups 185

4
gap> L := GreensLClassOfElement(S, Transformation([3, 1, 1, 3]));;
gap> NrIdempotents(L);
2
gap> H := GroupHClass(D);;
gap> NrIdempotents(H);
1
gap> S := InverseSemigroup(
> PartialPerm([1, 2, 3, 5, 7, 9, 10],
> [6, 7, 2, 9, 1, 5, 3]),
> PartialPerm([1, 2, 3, 5, 6, 7, 9, 10],
> [8, 1, 9, 4, 10, 5, 6, 7]));;
gap> NrIdempotents(S);
236
gap> f := PartialPerm([2, 3, 7, 9, 10],
> [7, 2, 1, 5, 3]);;
gap> D := DClassNC(S, f);;
gap> NrIdempotents(D);
13

11.10.3 IdempotentGeneratedSubsemigroup

▷ IdempotentGeneratedSubsemigroup(S) (attribute)

Returns: A semigroup.
IdempotentGeneratedSubsemigroup returns the subsemigroup of the semigroup S generated

by the idempotents of S .
See also Idempotents (11.10.1) and SmallGeneratingSet (11.7.2).

Example
gap> S := Semigroup(Transformation([1, 1]),
> Transformation([2, 1]),
> Transformation([1, 2, 2]),
> Transformation([1, 2, 3, 4, 5, 1]),
> Transformation([1, 2, 3, 4, 5, 5]),
> Transformation([1, 2, 3, 4, 6, 5]),
> Transformation([1, 2, 3, 5, 4]),
> Transformation([1, 2, 3, 7, 4, 5, 7]),
> Transformation([1, 2, 4, 8, 8, 3, 8, 7]),
> Transformation([1, 2, 8, 4, 5, 6, 7, 8]),
> Transformation([7, 7, 7, 4, 5, 6, 1]));;
gap> IdempotentGeneratedSubsemigroup(S) =
> Monoid(Transformation([1, 1]),
> Transformation([1, 2, 1]),
> Transformation([1, 2, 2]),
> Transformation([1, 2, 3, 1]),
> Transformation([1, 2, 3, 2]),
> Transformation([1, 2, 3, 4, 1]),
> Transformation([1, 2, 3, 4, 2]),
> Transformation([1, 2, 3, 4, 4]),
> Transformation([1, 2, 3, 4, 5, 1]),
> Transformation([1, 2, 3, 4, 5, 2]),
> Transformation([1, 2, 3, 4, 5, 5]),

Semigroups 186

> Transformation([1, 2, 3, 4, 5, 7, 7]),
> Transformation([1, 2, 3, 4, 7, 6, 7]),
> Transformation([1, 2, 3, 6, 5, 6]),
> Transformation([1, 2, 3, 7, 5, 6, 7]),
> Transformation([1, 2, 8, 4, 5, 6, 7, 8]),
> Transformation([2, 2]));
true
gap> S := SymmetricInverseSemigroup(5);
<symmetric inverse monoid of degree 5>
gap> IdempotentGeneratedSubsemigroup(S);
<inverse partial perm monoid of rank 5 with 5 generators>
gap> S := DualSymmetricInverseSemigroup(5);
<inverse block bijection monoid of degree 5 with 3 generators>
gap> IdempotentGeneratedSubsemigroup(S);
<inverse block bijection monoid of degree 5 with 10 generators>
gap> IsSemilattice(last);
true

11.11 Maximal subsemigroups

The Semigroups package provides methods to calculate the maximal subsemigroups of a finite semi-
group, subject to various conditions. A maximal subsemigroup of a semigroup is a proper subsemi-
group that is contained in no other proper subsemigroup of the semigroup.

When computing the maximal subsemigroups of a regular Rees (0-)matrix semigroup over a
group, additional functionality is available. As described in [GGR68], a maximal subsemigroup of
a finite regular Rees (0-)matrix semigroup over a group is one of 6 possible types. Using the Semi-
groups package, it is possible to search for only those maximal subsemigroups of certain types.

A maximal subsemigroup of such a Rees (0-)matrix semigroup R over a group G is either:

1. {0};

2. formed by removing 0;

3. formed by removing a column (a non-zero L -class);

4. formed by removing a row (a non-zero R-class);

5. formed by removing a set of both rows and columns;

6. isomorphic to a Rees (0-)matrix semigroup of the same dimensions over a maximal subgroup
of G (in particular, the maximal subsemigroup intersects every H -class of R).

Note that if R is a Rees matrix semigroup then it has no maximal subsemigroups of types 1, 2, or 5.
Only types 3, 4, and 6 are relevant to a Rees matrix semigroup.

11.11.1 MaximalSubsemigroups (for a finite semigroup)

▷ MaximalSubsemigroups(S) (attribute)

▷ MaximalSubsemigroups(S, opts) (operation)

Returns: The maximal subsemigroups of S .

Semigroups 187

If S is a finite semigroup, then the attribute MaximalSubsemigroups returns a list of the
non-empty maximal subsemigroups of S . The methods used by MaximalSubsemigroups are based
on [GGR68], and are described in [DMW18].

It is computationally expensive to search for the maximal subsemigroups of a semigroup, and
so computations involving MaximalSubsemigroups may be very lengthy. A substantial amount
of information on the progress of MaximalSubsemigroups is provided through the info class
InfoSemigroups (2.5.1), with increasingly detailed information given at levels 1, 2, and 3.

The behaviour of MaximalSubsemigroups can be altered via the second argument opts , which
should be a record. The optional components of opts are:

gens (a boolean)
If opts.gens is false or unspecified, then the maximal subsemigroups themselves are re-
turned and not just generating sets for these subsemigroups.

It can be more computationally expensive to return the generating sets for the maximal subsemi-
groups, than to return the maximal subsemigroups themselves.

contain (a list)
If opts.contain is duplicate-free list of elements of S , then MaximalSubsemigroups will
search for the maximal subsemigroups of S which contain those elements.

D (a D-class)
For a maximal subsemigroup M of a finite semigroup S , there exists a unique D-class which
contains the complement of M in S . In other words, the elements of S which M lacks are contained
in a unique D-class.

If opts.D is a D-class of S , then MaximalSubsemigroups will search exclusively for those
maximal subsemigroups of S whose complement is contained in opts.D.

types (a list)
This option is relevant only if S is a regular Rees (0-)matrix semigroup over a group.

As described at the start of this subsection, 11.11, a maximal subsemigroup of a regular Rees
(0-)matrix semigroup over a group is one of 6 possible types.

If S is a regular Rees (0-)matrix semigroup over a group and opts.types is a subset of [1
.. 6], then MaximalSubsemigroups will search for those maximal subsemigroups of S of
the types enumerated by opts.types.

The default value for this option is [1 .. 6] (i.e. no restriction).
Example

gap> S := FullTransformationSemigroup(3);
<full transformation monoid of degree 3>
gap> MaximalSubsemigroups(S);
[<transformation semigroup of degree 3 with 7 generators>,

<transformation semigroup of degree 3 with 7 generators>,
<transformation semigroup of degree 3 with 7 generators>,
<transformation semigroup of degree 3 with 7 generators>,
<transformation monoid of degree 3 with 5 generators>]

gap> MaximalSubsemigroups(S,
> rec(gens := true, D := DClass(S, Transformation([2, 2, 3]))));
[[Transformation([1, 1, 1]), Transformation([3, 3, 3]),

Transformation([2, 2, 2]), IdentityTransformation,

Semigroups 188

Transformation([2, 3, 1]), Transformation([2, 1])]]
gap> MaximalSubsemigroups(S,
> rec(contain := [Transformation([2, 3, 1])]));
[<transformation semigroup of degree 3 with 7 generators>,

<transformation monoid of degree 3 with 5 generators>]
gap> R := PrincipalFactor(
> DClass(FullTransformationMonoid(4), Transformation([2, 2])));
<Rees 0-matrix semigroup 6x4 over Group([(2,3,4), (2,4)])>
gap> MaximalSubsemigroups(R, rec(types := [5],
> contain := [RMSElement(R, 1, (), 1),
> RMSElement(R, 1, (2, 3), 2)]));
[<subsemigroup of 6x4 Rees 0-matrix semigroup with 10 generators>,

<subsemigroup of 6x4 Rees 0-matrix semigroup with 10 generators>,
<subsemigroup of 6x4 Rees 0-matrix semigroup with 10 generators>,
<subsemigroup of 6x4 Rees 0-matrix semigroup with 10 generators>]

11.11.2 NrMaximalSubsemigroups

▷ NrMaximalSubsemigroups(S) (attribute)

Returns: The number of maximal subsemigroups of S .
If S is a finite semigroup, then NrMaximalSubsemigroups returns the number of non-empty

maximal subsemigroups of S . The methods used by MaximalSubsemigroups are based on [GGR68],
and are described in [DMW18].

It can be significantly faster to find the number of maximal subsemigroups of a semigroup than to
find the maximal subsemigroups themselves.

Unless the maximal subsemigroups of S are already known, the command
NrMaximalSubsemigroups(S) simply calls the command MaximalSubsemigroups(S,
rec(number := true)).

For more information about searching for maximal subsemigroups of a finite semigroup in
the Semigroups package, and for information about the options available to alter the search, see
MaximalSubsemigroups (11.11.1). By supplying the additional option opts.number := true, the
number of maximal subsemigroups will be returned rather than the subsemigroups themselves.

Example
gap> S := FullTransformationSemigroup(3);
<full transformation monoid of degree 3>
gap> NrMaximalSubsemigroups(S);
5
gap> S := RectangularBand(3, 4);;
gap> NrMaximalSubsemigroups(S);
7
gap> R := PrincipalFactor(
> DClass(FullTransformationMonoid(4), Transformation([2, 2])));
<Rees 0-matrix semigroup 6x4 over Group([(2,3,4), (2,4)])>
gap> MaximalSubsemigroups(R, rec(number := true, types := [3, 4]));
10

11.11.3 IsMaximalSubsemigroup

▷ IsMaximalSubsemigroup(S, T) (operation)

Returns: true or false.

Semigroups 189

If S and T are semigroups, then IsMaximalSubsemigroup returns true if and only if T is a
maximal subsemigroup of S .

A maximal subsemigroup of S is a proper subsemigroup of S which is contained in no other proper
subsemigroup of S .

Example
gap> S := ZeroSemigroup(2);;
gap> IsMaximalSubsemigroup(S, Semigroup(MultiplicativeZero(S)));
true
gap> S := FullTransformationSemigroup(4);
<full transformation monoid of degree 4>
gap> T := Semigroup(Transformation([3, 4, 1, 2]),
> Transformation([1, 4, 2, 3]),
> Transformation([2, 1, 1, 3]));
<transformation semigroup of degree 4 with 3 generators>
gap> IsMaximalSubsemigroup(S, T);
true
gap> R := Semigroup(Transformation([3, 4, 1, 2]),
> Transformation([1, 4, 2, 2]),
> Transformation([2, 1, 1, 3]));
<transformation semigroup of degree 4 with 3 generators>
gap> IsMaximalSubsemigroup(S, R);
false

11.12 Attributes of transformations and transformation semigroups

11.12.1 ComponentRepsOfTransformationSemigroup

▷ ComponentRepsOfTransformationSemigroup(S) (attribute)

Returns: The representatives of components of a transformation semigroup.
This function returns the representatives of the components of the action of the transformation

semigroup S on the set of positive integers not greater than the degree of S .
The representatives are the least set of points such that every point can be reached from some

representative under the action of S .
Example

gap> S := Semigroup(
> Transformation([11, 11, 9, 6, 4, 1, 4, 1, 6, 7, 12, 5]),
> Transformation([12, 10, 7, 10, 4, 1, 12, 9, 11, 9, 1, 12]));;
gap> ComponentRepsOfTransformationSemigroup(S);
[2, 3, 8]

11.12.2 ComponentsOfTransformationSemigroup

▷ ComponentsOfTransformationSemigroup(S) (attribute)

Returns: The components of a transformation semigroup.
This function returns the components of the action of the transformation semigroup S on the set

of positive integers not greater than the degree of S ; the components of S partition this set.
Example

gap> S := Semigroup(
> Transformation([11, 11, 9, 6, 4, 1, 4, 1, 6, 7, 12, 5]),

Semigroups 190

> Transformation([12, 10, 7, 10, 4, 1, 12, 9, 11, 9, 1, 12]));;
gap> ComponentsOfTransformationSemigroup(S);
[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]]

11.12.3 CyclesOfTransformationSemigroup

▷ CyclesOfTransformationSemigroup(S) (attribute)

Returns: The cycles of a transformation semigroup.
This function returns the cycles, or strongly connected components, of the action of the transfor-

mation semigroup S on the set of positive integers not greater than the degree of S .
Example

gap> S := Semigroup(
> Transformation([11, 11, 9, 6, 4, 1, 4, 1, 6, 7, 12, 5]),
> Transformation([12, 10, 7, 10, 4, 1, 12, 9, 11, 9, 1, 12]));;
gap> CyclesOfTransformationSemigroup(S);
[[1, 11, 12, 5, 4, 6, 10, 7, 9], [2], [3], [8]]

11.12.4 DigraphOfAction (for a transformation semigroup, list, and action)

▷ DigraphOfAction(S, list, act) (operation)

Returns: A digraph, or fail.
If S is a transformation semigroup and list is list such that S acts on the items in list via the

function act , then DigraphOfAction returns a digraph representing the action of S on the items in
list and any further items output by act(list[i], S.j).

If act(list[i], S.j) is the k-th item in list , then in the output digraph there is an edge from
the vertex i to the vertex k labelled by j.

The values in list and the additional values generated are stored in the vertex labels of the output
digraph; see DigraphVertexLabels (Digraphs: DigraphVertexLabels), and the edge labels are
stored in the DigraphEdgeLabels (Digraphs: DigraphEdgeLabels)

The digraph returned by DigraphOfAction has no multiple edges; see IsMultiDigraph
(Digraphs: IsMultiDigraph).

Example
gap> S := Semigroup(Transformation([2, 4, 3, 4, 7, 1, 6]),
> Transformation([3, 3, 2, 3, 5, 1, 5]));
<transformation semigroup of degree 7 with 2 generators>
gap> list := Concatenation(List([1 .. 7], x -> [x]),
> Combinations([1 .. 7], 2));
[[1], [2], [3], [4], [5], [6], [7], [1, 2],

[1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [2, 3],
[2, 4], [2, 5], [2, 6], [2, 7], [3, 4], [3, 5],
[3, 6], [3, 7], [4, 5], [4, 6], [4, 7], [5, 6],
[5, 7], [6, 7]]

gap> D := DigraphOfAction(S, list, OnSets);
<immutable digraph with 28 vertices, 54 edges>
gap> OnSets([2, 5], S.1);
[4, 7]
gap> Position(DigraphVertexLabels(D), [2, 5]);
16
gap> DigraphVertexLabel(D, 25);

Semigroups 191

[4, 7]
gap> DigraphEdgeLabel(D, 16, 25);
1

11.12.5 DigraphOfActionOnPoints (for a transformation semigroup)

▷ DigraphOfActionOnPoints(S) (attribute)

▷ DigraphOfActionOnPoints(S, n) (attribute)

Returns: A digraph.
If S is a transformation semigroup and n is a non-negative integer, then

DigraphOfActionOnPoints(S, n) returns a digraph representing the OnPoints (Reference:
OnPoints) action of S on the set [1 .. n].

If the optional argument n is not specified, then by default the degree of S will be chosen for n ;
see DegreeOfTransformationSemigroup (Reference: DegreeOfTransformationSemigroup).

The digraph returned by DigraphOfActionOnPoints has n vertices, where the vertex i
corresponds to the point i. For each point i in [1 .. n], and for each generator f in
GeneratorsOfSemigroup(S), there is an edge from the vertex i to the vertex i ^ f. See
GeneratorsOfSemigroup (Reference: GeneratorsOfSemigroup) for further information.

Example
gap> S := Semigroup(Transformation([2, 4, 2, 4, 7, 1, 6]),
> Transformation([3, 3, 2, 3, 5, 1, 5]));
<transformation semigroup of degree 7 with 2 generators>
gap> D1 := DigraphOfActionOnPoints(S);
<immutable digraph with 7 vertices, 12 edges>
gap> OnPoints(2, S.1);
4
gap> D2 := DigraphOfActionOnPoints(S, 4);
<immutable digraph with 4 vertices, 7 edges>
gap> D2 = InducedSubdigraph(D1, [1 .. 4]);
true
gap> DigraphOfActionOnPoints(S, 5);
<immutable digraph with 5 vertices, 8 edges>

11.12.6 FixedPointsOfTransformationSemigroup (for a transformation semigroup)

▷ FixedPointsOfTransformationSemigroup(S) (attribute)

Returns: A set of positive integers.
If S is a transformation semigroup, then FixedPointsOfTransformationSemigroup(S) re-

turns the set of points i in [1 .. DegreeOfTransformationSemigroup(S)] such that i ^ f =
i for all f in S .

Example
gap> f := Transformation([1, 4, 2, 4, 3, 7, 7]);
Transformation([1, 4, 2, 4, 3, 7, 7])
gap> S := Semigroup(f);
<commutative transformation semigroup of degree 7 with 1 generator>
gap> FixedPointsOfTransformationSemigroup(S);
[1, 4, 7]

Semigroups 192

11.12.7 IsTransitive (for a transformation semigroup and a set)

▷ IsTransitive(S[, X]) (property)

▷ IsTransitive(S[, n]) (property)

Returns: true or false.
A transformation semigroup S is transitive or strongly connected on the set X if for every i, j in

X there is an element s in S such that i ^ s = j.
If the optional second argument is a positive integer n , then IsTransitive returns true if S is

transitive on [1 .. n], and false if it is not.
If the optional second argument is not provided, then the degree of S is used by default; see

DegreeOfTransformationSemigroup (Reference: DegreeOfTransformationSemigroup).
Example

gap> S := Semigroup([
> Bipartition([
> [1, 2], [3, 6, -2], [4, 5, -3, -4], [-1, -6], [-5]]),
> Bipartition([
> [1, -4], [2, 3, 4, 5], [6], [-1, -6], [-2, -3], [-5]])]);
<bipartition semigroup of degree 6 with 2 generators>
gap> AsSemigroup(IsTransformationSemigroup, S);
<transformation semigroup of size 11, degree 12 with 2 generators>
gap> IsTransitive(last);
false
gap> IsTransitive(AsSemigroup(Group((1, 2, 3))));
true

11.12.8 SmallestElementSemigroup

▷ SmallestElementSemigroup(S) (attribute)

▷ LargestElementSemigroup(S) (attribute)

Returns: A transformation.
These attributes return the smallest and largest element of the transformation semigroup S , respec-

tively. Smallest means the first element in the sorted set of elements of S and largest means the last
element in the set of elements.

It is not necessary to find the elements of the semigroup to determine the smallest or largest
element, and this function has considerable better performance than the equivalent Elements(S)[1]
and Elements(S)[Size(S)].

Example
gap> S := Monoid(
> Transformation([1, 4, 11, 11, 7, 2, 6, 2, 5, 5, 10]),
> Transformation([2, 4, 4, 2, 10, 5, 11, 11, 11, 6, 7]));
<transformation monoid of degree 11 with 2 generators>
gap> SmallestElementSemigroup(S);
IdentityTransformation
gap> LargestElementSemigroup(S);
Transformation([11, 11, 10, 10, 7, 6, 5, 6, 2, 2, 4])

11.12.9 CanonicalTransformation

▷ CanonicalTransformation(trans[, n]) (function)

Returns: A transformation.

Semigroups 193

If trans is a transformation, and n is a non-negative integer such that the restriction of trans
to [1 .. n] defines a transformation of [1 .. n], then CanonicalTransformation returns a
canonical representative of the transformation trans restricted to [1 .. n].

More specifically, let C(n) be a class of transformations of degree n such that AsDigraph returns
isomorphic digraphs for every pair of element elements in C(n). Recall that for a transformation
trans and integer n the function AsDigraph returns a digraph with n vertices and an edge with
source x and range x^trans for every x in [1 .. n]. See AsDigraph (Digraphs: AsDigraph for
a binary relation). Then CanonicalTransformation returns a canonical representative of the class
C(n) that contains trans .

Example
gap> x := Transformation([5, 1, 4, 1, 1]);
Transformation([5, 1, 4, 1, 1])
gap> y := Transformation([3, 3, 2, 3, 1]);
Transformation([3, 3, 2, 3, 1])
gap> CanonicalTransformation(x);
Transformation([3, 5, 2, 2, 2])
gap> CanonicalTransformation(y);
Transformation([3, 5, 2, 2, 2])

11.12.10 IsConnectedTransformationSemigroup (for a transformation semigroup)

▷ IsConnectedTransformationSemigroup(S) (property)

Returns: true or false.
A transformation semigroup S is connected if the digraph returned by the func-

tion DigraphOfActionOnPoints is connected. See IsConnectedDigraph (Digraphs:
IsConnectedDigraph) and DigraphOfActionOnPoints (11.12.5). The function
IsConnectedTransformationSemigroup returns true if the semigroup S is connected and
false otherwise.

Example
gap> S := Semigroup([
> Transformation([2, 4, 3, 4]),
> Transformation([3, 3, 2, 3, 3])]);
<transformation semigroup of degree 5 with 2 generators>
gap> IsConnectedTransformationSemigroup(S);
true

11.13 Attributes of partial perm semigroups

11.13.1 ComponentRepsOfPartialPermSemigroup

▷ ComponentRepsOfPartialPermSemigroup(S) (attribute)

Returns: The representatives of components of a partial perm semigroup.
This function returns the representatives of the components of the action of the partial perm semi-

group S on the set of positive integers where it is defined.
The representatives are the least set of points such that every point can be reached from some

representative under the action of S .
Example

gap> S := Semigroup([
> PartialPerm([1, 2, 3, 5, 6, 7, 8, 11, 12, 16, 19],

Semigroups 194

> [9, 18, 20, 11, 5, 16, 8, 19, 14, 13, 1]),
> PartialPerm([1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 16, 18, 19, 20],
> [13, 1, 8, 5, 4, 14, 11, 12, 9, 20, 2, 18, 7, 3, 19])]);;
gap> ComponentRepsOfPartialPermSemigroup(S);
[6, 10, 15, 17]

11.13.2 ComponentsOfPartialPermSemigroup

▷ ComponentsOfPartialPermSemigroup(S) (attribute)

Returns: The components of a partial perm semigroup.
This function returns the components of the action of the partial perm semigroup S on the set of

positive integers where it is defined; the components of S partition this set.
Example

gap> S := Semigroup([
> PartialPerm([1, 2, 3, 5, 6, 7, 8, 11, 12, 16, 19],
> [9, 18, 20, 11, 5, 16, 8, 19, 14, 13, 1]),
> PartialPerm([1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 16, 18, 19, 20],
> [13, 1, 8, 5, 4, 14, 11, 12, 9, 20, 2, 18, 7, 3, 19])]);;
gap> ComponentsOfPartialPermSemigroup(S);
[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 19, 20],

[15], [17]]

11.13.3 CyclesOfPartialPerm

▷ CyclesOfPartialPerm(x) (attribute)

Returns: The cycles of a partial perm.
This function returns the cycles, or strongly connected components, of the action of the partial

perm x on the set of positive integers where it is defined.
Example

gap> x := PartialPerm([3, 1, 4, 2, 5, 0, 0, 6, 0, 7]);
[8,6][10,7](1,3,4,2)(5)
gap> CyclesOfPartialPerm(x);
[[5], [1, 3, 4, 2]]

11.13.4 CyclesOfPartialPermSemigroup

▷ CyclesOfPartialPermSemigroup(S) (attribute)

Returns: The cycles of a partial perm semigroup.
This function returns the cycles, or strongly connected components, of the action of the partial

perm semigroup S on the set of positive integers where it is defined.
Example

gap> S := Semigroup([
> PartialPerm([1, 2, 3, 5, 6, 7, 8, 11, 12, 16, 19],
> [9, 18, 20, 11, 5, 16, 8, 19, 14, 13, 1]),
> PartialPerm([1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 16, 18, 19, 20],
> [13, 1, 8, 5, 4, 14, 11, 12, 9, 20, 2, 18, 7, 3, 19])]);;
gap> CyclesOfPartialPermSemigroup(S);
[[18, 7, 16], [1, 9, 12, 14, 2, 20, 19, 3, 8, 11], [4, 5]]

Semigroups 195

11.14 Attributes of Rees (0-)matrix semigroups

11.14.1 RZMSDigraph

▷ RZMSDigraph(R) (attribute)

Returns: A digraph.
If R is an n by m Rees 0-matrix semigroup M0[I,T,Λ;P] (so that I = {1,2, . . . ,n} and Λ =

{1,2, . . . ,m}) then RZMSDigraph returns a symmetric bipartite digraph with n+m vertices. An in-
dex i ∈ I corresponds to the vertex i and an index j ∈ Λ corresponds to the vertex j+n.

Two vertices v and w in RZMSDigraph(R) are adjacent if and only if v ∈ I, w−n ∈ Λ, and P[w -
n][v] ̸= 0.

This digraph is commonly called the Graham-Houghton graph of R .
Example

gap> R := PrincipalFactor(
> DClass(FullTransformationMonoid(5),
> Transformation([2, 4, 1, 5, 5])));
<Rees 0-matrix semigroup 10x5 over Group([(1,2,3,4), (1,2)])>
gap> gr := RZMSDigraph(R);
<immutable bipartite digraph with bicomponent sizes 10 and 5>
gap> e := DigraphEdges(gr)[1];
[1, 11]
gap> Matrix(R)[e[2] - 10][e[1]] <> 0;
true

11.14.2 RZMSConnectedComponents

▷ RZMSConnectedComponents(R) (attribute)

Returns: The connected components of a Rees 0-matrix semigroup.
If R is an n by m Rees 0-matrix semigroup M0[I,T,Λ;P] (so that I = {1,2, . . . ,n} and Λ =

{1,2, . . . ,m}) then RZMSConnectedComponents returns the connected components of R .
Connectedness is an equivalence relation on the indices of R : the equivalence classes of the relation

are called the connected components of R , and two indices in I ∪Λ are connected if and only if their
corresponding vertices in RZMSDigraph(R) are connected (see RZMSDigraph (11.14.1)). If R has n
connected components, then RZMSConnectedComponents will return a list of pairs:

[[I1,Λ1], . . ., [Ik,Λk]]
where I = I1 ⊔ ·· · ⊔ Ik, Λ = Λ1 ⊔ ·· · ⊔Λk, and for each l the set Il ∪Λl is a connected component

of R . Note that at most one of Il and Λl is possibly empty. The ordering of the connected components
in the result in unspecified.

Example
gap> R := ReesZeroMatrixSemigroup(SymmetricGroup(5),
> [[(), 0, (1, 3), (4, 5), 0],
> [0, (), 0, 0, (1, 3, 4, 5)],
> [0, 0, (1, 5)(2, 3), 0, 0],
> [0, (2, 3)(1, 4), 0, 0, 0]]);
<Rees 0-matrix semigroup 5x4 over Sym([1 .. 5])>
gap> RZMSConnectedComponents(R);
[[[1, 3, 4], [1, 3]], [[2, 5], [2, 4]]]

Semigroups 196

11.15 Attributes of inverse semigroups

11.15.1 NaturalLeqInverseSemigroup

▷ NaturalLeqInverseSemigroup(S) (attribute)

Returns: An function.
NaturalLeqInverseSemigroup returns a function that, when given two elements x, y of the

inverse semigroup S , returns true if x is less than or equal to y in the natural partial order on S .
Example

gap> S := Monoid(Transformation([1, 3, 4, 4]),
> Transformation([1, 4, 2, 4]));
<transformation monoid of degree 4 with 2 generators>
gap> IsInverseSemigroup(S);
true
gap> Size(S);
6
gap> NaturalPartialOrder(S);
[[2, 5, 6], [6], [6], [6], [6], []]

11.15.2 JoinIrreducibleDClasses

▷ JoinIrreducibleDClasses(S) (attribute)

Returns: A list of D-classes.
JoinIrreducibleDClasses returns a list of the join irreducible D-classes of the inverse semi-

group of partial permutations, block bijections or partial permutation bipartitions S .
A join irreducible D-class is a D-class containing only join irreducible elements. See

IsJoinIrreducible (12.2.7). If a D-class contains one join irreducible element, then all of the
elements in the D-class are join irreducible.

Example
gap> S := SymmetricInverseSemigroup(3);
<symmetric inverse monoid of degree 3>
gap> JoinIrreducibleDClasses(S);
[<Green’s D-class: <identity partial perm on [2]>>]
gap> T := InverseSemigroup([
> PartialPerm([1, 2, 4, 3]),
> PartialPerm([1]),
> PartialPerm([0, 2])]);
<inverse partial perm semigroup of rank 4 with 3 generators>
gap> JoinIrreducibleDClasses(T);
[<Green’s D-class: <identity partial perm on [1, 2, 3, 4]>>,

<Green’s D-class: <identity partial perm on [1]>>,
<Green’s D-class: <identity partial perm on [2]>>]

gap> D := DualSymmetricInverseSemigroup(3);
<inverse block bijection monoid of degree 3 with 3 generators>
gap> JoinIrreducibleDClasses(D);
[<Green’s D-class: <block bijection: [1, 2, -1, -2], [3, -3]>>]

11.15.3 MajorantClosure

▷ MajorantClosure(S, T) (operation)

Returns: A majorantly closed list of elements.

Semigroups 197

MajorantClosure returns a majorantly closed subset of an inverse semigroup of partial permu-
tations, block bijections or partial permutation bipartitions, S , as a list. See IsMajorantlyClosed
(12.2.8).

The result contains all elements of S which are greater than or equal to any element of T (with re-
spect to the natural partial order NaturalLeqPartialPerm (Reference: NaturalLeqPartialPerm)).
In particular, the result is a superset of T .

Note that T can be a subset of S or a subsemigroup of S .
Example

gap> S := SymmetricInverseSemigroup(4);
<symmetric inverse monoid of degree 4>
gap> T := [PartialPerm([1, 0, 3, 0])];
[<identity partial perm on [1, 3]>]
gap> U := MajorantClosure(S, T);
[<identity partial perm on [1, 3]>,

<identity partial perm on [1, 2, 3]>, [2,4](1)(3), [4,2](1)(3),
<identity partial perm on [1, 3, 4]>,
<identity partial perm on [1, 2, 3, 4]>, (1)(2,4)(3)]

gap> B := InverseSemigroup([
> Bipartition([[1, -2], [2, -1], [3, -3], [4, 5, -4, -5]]),
> Bipartition([[1, -3], [2, -4], [3, -2], [4, -1], [5, -5]])]);;
gap> T := [Bipartition([[1, -2], [2, 3, 5, -1, -3, -5], [4, -4]]),
> Bipartition([[1, -4], [2, 3, 5, -1, -3, -5], [4, -2]])];;
gap> IsMajorantlyClosed(B, T);
false
gap> MajorantClosure(B, T);
[<block bijection: [1, -2], [2, 3, 5, -1, -3, -5], [4, -4]>,

<block bijection: [1, -4], [2, 3, 5, -1, -3, -5], [4, -2]>,
<block bijection: [1, -2], [2, 5, -1, -5], [3, -3], [4, -4]>

, <block bijection: [1, -2], [2, -1], [3, 5, -3, -5],
[4, -4]>,

<block bijection: [1, -4], [2, 5, -3, -5], [3, -1], [4, -2]>
, <block bijection: [1, -4], [2, -3], [3, 5, -1, -5],
[4, -2]>, <block bijection: [1, -4], [2, -3], [3, -1],
[4, -2], [5, -5]>]

gap> IsMajorantlyClosed(B, last);
true

11.15.4 Minorants

▷ Minorants(S, f) (operation)

Returns: A list of elements.
Minorants takes an element f from an inverse semigroup of partial permutations, block bijections

or partial permutation bipartitions S , and returns a list of the minorants of f in S .
A minorant of f is an element of S which is strictly less than f in the natural partial order of S .

See NaturalLeqPartialPerm (Reference: NaturalLeqPartialPerm).
Example

gap> S := SymmetricInverseSemigroup(3);
<symmetric inverse monoid of degree 3>
gap> x := Elements(S)[13];
[1,3](2)

Semigroups 198

gap> Minorants(S, x);
[<empty partial perm>, [1,3], <identity partial perm on [2]>]
gap> x := PartialPerm([3, 2, 4, 0]);
[1,3,4](2)
gap> S := InverseSemigroup(x);
<inverse partial perm semigroup of rank 4 with 1 generator>
gap> Minorants(S, x);
[<identity partial perm on [2]>, [1,3](2), [3,4](2)]

11.15.5 PrimitiveIdempotents

▷ PrimitiveIdempotents(S) (attribute)

Returns: A list of elements.
An idempotent in an inverse semigroup S is primitive if it is non-zero and minimal with respect

to the NaturalPartialOrder (Reference: NaturalPartialOrder) on S . PrimitiveIdempotents
returns the list of primitive idempotents in the inverse semigroup S .

Example
gap> S := InverseMonoid(
> PartialPerm([1], [4]),
> PartialPerm([1, 2, 3], [2, 1, 3]),
> PartialPerm([1, 2, 3], [3, 1, 2]));;
gap> MultiplicativeZero(S);
<empty partial perm>
gap> Set(PrimitiveIdempotents(S));
[<identity partial perm on [1]>, <identity partial perm on [2]>,

<identity partial perm on [3]>, <identity partial perm on [4]>]
gap> S := DualSymmetricInverseMonoid(4);
<inverse block bijection monoid of degree 4 with 3 generators>
gap> Set(PrimitiveIdempotents(S));
[<block bijection: [1, 2, 3, -1, -2, -3], [4, -4]>,

<block bijection: [1, 2, 4, -1, -2, -4], [3, -3]>,
<block bijection: [1, 2, -1, -2], [3, 4, -3, -4]>,
<block bijection: [1, 3, 4, -1, -3, -4], [2, -2]>,
<block bijection: [1, 3, -1, -3], [2, 4, -2, -4]>,
<block bijection: [1, 4, -1, -4], [2, 3, -2, -3]>,
<block bijection: [1, -1], [2, 3, 4, -2, -3, -4]>]

11.15.6 RightCosetsOfInverseSemigroup

▷ RightCosetsOfInverseSemigroup(S, T) (operation)

Returns: A list of lists of elements.
RightCosetsOfInverseSemigroup takes a majorantly closed inverse subsemigroup T of an in-

verse semigroup of partial permutations, block bijections or partial permutation bipartitions S . See
IsMajorantlyClosed (12.2.8). The result is a list of the right cosets of T in S .

For s ∈ S, the right coset T s is defined if and only if ss−1 ∈ T , in which case it is defined to be the
majorant closure of the set T s. See MajorantClosure (11.15.3). Distinct cosets are disjoint but do
not necessarily partition S .

Example
gap> S := SymmetricInverseSemigroup(3);
<symmetric inverse monoid of degree 3>

Semigroups 199

gap> T := InverseSemigroup(MajorantClosure(S, [PartialPerm([1])]));
<inverse partial perm monoid of rank 3 with 6 generators>
gap> IsMajorantlyClosed(S, T);
true
gap> RC := RightCosetsOfInverseSemigroup(S, T);
[[<identity partial perm on [1]>,

<identity partial perm on [1, 2]>, [2,3](1), [3,2](1),
<identity partial perm on [1, 3]>,
<identity partial perm on [1, 2, 3]>, (1)(2,3)],

[[1,3], [2,1,3], [1,3](2), (1,3), [1,3,2], (1,3,2), (1,3)(2)],
[[1,2], (1,2), [1,2,3], [3,1,2], [1,2](3), (1,2)(3), (1,2,3)]]

11.15.7 SameMinorantsSubgroup

▷ SameMinorantsSubgroup(H) (attribute)

Returns: A list of elements of the group H -class H .
Given a group H -class H in an inverse semigroup of partial permutations, block bijections or

partial permutation bipartitions S, SameMinorantsSubgroup returns a list of the elements of H which
have the same strict minorants as the identity element of H . A strict minorant of x in H is an element
of S which is less than x (with respect to the natural partial order), but is not equal to x.

The returned list of elements of H describe a subgroup of H .
Example

gap> S := SymmetricInverseSemigroup(3);
<symmetric inverse monoid of degree 3>
gap> H := GroupHClass(DClass(S, PartialPerm([1, 2, 3])));
<Green’s H-class: <identity partial perm on [1, 2, 3]>>
gap> Elements(H);
[<identity partial perm on [1, 2, 3]>, (1)(2,3), (1,2)(3),

(1,2,3), (1,3,2), (1,3)(2)]
gap> SameMinorantsSubgroup(H);
[<identity partial perm on [1, 2, 3]>]
gap> T := InverseSemigroup(
> PartialPerm([1, 2, 3, 4], [1, 2, 4, 3]),
> PartialPerm([1], [1]), PartialPerm([2], [2]));
<inverse partial perm semigroup of rank 4 with 3 generators>
gap> Elements(T);
[<empty partial perm>, <identity partial perm on [1]>,

<identity partial perm on [2]>,
<identity partial perm on [1, 2, 3, 4]>, (1)(2)(3,4)]

gap> x := GroupHClass(DClass(T, PartialPerm([1, 2, 3, 4])));
<Green’s H-class: <identity partial perm on [1, 2, 3, 4]>>
gap> Elements(x);
[<identity partial perm on [1, 2, 3, 4]>, (1)(2)(3,4)]
gap> AsSet(SameMinorantsSubgroup(x));
[<identity partial perm on [1, 2, 3, 4]>, (1)(2)(3,4)]

11.15.8 SmallerDegreePartialPermRepresentation

▷ SmallerDegreePartialPermRepresentation(S) (attribute)

Returns: An isomorphism.

Semigroups 200

SmallerDegreePartialPermRepresentation attempts to find an isomorphism from the in-
verse semigroup S to an inverse semigroup of partial permutations with small degree. If S is already
a partial permutation semigroup, and the function cannot reduce the degree, the identity mapping is
returned.

There is no guarantee that the smallest possible degree representation is returned. For more infor-
mation see [Sch92].

Example
gap> S := InverseSemigroup(PartialPerm([2, 1, 4, 3, 6, 5, 8, 7]));
<partial perm group of rank 8 with 1 generator>
gap> Elements(S);
[<identity partial perm on [1, 2, 3, 4, 5, 6, 7, 8]>,

(1,2)(3,4)(5,6)(7,8)]
gap> iso := SmallerDegreePartialPermRepresentation(S);;
gap> Source(iso) = S;
true
gap> R := Range(iso);
<partial perm group of rank 2 with 1 generator>
gap> Elements(R);
[<identity partial perm on [1, 2]>, (1,2)]
gap> S := DualSymmetricInverseMonoid(5);;
gap> T := Range(IsomorphismPartialPermSemigroup(S));
<inverse partial perm monoid of size 6721, rank 6721 with 3
generators>

gap> SmallerDegreePartialPermRepresentation(T);
<inverse partial perm monoid of size 6721, rank 6721 with 3

generators> -> <inverse partial perm monoid of rank 30 with 3
generators>

11.15.9 VagnerPrestonRepresentation

▷ VagnerPrestonRepresentation(S) (attribute)

Returns: An isomorphism to an inverse semigroup of partial permutations.
VagnerPrestonRepresentation returns an isomorphism from an inverse semigroup S where

the elements of S have a unique semigroup inverse accessible via Inverse (Reference: Inverse), to
the inverse semigroup of partial permutations T of degree equal to the size of S , which is obtained
using the Vagner-Preston Representation Theorem.

More precisely, if f : S → T is the isomorphism returned by
VagnerPrestonRepresentation(S) and x is in S , then f (x) is the partial permutation with
domain Sx−1 and range Sx−1x defined by f (x) : sx−1 7→ sx−1x.

In many cases, it is possible to find a smaller degree representation than that provided by
VagnerPrestonRepresentation using IsomorphismPartialPermSemigroup (Reference: Iso-
morphismPartialPermSemigroup) or SmallerDegreePartialPermRepresentation (11.15.8).

Example
gap> S := SymmetricInverseSemigroup(2);
<symmetric inverse monoid of degree 2>
gap> Size(S);
7
gap> iso := VagnerPrestonRepresentation(S);
<symmetric inverse monoid of degree 2> ->
<inverse partial perm monoid of rank 7 with 2 generators>

Semigroups 201

gap> RespectsMultiplication(iso);
true
gap> inv := InverseGeneralMapping(iso);;
gap> ForAll(S, x -> (x ^ iso) ^ inv = x);
true
gap> V := InverseSemigroup(
> Bipartition([[1, -4], [2, -1], [3, -5], [4], [5], [-2], [-3]]),
> Bipartition([[1, -5], [2, -1], [3, -3], [4], [5], [-2], [-4]]),
> Bipartition([[1, -2], [2, -4], [3, -5], [4, -1], [5, -3]]));
<inverse bipartition semigroup of degree 5 with 3 generators>
gap> IsInverseSemigroup(V);
true
gap> VagnerPrestonRepresentation(V);
<inverse bipartition semigroup of size 394, degree 5 with 3

generators> -> <inverse partial perm semigroup of rank 394 with 5
generators>

11.15.10 CharacterTableOfInverseSemigroup

▷ CharacterTableOfInverseSemigroup(S) (attribute)

Returns: The character table of the inverse semigroup S and a list of conjugacy class representa-
tives of S .

Returns a list with two entries: the first entry being the character table of the inverse semigroup S
as a matrix, while the second entry is a list of conjugacy class representatives of S .

The order of the columns in the character table matrix follows the order of the conjugacy class
representatives list. The conjugacy representatives are grouped by D-class and then sorted by rank.
Also, as is typical of character tables, the rows of the matrix correspond to the irreducible characters
and the columns correspond to the conjugacy classes.

This function was contributed by Jhevon Smith and Ben Steinberg.
Example

gap> S := InverseMonoid([
> PartialPerm([1, 2], [3, 1]),
> PartialPerm([1, 2, 3], [1, 3, 4]),
> PartialPerm([1, 2, 3], [2, 4, 1]),
> PartialPerm([1, 3, 4], [3, 4, 1])]);;
gap> CharacterTableOfInverseSemigroup(S);
[[[1, 0, 0, 0, 0, 0, 0, 0], [3, 1, 1, 1, 0, 0, 0, 0],

[3, 1, E(3), E(3)^2, 0, 0, 0, 0],
[3, 1, E(3)^2, E(3), 0, 0, 0, 0], [6, 3, 0, 0, 1, -1, 0, 0],
[6, 3, 0, 0, 1, 1, 0, 0], [4, 3, 0, 0, 2, 0, 1, 0],
[1, 1, 1, 1, 1, 1, 1, 1]],

[<identity partial perm on [1, 2, 3, 4]>,
<identity partial perm on [1, 3, 4]>, (1,3,4), (1,4,3),
<identity partial perm on [1, 3]>, (1,3),
<identity partial perm on [3]>, <empty partial perm>]]

gap> S := SymmetricInverseMonoid(4);;
gap> CharacterTableOfInverseSemigroup(S);
[[[1, -1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0],

[3, -1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0],
[2, 0, -1, 2, 0, 0, 0, 0, 0, 0, 0, 0],
[3, 1, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0],

Semigroups 202

[1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
[4, -2, 1, 0, 0, 1, -1, 1, 0, 0, 0, 0],
[8, 0, -1, 0, 0, 2, 0, -1, 0, 0, 0, 0],
[4, 2, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0],
[6, 0, 0, -2, 0, 3, -1, 0, 1, -1, 0, 0],
[6, 2, 0, 2, 0, 3, 1, 0, 1, 1, 0, 0],
[4, 2, 1, 0, 0, 3, 1, 0, 2, 0, 1, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]],

[<identity partial perm on [1, 2, 3, 4]>, (1)(2)(3,4),
(1)(2,3,4), (1,2)(3,4), (1,2,3,4),
<identity partial perm on [1, 2, 3]>, (1)(2,3), (1,2,3),
<identity partial perm on [2, 3]>, (2,3),
<identity partial perm on [1]>, <empty partial perm>]]

11.15.11 EUnitaryInverseCover

▷ EUnitaryInverseCover(S) (attribute)

Returns: A homomorphism between semigroups.
If the argument S is an inverse semigroup then this function returns a finite E-unitary inverse cover

of S . A finite E-unitary cover of S is a surjective idempotent separating homomorphism from a finite
semigroup satisfying IsEUnitaryInverseSemigroup (12.2.3) to S . A semigroup homomorphism is
said to be idempotent separating if no two idempotents are mapped to the same element of the image.

Example
gap> S := InverseSemigroup([PartialPermNC([1, 2], [2, 1]),
> PartialPermNC([1], [1])]);
<inverse partial perm semigroup of rank 2 with 2 generators>
gap> cov := EUnitaryInverseCover(S);
<inverse partial perm semigroup of rank 4 with 2 generators> ->
<inverse partial perm semigroup of rank 2 with 2 generators>
gap> IsEUnitaryInverseSemigroup(Source(cov));
true
gap> S = Range(cov);
true

11.16 Nambooripad partial order

11.16.1 NambooripadLeqRegularSemigroup

▷ NambooripadLeqRegularSemigroup(S) (attribute)

Returns: A function.
NambooripadLeqRegularSemigroup returns a function that, when given two elements x, y of

the regular semigroup S , returns true if x is less than or equal to y in the Nambooripad partial order
on S . See also NambooripadPartialOrder (11.16.2).

Example
gap> S := BrauerMonoid(3);
<regular bipartition *-monoid of degree 3 with 3 generators>
gap> IsRegularSemigroup(S);
true
gap> Size(S);

Semigroups 203

15
gap> NambooripadPartialOrder(S);
[[], [], [], [], [], [], [], [], [],

[1, 2, 3, 4, 5, 6, 7, 8, 9], [1, 2, 3, 4, 5, 6, 7, 8, 9],
[1, 2, 3, 4, 5, 6, 7, 8, 9], [1, 2, 3, 4, 5, 6, 7, 8, 9],
[1, 2, 3, 4, 5, 6, 7, 8, 9], [1, 2, 3, 4, 5, 6, 7, 8, 9]]

gap> NambooripadLeqRegularSemigroup(S)(Elements(S)[3], Elements(S)[9]);
false
gap> NambooripadLeqRegularSemigroup(S)(Elements(S)[2], Elements(S)[15]);
true

11.16.2 NambooripadPartialOrder

▷ NambooripadPartialOrder(S) (attribute)

Returns: The Nambooripad partial order on a regular semigroup.
The Nambooripad partial order ≤ on a regular semigroup S is defined by s≤t if the principal

right ideal of S generated by s is contained in the principal right ideal of S generated by t and there is
an idempotent e in the R-class of s such that s=et. The Nambooripad partial order coincides with
the natural partial order when considering inverse semigroups NaturalPartialOrder (Reference:
NaturalPartialOrder).

NambooripadPartialOrder returns the Nambooripad partial order on the regular semigroup
S as a list of sets of positive integers where entry i in NambooripadPartialOrder(S) is the
set of positions in Elements(S) of elements which are less than Elements(S)[i]. See also
NambooripadLeqRegularSemigroup (11.16.1).

Example
gap> S := BrauerMonoid(3);
<regular bipartition *-monoid of degree 3 with 3 generators>
gap> IsRegularSemigroup(S);
true
gap> Size(S);
15
gap> NambooripadPartialOrder(S);
[[], [], [], [], [], [], [], [], [],

[1, 2, 3, 4, 5, 6, 7, 8, 9], [1, 2, 3, 4, 5, 6, 7, 8, 9],
[1, 2, 3, 4, 5, 6, 7, 8, 9], [1, 2, 3, 4, 5, 6, 7, 8, 9],
[1, 2, 3, 4, 5, 6, 7, 8, 9], [1, 2, 3, 4, 5, 6, 7, 8, 9]]

gap> NambooripadLeqRegularSemigroup(S)(Elements(S)[3], Elements(S)[9]);
false
gap> NambooripadLeqRegularSemigroup(S)(Elements(S)[2], Elements(S)[15]);
true

Chapter 12

Properties of semigroups

In this chapter we describe the methods that are available in Semigroups for determining various
properties of a semigroup or monoid.

12.1 Arbitrary semigroups

In this section we describe the properties of an arbitrary semigroup or monoid that can be determined
using the Semigroups package.

12.1.1 IsBand

▷ IsBand(S) (property)

Returns: true or false.
IsBand returns true if every element of the semigroup S is an idempotent and false if it is not.

An inverse semigroup is band if and only if it is a semilattice; see IsSemilattice (12.1.21).
Example

gap> S := Semigroup(
> Transformation([1, 1, 1, 4, 4, 4, 7, 7, 7, 1]),
> Transformation([2, 2, 2, 5, 5, 5, 8, 8, 8, 2]),
> Transformation([3, 3, 3, 6, 6, 6, 9, 9, 9, 3]),
> Transformation([1, 1, 1, 4, 4, 4, 7, 7, 7, 4]),
> Transformation([1, 1, 1, 4, 4, 4, 7, 7, 7, 7]));;
gap> IsBand(S);
true
gap> S := InverseSemigroup(
> PartialPerm([1, 2, 3, 4, 8, 9], [5, 8, 7, 6, 9, 1]),
> PartialPerm([1, 3, 4, 7, 8, 9, 10], [2, 3, 8, 7, 10, 6, 1]));;
gap> IsBand(S);
false
gap> IsBand(IdempotentGeneratedSubsemigroup(S));
true
gap> S := PartitionMonoid(4);
<regular bipartition *-monoid of size 4140, degree 4 with 4
generators>

gap> M := MinimalIdeal(S);
<simple bipartition *-semigroup ideal of degree 4 with 1 generator>

204

Semigroups 205

gap> IsBand(M);
true

12.1.2 IsBlockGroup

▷ IsBlockGroup(S) (property)

Returns: true or false.
IsBlockGroup returns true if the semigroup S is a block group and false if it is not.
A semigroup S is a block group if every L -class and every R-class of S contains at most one

idempotent. Every semigroup of partial permutations is a block group.
Example

gap> S := Semigroup(Transformation([5, 6, 7, 3, 1, 4, 2, 8]),
> Transformation([3, 6, 8, 5, 7, 4, 2, 8]));;
gap> IsBlockGroup(S);
true
gap> S := Semigroup(
> Transformation([2, 1, 10, 4, 5, 9, 7, 4, 8, 4]),
> Transformation([10, 7, 5, 6, 1, 3, 9, 7, 10, 2]));;
gap> IsBlockGroup(S);
false
gap> S := Semigroup(PartialPerm([1, 2], [5, 4]),
> PartialPerm([1, 2, 3], [1, 2, 5]),
> PartialPerm([1, 2, 3], [2, 1, 5]),
> PartialPerm([1, 3, 4], [3, 1, 2]),
> PartialPerm([1, 3, 4, 5], [5, 4, 3, 2]));;
gap> T := AsSemigroup(IsBlockBijectionSemigroup, S);
<block bijection semigroup of degree 6 with 5 generators>
gap> IsBlockGroup(T);
true
gap> IsBlockGroup(AsSemigroup(IsBipartitionSemigroup, S));
true
gap> S := Semigroup(
> Bipartition([[1, -2], [2, -3], [3, -4], [4, -1]]),
> Bipartition([[1, -2], [2, -1], [3, -3], [4, -4]]),
> Bipartition([[1, 2, -3], [3, -1, -2], [4, -4]]),
> Bipartition([[1, -1], [2, -2], [3, -3], [4, -4]]));;
gap> IsBlockGroup(S);
true

12.1.3 IsCommutativeSemigroup

▷ IsCommutativeSemigroup(S) (property)

Returns: true or false.
IsCommutativeSemigroup returns true if the semigroup S is commutative and false if it is not.

The function IsCommutative (Reference: IsCommutative) can also be used to test if a semigroup
is commutative.

A semigroup S is commutative if x * y = y * x for all x, y in S .
Example

gap> S := Semigroup(Transformation([2, 4, 5, 3, 7, 8, 6, 9, 1]),
> Transformation([3, 5, 6, 7, 8, 1, 9, 2, 4]));;

Semigroups 206

gap> IsCommutativeSemigroup(S);
true
gap> IsCommutative(S);
true
gap> S := InverseSemigroup(
> PartialPerm([1, 2, 3, 4, 5, 6], [2, 5, 1, 3, 9, 6]),
> PartialPerm([1, 2, 3, 4, 6, 8], [8, 5, 7, 6, 2, 1]));;
gap> IsCommutativeSemigroup(S);
false
gap> S := Semigroup(
> Bipartition([[1, 2, 3, 6, 7, -1, -4, -6],
> [4, 5, 8, -2, -3, -5, -7, -8]]),
> Bipartition([[1, 2, -3, -4], [3, -5], [4, -6], [5, -7],
> [6, -8], [7, -1], [8, -2]]));;
gap> IsCommutativeSemigroup(S);
true

12.1.4 IsCompletelyRegularSemigroup

▷ IsCompletelyRegularSemigroup(S) (property)

Returns: true or false.
IsCompletelyRegularSemigroup returns true if every element of the semigroup S is contained

in a subgroup of S .
An inverse semigroup is completely regular if and only if it is a Clifford semigroup; see

IsCliffordSemigroup (12.2.1).
Example

gap> S := Semigroup(Transformation([1, 2, 4, 3, 6, 5, 4]),
> Transformation([1, 2, 5, 6, 3, 4, 5]),
> Transformation([2, 1, 2, 2, 2, 2, 2]));;
gap> IsCompletelyRegularSemigroup(S);
true
gap> IsInverseSemigroup(S);
true
gap> T := Range(IsomorphismPartialPermSemigroup(S));;
gap> IsCompletelyRegularSemigroup(T);
true
gap> IsCliffordSemigroup(T);
true
gap> S := Semigroup(
> Bipartition([[1, 3, -4], [2, 4, -1, -2], [-3]]),
> Bipartition([[1, -1], [2, 3, 4, -3], [-2, -4]]));;
gap> IsCompletelyRegularSemigroup(S);
false

12.1.5 IsCongruenceFreeSemigroup

▷ IsCongruenceFreeSemigroup(S) (property)

Returns: true or false.
IsCongruenceFreeSemigroup returns true if the semigroup S is a congruence-free semigroup

and false if it is not.

Semigroups 207

A semigroup S is congruence-free if it has no non-trivial proper congruences.
A semigroup with zero is congruence-free if and only if it is isomorphic to a regular Rees 0-matrix

semigroup R whose underlying semigroup is the trivial group, no two rows of the matrix of R are
identical, and no two columns are identical; see Theorem 3.7.1 in [How95].

A semigroup without zero is congruence-free if and only if it is a simple group or has order 2; see
Theorem 3.7.2 in [How95].

Example
gap> S := Semigroup(Transformation([4, 2, 3, 3, 4]));;
gap> IsCongruenceFreeSemigroup(S);
true
gap> S := Semigroup(Transformation([2, 2, 4, 4]),
> Transformation([5, 3, 4, 4, 6, 6]));;
gap> IsCongruenceFreeSemigroup(S);
false

12.1.6 IsSurjectiveSemigroup

▷ IsSurjectiveSemigroup(S) (property)

Returns: true or false.
A semigroup is surjective if each of its elements can be written as a product of two elements in the

semigroup. IsSurjectiveSemigroup(S) returns true if the semigroup S is surjective, and false
if it is not.

See also IndecomposableElements (11.7.6).
Note that every monoid, and every regular semigroup, is surjective.

Example
gap> S := FullTransformationMonoid(100);
<full transformation monoid of degree 100>
gap> IsSurjectiveSemigroup(S);
true
gap> F := FreeSemigroup(3);;
gap> P := F / [[F.1, F.2 * F.1], [F.3 ^ 3, F.3]];
<fp semigroup with 3 generators and 2 relations of length 10>
gap> IsSurjectiveSemigroup(P);
false
gap> I := SingularTransformationMonoid(5);
<regular transformation semigroup ideal of degree 5 with 1 generator>
gap> IsSurjectiveSemigroup(I);
true
gap> M := MonogenicSemigroup(IsBipartitionSemigroup, 3, 2);
<commutative non-regular block bijection semigroup of size 4,
degree 6 with 1 generator>

gap> IsSurjectiveSemigroup(M);
false

12.1.7 IsGroupAsSemigroup

▷ IsGroupAsSemigroup(S) (property)

Returns: true or false.
IsGroupAsSemigroup returns true if and only if the semigroup S is mathematically a group.

Semigroups 208

Example
gap> S := Semigroup(Transformation([2, 4, 5, 3, 7, 8, 6, 9, 1]),
> Transformation([3, 5, 6, 7, 8, 1, 9, 2, 4]));;
gap> IsGroupAsSemigroup(S);
true
gap> G := SymmetricGroup(5);;
gap> IsGroupAsSemigroup(G);
true
gap> S := AsSemigroup(IsPartialPermSemigroup, G);
<partial perm group of size 120, rank 5 with 2 generators>
gap> IsGroupAsSemigroup(S);
true
gap> G := SymmetricGroup([1, 2, 10]);;
gap> T := AsSemigroup(IsBlockBijectionSemigroup, G);
<inverse block bijection semigroup of size 6, degree 11 with 2
generators>

gap> IsGroupAsSemigroup(T);
true

12.1.8 IsIdempotentGenerated

▷ IsIdempotentGenerated(S) (property)

▷ IsSemiband(S) (property)

Returns: true or false.
IsIdempotentGenerated and IsSemiband return true if the semigroup S is gener-

ated by its idempotents and false if it is not. See also Idempotents (11.10.1) and
IdempotentGeneratedSubsemigroup (11.10.3).

An inverse semigroup is idempotent-generated if and only if it is a semilattice; see
IsSemilattice (12.1.21).

The terms semiband and idempotent-generated are synonymous in this context.
Example

gap> S := SingularTransformationSemigroup(4);
<regular transformation semigroup ideal of degree 4 with 1 generator>
gap> IsIdempotentGenerated(S);
true
gap> S := SingularBrauerMonoid(5);
<regular bipartition *-semigroup ideal of degree 5 with 1 generator>
gap> IsIdempotentGenerated(S);
true

12.1.9 IsLeftSimple

▷ IsLeftSimple(S) (property)

▷ IsRightSimple(S) (property)

Returns: true or false.
IsLeftSimple and IsRightSimple returns true if the semigroup S has only one L -class or

one R-class, respectively, and returns false if it has more than one.
An inverse semigroup is left simple if and only if it is right simple if and only if it is a group; see

IsGroupAsSemigroup (12.1.7).

Semigroups 209

Example
gap> S := Semigroup(Transformation([6, 7, 9, 6, 8, 9, 8, 7, 6]),
> Transformation([6, 8, 9, 6, 8, 8, 7, 9, 6]),
> Transformation([6, 8, 9, 7, 8, 8, 7, 9, 6]),
> Transformation([6, 9, 8, 6, 7, 9, 7, 8, 6]),
> Transformation([6, 9, 9, 6, 8, 8, 7, 9, 6]),
> Transformation([6, 9, 9, 7, 8, 8, 6, 9, 7]),
> Transformation([7, 8, 8, 7, 9, 9, 7, 8, 6]),
> Transformation([7, 9, 9, 7, 6, 9, 6, 8, 7]),
> Transformation([8, 7, 6, 9, 8, 6, 8, 7, 9]),
> Transformation([9, 6, 6, 7, 8, 8, 7, 6, 9]),
> Transformation([9, 6, 6, 7, 9, 6, 9, 8, 7]),
> Transformation([9, 6, 7, 9, 6, 6, 9, 7, 8]),
> Transformation([9, 6, 8, 7, 9, 6, 9, 8, 7]),
> Transformation([9, 7, 6, 8, 7, 7, 9, 6, 8]),
> Transformation([9, 7, 7, 8, 9, 6, 9, 7, 8]),
> Transformation([9, 8, 8, 9, 6, 7, 6, 8, 9]));;
gap> IsRightSimple(S);
false
gap> IsLeftSimple(S);
true
gap> IsGroupAsSemigroup(S);
false
gap> NrRClasses(S);
16
gap> S := BrauerMonoid(6);;
gap> S := Semigroup(RClass(S, Random(MinimalDClass(S))));;
gap> IsLeftSimple(S);
false
gap> IsRightSimple(S);
true

12.1.10 IsLeftZeroSemigroup

▷ IsLeftZeroSemigroup(S) (property)

Returns: true or false.
IsLeftZeroSemigroup returns true if the semigroup S is a left zero semigroup and false if it

is not.
A semigroup is a left zero semigroup if x*y=x for all x,y. An inverse semigroup is a left zero

semigroup if and only if it is trivial.
Example

gap> S := Semigroup(Transformation([2, 1, 4, 3, 5]),
> Transformation([3, 2, 3, 1, 1]));;
gap> IsRightZeroSemigroup(S);
false
gap> S := Semigroup(Transformation([1, 2, 3, 3, 1]),
> Transformation([1, 2, 3, 3, 3]));;
gap> IsLeftZeroSemigroup(S);
true

Semigroups 210

12.1.11 IsMonogenicSemigroup

▷ IsMonogenicSemigroup(S) (property)

Returns: true or false.
IsMonogenicSemigroup returns true if the semigroup S is monogenic and it returns false if it

is not.
A semigroup is monogenic if it is generated by a single element. See also IsMonogenicMonoid

(12.1.12), IsMonogenicInverseSemigroup (12.2.9), and IsMonogenicInverseMonoid (12.2.10).
Example

gap> S := Semigroup(
> Transformation(
> [2, 2, 2, 11, 10, 8, 10, 11, 2, 11, 10, 2, 11, 11, 10]),
> Transformation(
> [2, 2, 2, 8, 11, 15, 11, 10, 2, 10, 11, 2, 10, 4, 7]),
> Transformation(
> [2, 2, 2, 11, 10, 8, 10, 11, 2, 11, 10, 2, 11, 11, 10]),
> Transformation(
> [2, 2, 12, 7, 8, 14, 8, 11, 2, 11, 10, 2, 11, 15, 4]));;
gap> IsMonogenicSemigroup(S);
true
gap> S := Semigroup(
> Bipartition([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, -2, -5, -7, -9],
> [-1, -10], [-3, -4, -6, -8]]),
> Bipartition([[1, 4, 7, 8, -2], [2, 3, 5, 10, -5],
> [6, 9, -7, -9], [-1, -10], [-3, -4, -6, -8]]));;
gap> IsMonogenicSemigroup(S);
true
gap> S := FullTransformationSemigroup(5);;
gap> IsMonogenicSemigroup(S);
false

12.1.12 IsMonogenicMonoid

▷ IsMonogenicMonoid(S) (property)

Returns: true or false.
IsMonogenicMonoid returns true if the monoid S is a monogenic monoid and it returns false

if it is not.
A monoid is monogenic if it is generated as a monoid by a single element. See also

IsMonogenicSemigroup (12.1.11) and IsMonogenicInverseMonoid (12.2.10).
Example

gap> x := PartialPerm([1, 2, 3, 6, 8, 10], [2, 6, 7, 9, 1, 5]);;
gap> S := Monoid(x, x ^ 2, x ^ 3);;
gap> IsMonogenicSemigroup(S);
false
gap> IsMonogenicMonoid(S);
true
gap> S := FullTransformationMonoid(5);;
gap> IsMonogenicMonoid(S);
false

Semigroups 211

12.1.13 IsMonoidAsSemigroup

▷ IsMonoidAsSemigroup(S) (property)

Returns: true or false.
IsMonoidAsSemigroup returns true if and only if the semigroup S is mathematically a monoid,

i.e. if and only if it contains a MultiplicativeNeutralElement (Reference: MultiplicativeNeu-
tralElement).

It is possible that a semigroup which satisfies IsMonoidAsSemigroup is not in the GAP cate-
gory IsMonoid (Reference: IsMonoid). This is possible if the MultiplicativeNeutralElement
(Reference: MultiplicativeNeutralElement) of S is not equal to the One (Reference: One) of any
element in S . Therefore a semigroup satisfying IsMonoidAsSemigroup may not possess the attributes
of a monoid (such as, GeneratorsOfMonoid (Reference: GeneratorsOfMonoid)).

See also One (Reference: One), IsInverseMonoid (Reference: IsInverseMonoid) and
IsomorphismTransformationMonoid (Reference: IsomorphismTransformationMonoid).

Example
gap> S := Semigroup(Transformation([1, 4, 6, 2, 5, 3, 7, 8, 9, 9]),
> Transformation([6, 3, 2, 7, 5, 1, 8, 8, 9, 9]));;
gap> IsMonoidAsSemigroup(S);
true
gap> IsMonoid(S);
false
gap> MultiplicativeNeutralElement(S);
Transformation([1, 2, 3, 4, 5, 6, 7, 8, 9, 9])
gap> T := AsSemigroup(IsBipartitionSemigroup, S);;
gap> IsMonoidAsSemigroup(T);
true
gap> IsMonoid(T);
false
gap> One(T);
fail
gap> S := Monoid(Transformation([8, 2, 8, 9, 10, 6, 2, 8, 7, 8]),
> Transformation([9, 2, 6, 3, 6, 4, 5, 5, 3, 2]));;
gap> IsMonoidAsSemigroup(S);
true

12.1.14 IsOrthodoxSemigroup

▷ IsOrthodoxSemigroup(S) (property)

Returns: true or false.
IsOrthodoxSemigroup returns true if the semigroup S is orthodox and false if it is not.
A semigroup is orthodox if it is regular and its idempotent elements form a subsemigroup. Every

inverse semigroup is also an orthodox semigroup.
See also IsRegularSemigroup (12.1.17) and IsRegularSemigroup (Reference: IsRegu-

larSemigroup).
Example

gap> S := Semigroup(Transformation([1, 1, 1, 4, 5, 4]),
> Transformation([1, 2, 3, 1, 1, 2]),
> Transformation([1, 2, 3, 1, 1, 3]),
> Transformation([5, 5, 5, 5, 5, 5]));;
gap> IsOrthodoxSemigroup(S);

Semigroups 212

true
gap> S := DualSymmetricInverseMonoid(5);;
gap> S := Semigroup(GeneratorsOfSemigroup(S));;
gap> IsOrthodoxSemigroup(S);
true

12.1.15 IsRectangularBand

▷ IsRectangularBand(S) (property)

Returns: true or false.
IsRectangularBand returns true if the semigroup S is a rectangular band and false if it is not.
A semigroup S is a rectangular band if for all x,y,z in S we have that x2 = x and xyz = xz.
Equivalently, S is a rectangular band if S is isomorphic to a semigroup of the form I ×Λ with

multiplication (i,λ)(j,µ) = (i,µ). In this case, S is called an |I|× |Λ| rectangular band.
An inverse semigroup is a rectangular band if and only if it is a group.

Example
gap> S := Semigroup(
> Transformation([1, 1, 1, 4, 4, 4, 7, 7, 7, 1]),
> Transformation([2, 2, 2, 5, 5, 5, 8, 8, 8, 2]),
> Transformation([3, 3, 3, 6, 6, 6, 9, 9, 9, 3]),
> Transformation([1, 1, 1, 4, 4, 4, 7, 7, 7, 4]),
> Transformation([1, 1, 1, 4, 4, 4, 7, 7, 7, 7]));;
gap> IsRectangularBand(S);
true
gap> IsRectangularBand(MinimalIdeal(PartitionMonoid(4)));
true

12.1.16 IsRectangularGroup

▷ IsRectangularGroup(S) (property)

Returns: true or false.
A semigroup is rectangular group if it is the direct product of a group and a rectangular band. Or

equivalently, if it is orthodox and simple.
Example

gap> G := AsSemigroup(IsTransformationSemigroup, MathieuGroup(11));
<transformation group of size 7920, degree 11 with 2 generators>
gap> R := RectangularBand(3, 2);
<regular transformation semigroup of size 6, degree 6 with 3
generators>

gap> S := DirectProduct(G, R);;
gap> IsRectangularGroup(R);
true
gap> IsRectangularGroup(G);
true
gap> IsRectangularGroup(S);
true
gap> IsRectangularGroup(JonesMonoid(3));
false

Semigroups 213

12.1.17 IsRegularSemigroup

▷ IsRegularSemigroup(S) (property)

Returns: true or false.
IsRegularSemigroup returns true if the semigroup S is regular and false if it is not.
A semigroup S is regular if for all x in S there exists y in S such that x * y * x = x. Every

inverse semigroup is regular, and a semigroup of partial permutations is regular if and only if it is an
inverse semigroup.

See also IsRegularDClass (Reference: IsRegularDClass), IsRegularGreensClass (10.3.2),
and IsRegularSemigroupElement (Reference: IsRegularSemigroupElement).

Example
gap> IsRegularSemigroup(FullTransformationSemigroup(5));
true
gap> IsRegularSemigroup(JonesMonoid(5));
true

12.1.18 IsRightZeroSemigroup

▷ IsRightZeroSemigroup(S) (property)

Returns: true or false.
IsRightZeroSemigroup returns true if the S is a right zero semigroup and false if it is not.
A semigroup S is a right zero semigroup if x * y = y for all x, y in S. An inverse semigroup is

a right zero semigroup if and only if it is trivial.
Example

gap> S := Semigroup(Transformation([2, 1, 4, 3, 5]),
> Transformation([3, 2, 3, 1, 1]));;
gap> IsRightZeroSemigroup(S);
false
gap> S := Semigroup(Transformation([1, 2, 3, 3, 1]),
> Transformation([1, 2, 4, 4, 1]));;
gap> IsRightZeroSemigroup(S);
true

12.1.19 IsXTrivial

▷ IsRTrivial(S) (property)

▷ IsLTrivial(S) (property)

▷ IsHTrivial(S) (property)

▷ IsDTrivial(S) (property)

▷ IsAperiodicSemigroup(S) (property)

▷ IsCombinatorialSemigroup(S) (property)

Returns: true or false.
IsXTrivial returns true if Green’s R-relation, L -relation, H -relation, D-relation, respec-

tively, on the semigroup S is trivial and false if it is not. These properties can also be applied to a
Green’s class instead of a semigroup where applicable.

For inverse semigroups, the properties of being R-trivial, L -trivial, D-trivial, and a semilattice
are equivalent; see IsSemilattice (12.1.21).

A semigroup is aperiodic if its contains no non-trivial subgroups (equivalently, all of its group
H -classes are trivial). A finite semigroup is aperiodic if and only if it is H -trivial.

Semigroups 214

Combinatorial is a synonym for aperiodic in this context.
Example

gap> S := Semigroup(
> Transformation([1, 5, 1, 3, 7, 10, 6, 2, 7, 10]),
> Transformation([4, 4, 5, 6, 7, 7, 7, 4, 3, 10]));;
gap> IsHTrivial(S);
true
gap> Size(S);
108
gap> IsRTrivial(S);
false
gap> IsLTrivial(S);
false

12.1.20 IsSemigroupWithAdjoinedZero

▷ IsSemigroupWithAdjoinedZero(S) (property)

Returns: true or false.
IsSemigroupWithAdjoinedZero returns true if the semigroup S can be expressed as the dis-

joint union of subsemigroups S \{0} and {0} (where 0 is the MultiplicativeZero (11.8.3) of S).
If this is not the case, then either S lacks a multiplicative zero, or the set S \{0} is not a subsemi-

group of S , and so IsSemigroupWithAdjoinedZero returns false.
Example

gap> S := Semigroup(Transformation([2, 3, 4, 5, 1, 6]),
> Transformation([2, 1, 3, 4, 5, 6]),
> Transformation([6, 6, 6, 6, 6, 6]));
<transformation semigroup of degree 6 with 3 generators>
gap> IsZeroGroup(S);
true
gap> IsSemigroupWithAdjoinedZero(S);
true
gap> S := FullTransformationMonoid(4);;
gap> IsSemigroupWithAdjoinedZero(S);
false

12.1.21 IsSemilattice

▷ IsSemilattice(S) (property)

Returns: true or false.
IsSemilattice returns true if the semigroup S is a semilattice and false if it is not.
A semigroup is a semilattice if it is commutative and every element is an idempotent. The idem-

potents of an inverse semigroup form a semilattice.
Example

gap> S := Semigroup(Transformation([2, 5, 1, 7, 3, 7, 7]),
> Transformation([3, 6, 5, 7, 2, 1, 7]));;
gap> Size(S);
631
gap> IsInverseSemigroup(S);
true
gap> A := Semigroup(Idempotents(S));

Semigroups 215

<transformation semigroup of degree 7 with 32 generators>
gap> IsSemilattice(A);
true
gap> S := FactorisableDualSymmetricInverseMonoid(5);;
gap> S := IdempotentGeneratedSubsemigroup(S);;
gap> IsSemilattice(S);
true

12.1.22 IsSimpleSemigroup

▷ IsSimpleSemigroup(S) (property)

▷ IsCompletelySimpleSemigroup(S) (property)

Returns: true or false.
IsSimpleSemigroup returns true if the semigroup S is simple and false if it is not.
A semigroup is simple if it has no proper 2-sided ideals. A semigroup is completely simple if it

is simple and possesses minimal left and right ideals. A finite semigroup is simple if and only if it is
completely simple. An inverse semigroup is simple if and only if it is a group.

Example
gap> S := Semigroup(
> Transformation([2, 2, 4, 4, 6, 6, 8, 8, 10, 10, 12, 12, 2]),
> Transformation([1, 1, 3, 3, 5, 5, 7, 7, 9, 9, 11, 11, 3]),
> Transformation([1, 7, 3, 9, 5, 11, 7, 1, 9, 3, 11, 5, 5]),
> Transformation([7, 7, 9, 9, 11, 11, 1, 1, 3, 3, 5, 5, 7]));;
gap> IsSimpleSemigroup(S);
true
gap> IsCompletelySimpleSemigroup(S);
true
gap> IsSimpleSemigroup(MinimalIdeal(BrauerMonoid(6)));
true
gap> R := Range(IsomorphismReesMatrixSemigroup(
> MinimalIdeal(BrauerMonoid(6))));
<Rees matrix semigroup 15x15 over Group(())>

12.1.23 IsSynchronizingSemigroup (for a transformation semigroup)

▷ IsSynchronizingSemigroup(S) (property)

Returns: true or false.
For a positive integer n , IsSynchronizingSemigroup returns true if the semigroup of transfor-

mations S contains a transformation with constant value on [1 .. n] where n is the degree of the
semigroup. See also ConstantTransformation (Reference: ConstantTransformation).

Note that the semigroup consisting of the identity transformation is the unique transformation
semigroup with degree 0. In this special case, the function IsSynchronizingSemigroup will return
false.

Example
gap> S := Semigroup(
> Transformation([1, 1, 8, 7, 6, 6, 4, 1, 8, 9]),
> Transformation([5, 8, 7, 6, 10, 8, 7, 6, 9, 7]));;
gap> IsSynchronizingSemigroup(S);
true

Semigroups 216

gap> S := Semigroup(
> Transformation([3, 8, 1, 1, 9, 9, 8, 7, 9, 6]),
> Transformation([7, 6, 8, 7, 5, 6, 8, 7, 8, 9]));;
gap> IsSynchronizingSemigroup(S);
false
gap> Representative(MinimalIdeal(S));
Transformation([8, 7, 7, 7, 8, 8, 7, 8, 8, 8])

12.1.24 IsUnitRegularMonoid

▷ IsUnitRegularMonoid(S) (property)

Returns: true if the semigroup S is unit regular and false if it is not.
A monoid is unit regular if and only if for every >x in S there exists an element y in the group of

units of S such that x*y*x=x.
Example

gap> IsUnitRegularMonoid(FullTransformationMonoid(3));
true

12.1.25 IsZeroGroup

▷ IsZeroGroup(S) (property)

Returns: true or false.
IsZeroGroup returns true if the semigroup S is a zero group and false if it is not.
A semigroup S is a zero group if there exists an element z in S such that S without z is a group and

x*z=z*x=z for all x in S. Every zero group is an inverse semigroup.
Example

gap> S := Semigroup(Transformation([2, 2, 3, 4, 6, 8, 5, 5, 9]),
> Transformation([3, 3, 8, 2, 5, 6, 4, 4, 9]),
> ConstantTransformation(9, 9));;
gap> IsZeroGroup(S);
true
gap> T := Range(IsomorphismPartialPermSemigroup(S));;
gap> IsZeroGroup(T);
true
gap> IsZeroGroup(JonesMonoid(2));
true

12.1.26 IsZeroRectangularBand

▷ IsZeroRectangularBand(S) (property)

Returns: true or false.
IsZeroRectangularBand returns true if the semigroup S is a zero rectangular band and false

if it is not.
A semigroup is a 0-rectangular band if it is 0-simple and H -trivial; see also

IsZeroSimpleSemigroup (12.1.28) and IsHTrivial (12.1.19). An inverse semigroup is a
0-rectangular band if and only if it is a 0-group; see IsZeroGroup (12.1.25).

Example
gap> S := Semigroup(
> Transformation([1, 3, 7, 9, 1, 12, 13, 1, 15, 9, 1, 18, 1, 1, 13,

Semigroups 217

> 1, 1, 21, 1, 1, 1, 1, 1, 25, 26, 1]),
> Transformation([1, 5, 1, 5, 11, 1, 1, 14, 1, 16, 17, 1, 1, 19, 1,
> 11, 1, 1, 1, 23, 1, 16, 19, 1, 1, 1]),
> Transformation([1, 4, 8, 1, 10, 1, 8, 1, 1, 1, 10, 1, 8, 10, 1, 1,
> 20, 1, 22, 1, 8, 1, 1, 1, 1, 1]),
> Transformation([1, 6, 6, 1, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 6, 1, 1,
> 6, 1, 1, 24, 1, 1, 1, 1, 6]));;
gap> D := DClass(S,
> Transformation([1, 8, 1, 1, 8, 1, 1, 1, 1, 1, 8, 1, 1, 8, 1, 1, 1,
> 1, 1, 1, 1, 1, 1, 1, 1, 1]));;
gap> IsZeroRectangularBand(Semigroup(D));
true
gap> IsZeroRectangularBand(Semigroup(GreensDClasses(S)[1]));
false

12.1.27 IsZeroSemigroup

▷ IsZeroSemigroup(S) (property)

Returns: true or false.
IsZeroSemigroup returns true if the semigroup S is a zero semigroup and false if it is not.
A semigroup S is a zero semigroup if there exists an element z in S such that x*y=z for all x,y in

S. An inverse semigroup is a zero semigroup if and only if it is trivial.
Example

gap> S := Semigroup(
> Transformation([4, 7, 6, 3, 1, 5, 3, 6, 5, 9]),
> Transformation([5, 3, 5, 1, 9, 3, 8, 7, 4, 3]));;
gap> IsZeroSemigroup(S);
false
gap> S := Semigroup(
> Transformation([7, 8, 8, 8, 5, 8, 8, 8]),
> Transformation([8, 8, 8, 8, 5, 7, 8, 8]),
> Transformation([8, 7, 8, 8, 5, 8, 8, 8]),
> Transformation([8, 8, 8, 7, 5, 8, 8, 8]),
> Transformation([8, 8, 7, 8, 5, 8, 8, 8]));;
gap> IsZeroSemigroup(S);
true
gap> MultiplicativeZero(S);
Transformation([8, 8, 8, 8, 5, 8, 8, 8])

12.1.28 IsZeroSimpleSemigroup

▷ IsZeroSimpleSemigroup(S) (property)

Returns: true or false.
IsZeroSimpleSemigroup returns true if the semigroup S is 0-simple and false if it is not.
A semigroup is a 0-simple if it has no two-sided ideals other than itself and the set containing the

zero element; see also MultiplicativeZero (11.8.3). An inverse semigroup is 0-simple if and only
if it is a Brandt semigroup; see IsBrandtSemigroup (12.2.2).

Example
gap> S := Semigroup(
> Transformation([1, 17, 17, 17, 17, 17, 17, 17, 17, 17, 5, 17,

Semigroups 218

> 17, 17, 17, 17, 17]),
> Transformation([1, 17, 17, 17, 11, 17, 17, 17, 17, 17, 17, 17,
> 17, 17, 17, 17, 17]),
> Transformation([1, 17, 17, 17, 17, 17, 17, 17, 17, 17, 4, 17,
> 17, 17, 17, 17, 17]),
> Transformation([1, 17, 17, 5, 17, 17, 17, 17, 17, 17, 17, 17,
> 17, 17, 17, 17, 17]));;
gap> IsZeroSimpleSemigroup(S);
true
gap> S := Semigroup(
> Transformation([2, 3, 4, 5, 1, 8, 7, 6, 2, 7]),
> Transformation([2, 3, 4, 5, 6, 8, 7, 1, 2, 2]));;
gap> IsZeroSimpleSemigroup(S);
false

12.1.29 IsSelfDualSemigroup

▷ IsSelfDualSemigroup(S) (property)

Returns: true or false.
Returns true if the semigroup S is self dual and false otherwise.
A semigroup is self dual if it is isomorphic to its dual, that is, the semigroup T with multiplication

* defined by x*y=yx where yx denotes the product in S .
Example

gap> F := FreeSemigroup("a", "b");
<free semigroup on the generators [a, b]>
gap> AssignGeneratorVariables(F);
gap> R := [[a ^ 3, a], [b ^ 2, b], [(a * b) ^ 2, a]];
[[a^3, a], [b^2, b], [(a*b)^2, a]]
gap> S := F / R;
<fp semigroup with 2 generators and 3 relations of length 14>
gap> IsSelfDualSemigroup(S);
false
gap> IsSelfDualSemigroup(FreeBand(3));
true
gap> S := DualSymmetricInverseMonoid(3);
<inverse block bijection monoid of degree 3 with 3 generators>
gap> IsSelfDualSemigroup(S);
true

12.2 Inverse semigroups

In this section we describe the properties of an inverse semigroup or monoid that can be determined
using the Semigroups package.

12.2.1 IsCliffordSemigroup

▷ IsCliffordSemigroup(S) (property)

Returns: true or false.

Semigroups 219

IsCliffordSemigroup returns true if the semigroup S is regular and its idempotents are central,
and false if it is not.

Example
gap> S := Semigroup(Transformation([1, 2, 4, 5, 6, 3, 7, 8]),
> Transformation([3, 3, 4, 5, 6, 2, 7, 8]),
> Transformation([1, 2, 5, 3, 6, 8, 4, 4]));;
gap> IsCliffordSemigroup(S);
true
gap> T := Range(IsomorphismPartialPermSemigroup(S));;
gap> IsCliffordSemigroup(S);
true
gap> S := DualSymmetricInverseMonoid(5);;
gap> T := IdempotentGeneratedSubsemigroup(S);;
gap> IsCliffordSemigroup(T);
true

12.2.2 IsBrandtSemigroup

▷ IsBrandtSemigroup(S) (property)

Returns: true or false.
IsBrandtSemigroup return true if the semigroup S is a finite 0-simple inverse semigroup,

and false if it is not. See also IsZeroSimpleSemigroup (12.1.28) and IsInverseSemigroup
(Reference: IsInverseSemigroup).

Example
gap> S := Semigroup(
> Transformation([2, 8, 8, 8, 8, 8, 8, 8]),
> Transformation([5, 8, 8, 8, 8, 8, 8, 8]),
> Transformation([8, 3, 8, 8, 8, 8, 8, 8]),
> Transformation([8, 6, 8, 8, 8, 8, 8, 8]),
> Transformation([8, 8, 1, 8, 8, 8, 8, 8]),
> Transformation([8, 8, 8, 1, 8, 8, 8, 8]),
> Transformation([8, 8, 8, 8, 4, 8, 8, 8]),
> Transformation([8, 8, 8, 8, 8, 7, 8, 8]),
> Transformation([8, 8, 8, 8, 8, 8, 2, 8]));;
gap> IsBrandtSemigroup(S);
true
gap> T := Range(IsomorphismPartialPermSemigroup(S));;
gap> IsBrandtSemigroup(T);
true
gap> S := DualSymmetricInverseMonoid(4);;
gap> D := DClass(S,
> Bipartition([[1, 2, 3, -1, -2, -3], [4, -4]]));;
gap> R := InjectionPrincipalFactor(D);;
gap> S := Semigroup(PreImages(R, GeneratorsOfSemigroup(Range(R))));;
gap> IsBrandtSemigroup(S);
true

12.2.3 IsEUnitaryInverseSemigroup

▷ IsEUnitaryInverseSemigroup(S) (property)

Returns: true or false.

Semigroups 220

As described in Section 5.9 of [How95], an inverse semigroup S with semilattice of idempotents
E is E-unitary if for

s ∈ S and e ∈ E: es ∈ E ⇒ s ∈ E.

Equivalently, S is E-unitary if E is closed in the natural partial order (see Proposition 5.9.1 in
[How95]):

for s ∈ S and e ∈ E: e ≤ s ⇒ s ∈ E.

This condition is equivalent to E being majorantly closed in S . See
IdempotentGeneratedSubsemigroup (11.10.3) and IsMajorantlyClosed (12.2.8). Hence
an inverse semigroup of partial permutations, block bijections or partial permutation bipartitions is
E-unitary if and only if the idempotent semilattice is majorantly closed.

Example
gap> S := InverseSemigroup(
> PartialPerm([1, 2, 3, 4], [2, 3, 1, 6]),
> PartialPerm([1, 2, 3, 5], [3, 2, 1, 6]));;
gap> IsEUnitaryInverseSemigroup(S);
true
gap> e := IdempotentGeneratedSubsemigroup(S);;
gap> ForAll(Difference(S, e), x -> not ForAny(e, y -> y * x in e));
true
gap> T := InverseSemigroup([
> PartialPerm([1, 3, 4, 6, 8], [2, 5, 10, 7, 9]),
> PartialPerm([1, 2, 3, 5, 6, 7, 8], [5, 8, 9, 2, 10, 1, 3]),
> PartialPerm([1, 2, 3, 5, 6, 7, 9], [9, 8, 4, 1, 6, 7, 2])]);;
gap> IsEUnitaryInverseSemigroup(T);
false
gap> U := InverseSemigroup([
> PartialPerm([1, 2, 3, 4, 5], [2, 3, 4, 5, 1]),
> PartialPerm([1, 2, 3, 4, 5], [2, 1, 3, 4, 5])]);;
gap> IsEUnitaryInverseSemigroup(U);
true
gap> IsGroupAsSemigroup(U);
true
gap> StructureDescription(U);
"S5"

12.2.4 IsFInverseSemigroup

▷ IsFInverseSemigroup(S) (property)

Returns: true or false.
This functions determines whether a given semigroup is an F-inverse semigroup. An

F-inverse semigroup is a semigroup which satisfies IsEUnitaryInverseSemigroup (12.2.3)
as well as being isomorphic to some McAlisterTripleSemigroup (8.4.2) where the
McAlisterTripleSemigroupPartialOrder (8.4.4) satisfies IsJoinSemilatticeDigraph
(Digraphs: IsJoinSemilatticeDigraph). McAlister triple semigroups are a representation of
E-unitary inverse semigroups and more can be read about them in Chapter 8.4.

Example
gap> S := InverseMonoid([PartialPermNC([1, 2], [1, 2]),
> PartialPermNC([1, 2, 3], [1, 2, 3]),
> PartialPermNC([1, 2, 4], [1, 2, 4]),

Semigroups 221

> PartialPermNC([1, 2], [2, 1]), PartialPermNC([1, 2, 3], [2, 1, 3]),
> PartialPermNC([1, 2, 4], [2, 1, 4])]);;
gap> IsEUnitaryInverseSemigroup(S);
true
gap> IsFInverseSemigroup(S);
false
gap> IsFInverseSemigroup(IdempotentGeneratedSubsemigroup(S));
true

12.2.5 IsFInverseMonoid

▷ IsFInverseMonoid(S) (property)

Returns: true or false.
This function determines whether a given semigroup is an F-inverse monoid. A semigroup is an

F-inverse monoid when it satisfies IsMonoid (Reference: IsMonoid) and IsFInverseSemigroup
(12.2.4).

12.2.6 IsFactorisableInverseMonoid

▷ IsFactorisableInverseMonoid(S) (property)

Returns: true or false.
An inverse monoid is factorisable if every element is the product of an element of the group of

units and an idempotent; see also GroupOfUnits (11.9.1) and Idempotents (11.10.1). Hence an
inverse semigroup of partial permutations is factorisable if and only if each of its generators is the
restriction of some element in the group of units.

Example
gap> S := InverseSemigroup(
> PartialPerm([1, 2, 4], [3, 1, 4]),
> PartialPerm([1, 2, 3, 5], [4, 1, 5, 2]));;
gap> IsFactorisableInverseMonoid(S);
false
gap> IsFactorisableInverseMonoid(SymmetricInverseSemigroup(5));
true
gap> IsFactorisableInverseMonoid(DualSymmetricInverseMonoid(5));
false
gap> S := FactorisableDualSymmetricInverseMonoid(5);;
gap> IsFactorisableInverseMonoid(S);
true

12.2.7 IsJoinIrreducible

▷ IsJoinIrreducible(S, x) (operation)

Returns: true or false.
IsJoinIrreducible determines whether an element x of an inverse semigroup S of partial per-

mutations, block bijections or partial permutation bipartitions is join irreducible.
An element x is join irreducible when it is not the least upper bound (with respect to the natural

partial order NaturalLeqPartialPerm (Reference: NaturalLeqPartialPerm)) of any subset of S
not containing x .

Semigroups 222

Example
gap> S := SymmetricInverseSemigroup(3);
<symmetric inverse monoid of degree 3>
gap> x := PartialPerm([1, 2, 3]);
<identity partial perm on [1, 2, 3]>
gap> IsJoinIrreducible(S, x);
false
gap> T := InverseSemigroup([
> PartialPerm([1, 2, 4, 3]),
> PartialPerm([1]),
> PartialPerm([0, 2])]);
<inverse partial perm semigroup of rank 4 with 3 generators>
gap> y := PartialPerm([1, 2, 3, 4]);
<identity partial perm on [1, 2, 3, 4]>
gap> IsJoinIrreducible(T, y);
true
gap> B := InverseSemigroup([
> Bipartition([
> [1, -5], [2, -2], [3, 5, 6, 7, -1, -4, -6, -7], [4, -3]]),
> Bipartition([
> [1, -1], [2, -3], [3, -4], [4, 5, 7, -2, -6, -7], [6, -5]]),
> Bipartition([
> [1, -2], [2, -4], [3, -6], [4, -1], [5, 7, -3, -7], [6, -5]]),
> Bipartition([
> [1, -5], [2, -1], [3, -6], [4, 5, 7, -2, -4, -7], [6, -3]])]);
<inverse block bijection semigroup of degree 7 with 4 generators>
gap> x := Bipartition([
> [1, 2, 3, 5, 6, 7, -2, -3, -4, -5, -6, -7], [4, -1]]);
<block bijection: [1, 2, 3, 5, 6, 7, -2, -3, -4, -5, -6, -7],
[4, -1]>

gap> IsJoinIrreducible(B, x);
true
gap> IsJoinIrreducible(B, B.1);
false

12.2.8 IsMajorantlyClosed

▷ IsMajorantlyClosed(S, T) (operation)

Returns: true or false.
IsMajorantlyClosed determines whether the subset T of the inverse semigroup of partial per-

mutations, block bijections or partial permutation bipartitions S is majorantly closed in S . See also
MajorantClosure (11.15.3).

We say that T is majorantly closed in S if it contains all elements of S which are greater than or
equal to any element of T , with respect to the natural partial order. See NaturalLeqPartialPerm
(Reference: NaturalLeqPartialPerm).

Note that T can be a subset of S or a subsemigroup of S .
Example

gap> S := SymmetricInverseSemigroup(2);
<symmetric inverse monoid of degree 2>
gap> T := [Elements(S)[2]];
[<identity partial perm on [1]>]

Semigroups 223

gap> IsMajorantlyClosed(S, T);
false
gap> U := [Elements(S)[2], Elements(S)[6]];
[<identity partial perm on [1]>, <identity partial perm on [1, 2]

>]
gap> IsMajorantlyClosed(S, U);
true
gap> D := DualSymmetricInverseSemigroup(3);
<inverse block bijection monoid of degree 3 with 3 generators>
gap> x := Bipartition([[1, -2], [2, -3], [3, -1]]);;
gap> IsMajorantlyClosed(D, [x]);
true
gap> y := Bipartition([[1, 2, -1, -2], [3, -3]]);;
gap> IsMajorantlyClosed(D, [x, y]);
false

12.2.9 IsMonogenicInverseSemigroup

▷ IsMonogenicInverseSemigroup(S) (property)

Returns: true or false.
IsMonogenicInverseSemigroup returns true if the semigroup S is a monogenic inverse semi-

group and it returns false if it is not.
A inverse semigroup is monogenic if it is generated as an inverse semigroup by a single element.

See also IsMonogenicSemigroup (12.1.11) and IsMonogenicInverseMonoid (12.2.10).
Example

gap> x := PartialPerm([1, 2, 3, 6, 8, 10], [2, 6, 7, 9, 1, 5]);;
gap> S := InverseSemigroup(x, x ^ 2, x ^ 3);;
gap> IsMonogenicSemigroup(S);
false
gap> IsMonogenicInverseSemigroup(S);
true
gap> x := RandomBlockBijection(100);;
gap> S := InverseSemigroup(x, x ^ 2, x ^ 20);;
gap> IsMonogenicInverseSemigroup(S);
true
gap> S := SymmetricInverseSemigroup(5);;
gap> IsMonogenicInverseSemigroup(S);
false

12.2.10 IsMonogenicInverseMonoid

▷ IsMonogenicInverseMonoid(S) (property)

Returns: true or false.
IsMonogenicInverseMonoid returns true if the monoid S is a monogenic inverse monoid and

it returns false if it is not.
A inverse monoid is monogenic if it is generated as an inverse monoid by a single element. See

also IsMonogenicInverseSemigroup (12.2.9) and IsMonogenicMonoid (12.1.12).
Example

gap> x := PartialPerm([1, 2, 3, 6, 8, 10], [2, 6, 7, 9, 1, 5]);;
gap> S := InverseMonoid(x, x ^ 2, x ^ 3);;

Semigroups 224

gap> IsMonogenicMonoid(S);
false
gap> IsMonogenicInverseSemigroup(S);
false
gap> IsMonogenicInverseMonoid(S);
true
gap> x := RandomBlockBijection(100);;
gap> S := InverseMonoid(x, x ^ 2, x ^ 20);;
gap> IsMonogenicInverseMonoid(S);
true
gap> S := SymmetricInverseMonoid(5);;
gap> IsMonogenicInverseMonoid(S);
false

Chapter 13

Congruences

Congruences in Semigroups can be described in several different ways:

• Generating pairs -- the minimal congruence which contains these pairs

• Rees congruences -- the congruence specified by a given ideal

• Universal congruences -- the unique congruence with only one class

• Linked triples -- only for simple or 0-simple semigroups (see below)

• Kernel and trace -- only for inverse semigroups

• Word graph -- only for congruences created via IteratorOfLeftCongruences (13.4.15) or
IteratorOfRightCongruences (13.4.15)

• Wang pairs -- only for graph inverse semigroup

The operation SemigroupCongruence (13.2.1) can be used to create any of these, interpreting the ar-
guments in a smart way. The usual way of specifying a congruence will be by giving a set of generating
pairs, but a user with an ideal could instead create a Rees congruence or universal congruence.

If a congruence is specified by generating pairs on a simple, 0-simple, or inverse semigroup, then
the congruence may be converted automatically to one of the last two items in the above list, to reduce
the complexity of any calculations to be performed. The user need not manually specify, or even be
aware of, the congruence’s linked triple or kernel and trace.

We can also create left congruences and right congruences, using the LeftSemigroupCongruence
(13.2.2) and RightSemigroupCongruence (13.2.3) functions.

Please note that congruence objects made in GAP before loading the Semigroups package may
not behave correctly after Semigroups is loaded. If Semigroups is loaded at the beginning of the
session, or before any congruence work is done, then the objects should behave correctly.

13.1 Semigroup congruence objects

13.1.1 IsSemigroupCongruence

▷ IsSemigroupCongruence(obj) (property)

225

Semigroups 226

A semigroup congruence cong is an equivalence relation on a semigroup S which respects left and
right multiplication.

That is, if (a,b) is a pair in cong, and x is an element of S, then (ax,bx) and (xa,xb) are both in
cong.

The simplest way of creating a congruence in Semigroups is by a set of generating pairs. See
SemigroupCongruence (13.2.1).

Example
gap> S := Semigroup([
> Transformation([2, 1, 1, 2, 1]),
> Transformation([3, 4, 3, 4, 4]),
> Transformation([3, 4, 3, 4, 3]),
> Transformation([4, 3, 3, 4, 4])]);;
gap> pair1 := [Transformation([3, 4, 3, 4, 3]),
> Transformation([1, 2, 1, 2, 1])];;
gap> pair2 := [Transformation([4, 3, 4, 3, 4]),
> Transformation([3, 4, 3, 4, 3])];;
gap> cong := SemigroupCongruence(S, [pair1, pair2]);
<semigroup congruence over <simple transformation semigroup of
degree 5 with 4 generators> with linked triple (2,4,1)>

gap> IsSemigroupCongruence(cong);
true

13.1.2 IsLeftSemigroupCongruence

▷ IsLeftSemigroupCongruence(obj) (property)

A left semigroup congruence cong is an equivalence relation on a semigroup S which respects left
multiplication.

That is, if (a,b) is a pair in cong, and x is an element of S, then (xa,xb) is also in cong.
The simplest way of creating a left congruence in Semigroups is by a set of generating pairs. See

LeftSemigroupCongruence (13.2.2).
Example

gap> S := Semigroup([
> Transformation([2, 1, 1, 2, 1]),
> Transformation([3, 4, 3, 4, 4]),
> Transformation([3, 4, 3, 4, 3]),
> Transformation([4, 3, 3, 4, 4])]);;
gap> pair1 := [Transformation([3, 4, 3, 4, 3]),
> Transformation([1, 2, 1, 2, 1])];;
gap> pair2 := [Transformation([4, 3, 4, 3, 4]),
> Transformation([3, 4, 3, 4, 3])];;
gap> cong := LeftSemigroupCongruence(S, [pair1, pair2]);
<left semigroup congruence over <transformation semigroup of degree 5
with 4 generators> with 2 generating pairs>

gap> IsLeftSemigroupCongruence(cong);
true

Semigroups 227

13.1.3 IsRightSemigroupCongruence

▷ IsRightSemigroupCongruence(obj) (property)

A right semigroup congruence cong is an equivalence relation on a semigroup S which respects
right multiplication.

That is, if (a,b) is a pair in cong, and x is an element of S, then (ax,bx) is also in cong.
The simplest way of creating a right congruence in Semigroups is by a set of generating pairs.

See RightSemigroupCongruence (13.2.3).
Example

gap> S := Semigroup([
> Transformation([2, 1, 1, 2, 1]),
> Transformation([3, 4, 3, 4, 4]),
> Transformation([3, 4, 3, 4, 3]),
> Transformation([4, 3, 3, 4, 4])]);;
gap> pair1 := [Transformation([3, 4, 3, 4, 3]),
> Transformation([1, 2, 1, 2, 1])];;
gap> pair2 := [Transformation([4, 3, 4, 3, 4]),
> Transformation([3, 4, 3, 4, 3])];;
gap> RightSemigroupCongruence(S, [pair1, pair2]);
<right semigroup congruence over <transformation semigroup of
degree 5 with 4 generators> with 2 generating pairs>

gap> IsRightSemigroupCongruence(cong);
true

13.2 Creating congruences

13.2.1 SemigroupCongruence

▷ SemigroupCongruence(S, pairs) (function)

Returns: A semigroup congruence.
This function returns a semigroup congruence over the semigroup S .
If pairs is a list of lists of size 2 with elements from S , then this function will return the semigroup

congruence defined by these generating pairs. The individual pairs may instead be given as separate
arguments.

Example
gap> S := Semigroup([
> Transformation([2, 1, 1, 2, 1]),
> Transformation([3, 4, 3, 4, 4]),
> Transformation([3, 4, 3, 4, 3]),
> Transformation([4, 3, 3, 4, 4])]);;
gap> pair1 := [Transformation([3, 4, 3, 4, 3]),
> Transformation([1, 2, 1, 2, 1])];;
gap> pair2 := [Transformation([4, 3, 4, 3, 4]),
> Transformation([3, 4, 3, 4, 3])];;
gap> SemigroupCongruence(S, [pair1, pair2]);
<semigroup congruence over <simple transformation semigroup of
degree 5 with 4 generators> with linked triple (2,4,1)>

gap> SemigroupCongruence(S, pair1, pair2);

Semigroups 228

<semigroup congruence over <simple transformation semigroup of
degree 5 with 4 generators> with linked triple (2,4,1)>

13.2.2 LeftSemigroupCongruence

▷ LeftSemigroupCongruence(S, pairs) (function)

Returns: A left semigroup congruence.
This function returns a left semigroup congruence over the semigroup S .
If pairs is a list of lists of size 2 with elements from S , then this function will return the least left

semigroup congruence on S which contains these generating pairs. The individual pairs may instead
be given as separate arguments.

Example
gap> S := Semigroup([
> Transformation([2, 1, 1, 2, 1]),
> Transformation([3, 4, 3, 4, 4]),
> Transformation([3, 4, 3, 4, 3]),
> Transformation([4, 3, 3, 4, 4])]);;
gap> pair1 := [Transformation([3, 4, 3, 4, 3]),
> Transformation([1, 2, 1, 2, 1])];;
gap> pair2 := [Transformation([4, 3, 4, 3, 4]),
> Transformation([3, 4, 3, 4, 3])];;
gap> LeftSemigroupCongruence(S, [pair1, pair2]);
<left semigroup congruence over <transformation semigroup of degree 5
with 4 generators> with 2 generating pairs>

gap> LeftSemigroupCongruence(S, pair1, pair2);
<left semigroup congruence over <transformation semigroup of degree 5
with 4 generators> with 2 generating pairs>

13.2.3 RightSemigroupCongruence

▷ RightSemigroupCongruence(S, pairs) (function)

Returns: A right semigroup congruence.
This function returns a right semigroup congruence over the semigroup S .
If pairs is a list of lists of size 2 with elements from S , then this function will return the least

right semigroup congruence on S which contains these generating pairs. The individual pairs may
instead be given as separate arguments.

Example
gap> S := Semigroup([
> Transformation([2, 1, 1, 2, 1]),
> Transformation([3, 4, 3, 4, 4]),
> Transformation([3, 4, 3, 4, 3]),
> Transformation([4, 3, 3, 4, 4])]);;
gap> pair1 := [Transformation([3, 4, 3, 4, 3]),
> Transformation([1, 2, 1, 2, 1])];;
gap> pair2 := [Transformation([4, 3, 4, 3, 4]),
> Transformation([3, 4, 3, 4, 3])];;
gap> RightSemigroupCongruence(S, [pair1, pair2]);
<right semigroup congruence over <transformation semigroup of
degree 5 with 4 generators> with 2 generating pairs>

Semigroups 229

gap> RightSemigroupCongruence(S, pair1, pair2);
<right semigroup congruence over <transformation semigroup of
degree 5 with 4 generators> with 2 generating pairs>

13.3 Congruence classes

The main operations and attributes for congruences in the GAP library are:

• EquivalenceClasses (Reference: EquivalenceClasses attribute)

• NrEquivalenceClasses

• EquivalenceClassOfElement (Reference: EquivalenceClassOfElement)

13.3.1 IsCongruenceClass

▷ IsCongruenceClass(obj) (category)

This category contains any object which is an equivalence class of a semigroup congruence (see
IsSemigroupCongruence (13.1.1)). An object will only be in this category if the relation is known
to be a semigroup congruence when the congruence class is created.

Example
gap> S := Monoid([
> Transformation([1, 2, 2]), Transformation([3, 1, 3])]);;
gap> cong := SemigroupCongruence(S, [Transformation([1, 2, 1]),
> Transformation([2, 1, 2])]);;
gap> class := EquivalenceClassOfElement(cong,
> Transformation([3, 1, 1]));
<2-sided congruence class of Transformation([3, 1, 1])>
gap> IsCongruenceClass(class);
true

13.3.2 IsLeftCongruenceClass

▷ IsLeftCongruenceClass(obj) (category)

This category contains any object which is an equivalence class of a left semigroup congruence
(see IsLeftSemigroupCongruence (13.1.2)). An object will only be in this category if the relation
is known to be a left semigroup congruence when the class is created.

Example
gap> S := Monoid([
> Transformation([1, 2, 2]), Transformation([3, 1, 3])]);;
gap> pairs := [Transformation([1, 2, 1]),
> Transformation([2, 1, 2])];;
gap> cong := LeftSemigroupCongruence(S, pairs);;
gap> class := EquivalenceClassOfElement(cong,
> Transformation([3, 1, 1]));
<left congruence class of Transformation([3, 1, 1])>
gap> IsLeftCongruenceClass(class);
true

Semigroups 230

13.3.3 IsRightCongruenceClass

▷ IsRightCongruenceClass(obj) (category)

This category contains any object which is an equivalence class of a right semigroup congruence
(see IsRightSemigroupCongruence (13.1.3)). An object will only be in this category if the relation
is known to be a right semigroup congruence when the class is created.

Example
gap> S := Monoid([
> Transformation([1, 2, 2]), Transformation([3, 1, 3])]);;
gap> pairs := [Transformation([1, 2, 1]),
> Transformation([2, 1, 2])];;
gap> cong := RightSemigroupCongruence(S, pairs);;
gap> class := EquivalenceClassOfElement(cong,
> Transformation([3, 1, 1]));
<right congruence class of Transformation([3, 1, 1])>
gap> IsRightCongruenceClass(class);
true

13.3.4 NonTrivialEquivalenceClasses

▷ NonTrivialEquivalenceClasses(eq) (attribute)

Returns: A list of equivalence classes.
If eq is an equivalence relation, then this attribute returns a list of all equivalence classes of eq

which contain more than one element.
Example

gap> S := Monoid([Transformation([1, 2, 2]),
> Transformation([3, 1, 3])]);;
gap> cong := SemigroupCongruence(S, [Transformation([1, 2, 1]),
> Transformation([2, 1, 2])]);;
gap> classes := NonTrivialEquivalenceClasses(cong);;
gap> Set(classes);
[<2-sided congruence class of Transformation([1, 2, 2])>,

<2-sided congruence class of Transformation([3, 1, 3])>,
<2-sided congruence class of Transformation([3, 1, 1])>,
<2-sided congruence class of Transformation([2, 1, 2])>,
<2-sided congruence class of Transformation([3, 3, 3])>]

gap> cong := RightSemigroupCongruence(S, [Transformation([1, 2, 1]),
> Transformation([2, 1, 2])]);;
gap> classes := NonTrivialEquivalenceClasses(cong);;
gap> Set(classes);
[<right congruence class of Transformation([3, 1, 3])>,

<right congruence class of Transformation([2, 1, 2])>]

13.3.5 EquivalenceRelationLookup (for an equivalence relation over a finite semi-
group)

▷ EquivalenceRelationLookup(equiv) (attribute)

Returns: A list.

Semigroups 231

This attribute describes the equivalence relation equiv , defined over a finite semigroup, as a list
of positive integers of length the size of the finite semigroup over which equiv is defined.

Each position in the list corresponds to an element of the semigroup (in a consistent canonical
order) and the integer at that position is a unique identifier for that element’s equivalence class un-
der equiv . Two elements of the semigroup on which the equivalence is defined are related in the
equivalence if and only if they have the same number at their respective positions in the lookup.

Note that the order in which numbers appear in the list is non-deterministic, and two equivalence
relations describing the same mathematical relation might therefore have different lookups. Note also
that the maximum value of the list may not be the number of classes of equiv , and that any integer
might not be included. However, see EquivalenceRelationCanonicalLookup (13.3.6).

See also EquivalenceRelationPartition (Reference: EquivalenceRelationPartition).
Example

gap> S := Monoid([
> Transformation([1, 2, 2]), Transformation([3, 1, 3])]);;
gap> cong := SemigroupCongruence(S,
> [Transformation([1, 2, 1]), Transformation([2, 1, 2])]);;
gap> lookup := EquivalenceRelationLookup(cong);;
gap> lookup[3] = lookup[8];
true
gap> lookup[2] = lookup[9];
false

13.3.6 EquivalenceRelationCanonicalLookup (for an equivalence relation over a finite
semigroup)

▷ EquivalenceRelationCanonicalLookup(equiv) (attribute)

Returns: A list.
This attribute describes the equivalence relation equiv , defined over a finite semigroup, as a list

of positive integers of length the size of the semigroup.
Each position in the list corresponds to an element of the semigroup (in a consistent

canonical order as defined by PositionCanonical (11.1.2)) and the integer at that posi-
tion is a unique identifier for that element’s equivalence class under equiv . The value of
EquivalenceRelationCanonicalLookup has the property that the first appearance of the value i is
strictly later than the first appearance of i-1, and that all entries in the list will be from the range [1
.. NrEquivalenceClasses(equiv)]. As such, two equivalence relations on a given semigroup
are equal if and only if their canonical lookups are equal.

Two elements of the semigroup on which the equivalence relation is defined are related in the
equivalence relation if and only if they have the same number at their respective positions in the
lookup.

See also EquivalenceRelationLookup (13.3.5) and EquivalenceRelationPartition
(Reference: EquivalenceRelationPartition).

Example
gap> S := Monoid([
> Transformation([1, 2, 2]), Transformation([3, 1, 3])]);;
gap> cong := SemigroupCongruence(S,
> [Transformation([1, 2, 1]), Transformation([2, 1, 2])]);;
gap> EquivalenceRelationCanonicalLookup(cong);
[1, 2, 3, 4, 5, 6, 2, 3, 6, 4, 5, 6]

Semigroups 232

13.3.7 EquivalenceRelationCanonicalPartition

▷ EquivalenceRelationCanonicalPartition(cong) (attribute)

Returns: A list of lists.
This attribute returns a list of lists of elements of the underlying set of the semigroup congruence

cong . These lists are precisely the nontrivial equivalence classes of cong . The order in which the
classes appear is deterministic, and the order of the elements inside each class is also deterministic.
Hence, two congruence objects have the same EquivalenceRelationCanonicalPartition if and
only if they describe the same relation.

See also EquivalenceRelationPartition (Reference: EquivalenceRelationPartition), a
similar attribute which does not have canonical ordering, but which is likely to be faster.

Example
gap> S := Semigroup(Transformation([1, 4, 3, 3]),
> Transformation([2, 4, 3, 3]));;
gap> cong := SemigroupCongruence(S, [Transformation([1, 4, 3, 3]),
> Transformation([1, 3, 3, 3])]);;
gap> EquivalenceRelationCanonicalPartition(cong);
[[Transformation([1, 4, 3, 3]),

Transformation([1, 3, 3, 3])],
[Transformation([4, 3, 3, 3]),

Transformation([3, 3, 3, 3])]]

13.3.8 OnLeftCongruenceClasses

▷ OnLeftCongruenceClasses(class, elm) (operation)

Returns: A left congruence class.
If class is an equivalence class of the left semigroup congruence cong on the semigroup S,

and elm is an element of S, then this operation returns the equivalence class of cong containing the
element elm * x, where x is any element of class . The result is well-defined by the definition of a
left congruence.

See IsLeftSemigroupCongruence (13.1.2) and IsLeftCongruenceClass (13.3.2).
Example

gap> S := Semigroup([
> Transformation([2, 1, 1, 2, 1]),
> Transformation([3, 4, 3, 4, 4]),
> Transformation([3, 4, 3, 4, 3]),
> Transformation([4, 3, 3, 4, 4])]);;
gap> pair1 := [Transformation([3, 4, 3, 4, 3]),
> Transformation([1, 2, 1, 2, 1])];;
gap> pair2 := [Transformation([4, 3, 4, 3, 4]),
> Transformation([3, 4, 3, 4, 3])];;
gap> cong := LeftSemigroupCongruence(S, [pair1, pair2]);
<left semigroup congruence over <transformation semigroup of degree 5
with 4 generators> with 2 generating pairs>

gap> x := Transformation([3, 4, 3, 4, 3]);;
gap> class := EquivalenceClassOfElement(cong, x);
<left congruence class of Transformation([3, 4, 3, 4, 3])>
gap> elm := Transformation([1, 2, 2, 1, 2]);;
gap> OnLeftCongruenceClasses(class, elm);
<left congruence class of Transformation([3, 4, 4, 3, 4])>

Semigroups 233

13.3.9 OnRightCongruenceClasses

▷ OnRightCongruenceClasses(class, elm) (operation)

Returns: A right congruence class.
If class is an equivalence class of the right semigroup congruence cong on the semigroup S,

and elm is an element of S, then this operation returns the equivalence class of cong containing the
element x * elm , where x is any element of class . The result is well-defined by the definition of a
right congruence.

See IsRightSemigroupCongruence (13.1.3) and IsRightCongruenceClass (13.3.3).
Example

gap> S := Semigroup([
> Transformation([2, 1, 1, 2, 1]),
> Transformation([3, 4, 3, 4, 4]),
> Transformation([3, 4, 3, 4, 3]),
> Transformation([4, 3, 3, 4, 4])]);;
gap> pair1 := [Transformation([3, 4, 3, 4, 3]),
> Transformation([1, 2, 1, 2, 1])];;
gap> pair2 := [Transformation([4, 3, 4, 3, 4]),
> Transformation([3, 4, 3, 4, 3])];;
gap> cong := RightSemigroupCongruence(S, [pair1, pair2]);
<right semigroup congruence over <transformation semigroup of
degree 5 with 4 generators> with 2 generating pairs>

gap> x := Transformation([3, 4, 3, 4, 3]);;
gap> class := EquivalenceClassOfElement(cong, x);
<right congruence class of Transformation([3, 4, 3, 4, 3])>
gap> elm := Transformation([1, 2, 2, 1, 2]);;
gap> OnRightCongruenceClasses(class, elm);
<right congruence class of Transformation([2, 1, 2, 1, 2])>

13.4 Finding the congruences of a semigroup

13.4.1 CongruencesOfSemigroup (for a semigroup)

▷ CongruencesOfSemigroup(S) (attribute)

▷ LeftCongruencesOfSemigroup(S) (attribute)

▷ RightCongruencesOfSemigroup(S) (attribute)

▷ CongruencesOfSemigroup(S, restriction) (operation)

▷ LeftCongruencesOfSemigroup(S, restriction) (operation)

▷ RightCongruencesOfSemigroup(S, restriction) (operation)

Returns: The congruences of a semigroup.
This attribute gives a list of the left, right, or 2-sided congruences of the semigroup S .
If restriction is specified and is a collection of elements from S , then the result will only

include congruences generated by pairs of elements from restriction . Otherwise, all congruences
will be calculated.

See also LatticeOfCongruences (13.4.5).
Example

gap> S := ReesZeroMatrixSemigroup(SymmetricGroup(3),
> [[(), (1, 3, 2)], [(1, 2), 0]]);;
gap> congs := CongruencesOfSemigroup(S);;

Semigroups 234

gap> Length(congs);
4
gap> Set(congs, NrEquivalenceClasses);
[1, 5, 9, 25]
gap> pos := Position(congs, UniversalSemigroupCongruence(S));;
gap> congs[pos];
<universal semigroup congruence over
<Rees 0-matrix semigroup 2x2 over Sym([1 .. 3])>>

13.4.2 MinimalCongruencesOfSemigroup (for a semigroup)

▷ MinimalCongruencesOfSemigroup(S) (attribute)

▷ MinimalLeftCongruencesOfSemigroup(S) (attribute)

▷ MinimalRightCongruencesOfSemigroup(S) (attribute)

▷ MinimalCongruencesOfSemigroup(S, restriction) (operation)

▷ MinimalLeftCongruencesOfSemigroup(S, restriction) (operation)

▷ MinimalRightCongruencesOfSemigroup(S, restriction) (operation)

Returns: The congruences of a semigroup.
If S is a semigroup, then the attribute MinimalCongruencesOfSemigroup gives a list of all the

congruences on S which are minimal. A congruence is minimal iff it is non-trivial and contains no
other congruences as subrelations (apart from the trivial congruence).

MinimalLeftCongruencesOfSemigroup and MinimalRightCongruencesOfSemigroup do
the same thing, but for left congruences and right congruences respectively. Note that any congru-
ence is also a left congruence, but that a minimal congruence may not be a minimal left congruence.

If restriction is specified and is a collection of elements from S , then the result will only
include congruences generated by pairs of elements from restriction . Otherwise, all congruences
will be calculated.

See also CongruencesOfSemigroup (13.4.1) and PrincipalCongruencesOfSemigroup
(13.4.3).

Example
gap> S := Semigroup(Transformation([1, 3, 2]),
> Transformation([3, 1, 3]));;
gap> min := MinimalCongruencesOfSemigroup(S);
[<2-sided semigroup congruence over <transformation semigroup

of size 13, degree 3 with 2 generators> with 1 generating pairs>
]

gap> minl := MinimalLeftCongruencesOfSemigroup(S);
[<left semigroup congruence over <transformation semigroup

of size 13, degree 3 with 2 generators> with 1 generating pairs>,
<left semigroup congruence over <transformation semigroup

of size 13, degree 3 with 2 generators> with 1 generating pairs>,
<left semigroup congruence over <transformation semigroup

of size 13, degree 3 with 2 generators> with 1 generating pairs>
]

13.4.3 PrincipalCongruencesOfSemigroup (for a semigroup)

▷ PrincipalCongruencesOfSemigroup(S) (attribute)

▷ PrincipalLeftCongruencesOfSemigroup(S) (attribute)

Semigroups 235

▷ PrincipalRightCongruencesOfSemigroup(S) (attribute)

▷ PrincipalCongruencesOfSemigroup(S, restriction) (operation)

▷ PrincipalLeftCongruencesOfSemigroup(S, restriction) (operation)

▷ PrincipalRightCongruencesOfSemigroup(S, restriction) (operation)

Returns: A list.
If S is a semigroup, then the attribute PrincipalCongruencesOfSemigroup gives a list of all

the congruences on S which are principal. A congruence is principal if and only if it is non-trivial
and can be defined by a single generating pair.

PrincipalLeftCongruencesOfSemigroup and PrincipalRightCongruencesOfSemigroup
do the same thing, but for left congruences and right congruences respectively. Note that any con-
gruence is a left congruence and a right congruence, but that a principal congruence may not be a
principal left congruence or a principal right congruence.

If restriction is specified and is a collection of elements from S , then the result will only
include congruences generated by pairs of elements from restriction . Otherwise, all congruences
will be calculated.

See also CongruencesOfSemigroup (13.4.1) and MinimalCongruencesOfSemigroup (13.4.2).
Example

gap> S := Semigroup(Transformation([1, 3, 2]),
> Transformation([3, 1, 3]));;
gap> congs := PrincipalCongruencesOfSemigroup(S);
[<universal semigroup congruence over <transformation semigroup

of size 13, degree 3 with 2 generators>>,
<2-sided semigroup congruence over <transformation semigroup

of size 13, degree 3 with 2 generators> with 1 generating pairs>,
<2-sided semigroup congruence over <transformation semigroup

of size 13, degree 3 with 2 generators> with 1 generating pairs>,
<2-sided semigroup congruence over <transformation semigroup

of size 13, degree 3 with 2 generators> with 1 generating pairs>,
<2-sided semigroup congruence over <transformation semigroup

of size 13, degree 3 with 2 generators> with 1 generating pairs>
]

13.4.4 IsCongruencePoset

▷ IsCongruencePoset(poset) (Category)

▷ IsCayleyDigraphOfCongruences(poset) (Category)

Returns: true or false.
This category contains all congruence posets. A congruence poset is a partially ordered set of

congruences over a specific semigroup, where the ordering is defined by containment according to
IsSubrelation (13.5.1): given two congruences cong1 and cong2, we say that cong1 < cong2 if
and only if cong1 is a subrelation (a refinement) of cong2. The congruences in a congruence poset
can be left, right, or two-sided.

A congruence poset is a digraph (see IsDigraph (Digraphs: IsDigraph)) with a vertex for each
congruence, and an edge from vertex i to vertex j only if the congruence numbered i is a subrelation
of the congruence numbered j. To avoid using an unnecessarily large amount of memory in some
cases, a congruence poset does not necessarily belong to IsPartialOrderDigraph (Digraphs: Is-
PartialOrderDigraph). In other words, although every congruence poset represents a partial order it

Semigroups 236

is not necessarily the case that there is an edge from vertex i to vertex j if and only if the congruence
numbered i is a subrelation of the congruence numbered j.

The list of congruences can be obtained using CongruencesOfPoset (13.4.8); and the underlying
semigroup of the poset can be obtained using UnderlyingSemigroupOfCongruencePoset (13.4.9).

Congruence posets can be created using any of:

• PosetOfCongruences (13.4.10),

• JoinSemilatticeOfCongruences (13.4.11)

• LatticeOfCongruences (13.4.5), LatticeOfLeftCongruences (13.4.5), or
LatticeOfRightCongruences (13.4.5)

• CayleyDigraphOfCongruences (13.4.6), CayleyDigraphOfLeftCongruences (13.4.6), or
CayleyDigraphOfRightCongruences (13.4.6).

IsCayleyDigraphOfCongruences only applies to the output of JoinSemilatticeOfCongruences
(13.4.11), CayleyDigraphOfCongruences (13.4.6), CayleyDigraphOfLeftCongruences (13.4.6),
and CayleyDigraphOfRightCongruences (13.4.6). The congruences used as the generating set for
these operations can be obtained using GeneratingCongruencesOfJoinSemilattice (13.4.12).

Example
gap> S := SymmetricInverseMonoid(2);;
gap> poset := LatticeOfCongruences(S);
<lattice of 4 two-sided congruences over
<symmetric inverse monoid of degree 2>>

gap> IsCongruencePoset(poset);
true
gap> IsDigraph(poset);
true
gap> IsIsomorphicDigraph(poset,
> Digraph([[1, 2, 3, 4], [2], [2, 3], [2, 3, 4]]));
true
gap> T := FullTransformationMonoid(3);;
gap> congs := PrincipalCongruencesOfSemigroup(T);;
gap> poset := JoinSemilatticeOfCongruences(PosetOfCongruences(congs));
<lattice of 6 two-sided congruences over
<full transformation monoid of degree 3>>

gap> IsCayleyDigraphOfCongruences(poset);
false
gap> IsCongruencePoset(poset);
true
gap> DigraphNrVertices(poset);
6
gap> poset := CayleyDigraphOfCongruences(T);
<poset of 7 two-sided congruences over
<full transformation monoid of degree 3>>

gap> IsCayleyDigraphOfCongruences(poset);
true

13.4.5 LatticeOfCongruences (for a semigroup)

▷ LatticeOfCongruences(S) (attribute)

▷ LatticeOfLeftCongruences(S) (attribute)

Semigroups 237

▷ LatticeOfRightCongruences(S) (attribute)

▷ LatticeOfCongruences(S, restriction) (operation)

▷ LatticeOfLeftCongruences(S, restriction) (operation)

▷ LatticeOfRightCongruences(S, restriction) (operation)

Returns: A lattice digraph.
If S is a semigroup, then LatticeOfCongruences returns a congruence poset object contain-

ing all the congruences of S and information about how they are contained in each other. See
IsCongruencePoset (13.4.4) for more details.

LatticeOfLeftCongruences and LatticeOfRightCongruences do the same thing for left and
right congruences, respectively.

If restriction is specified and is a collection of elements from S , then the result will only
include congruences generated by pairs of elements from restriction . Otherwise, all congruences
will be calculated.

See CongruencesOfSemigroup (13.4.1).
Example

gap> S := OrderEndomorphisms(2);;
gap> LatticeOfCongruences(S);
<lattice of 3 two-sided congruences over <regular transformation
monoid of size 3, degree 2 with 2 generators>>

gap> LatticeOfLeftCongruences(S);
<lattice of 3 left congruences over <regular transformation monoid
of size 3, degree 2 with 2 generators>>

gap> LatticeOfRightCongruences(S);
<lattice of 5 right congruences over <regular transformation monoid
of size 3, degree 2 with 2 generators>>

gap> IsIsomorphicDigraph(LatticeOfRightCongruences(S),
> Digraph([[1, 2, 3, 4, 5], [2], [2, 3], [2, 4], [2, 5]]));
true
gap> S := FullTransformationMonoid(4);;
gap> restriction := [Transformation([1, 1, 1, 1]),
> Transformation([1, 1, 1, 2]),
> Transformation([1, 1, 1, 3])];;
gap> latt := LatticeOfCongruences(S, Combinations(restriction, 2));
<lattice of 2 two-sided congruences over
<full transformation monoid of degree 4>>

13.4.6 CayleyDigraphOfCongruences (for a semigroup)

▷ CayleyDigraphOfCongruences(S) (attribute)

▷ CayleyDigraphOfLeftCongruences(S) (attribute)

▷ CayleyDigraphOfRightCongruences(S) (attribute)

▷ CayleyDigraphOfCongruences(S, restriction) (operation)

▷ CayleyDigraphOfLeftCongruences(S, restriction) (operation)

▷ CayleyDigraphOfRightCongruences(S, restriction) (operation)

Returns: A digraph.
If S is a semigroup, then CayleyDigraphOfCongruences returns the right Cayley graph of the

semilattice of congruences of S with respect to the generating set consisting of the principal congru-
ences congruence poset. See IsCayleyDigraphOfCongruences (13.4.4) for more details.

Semigroups 238

CayleyDigraphOfLeftCongruences and CayleyDigraphOfRightCongruences do the same
thing for left and right congruences, respectively.

If restriction is specified and is a collection of elements from S , then the result will only
include congruences generated by pairs of elements from restriction . Otherwise, all congruences
will be calculated.

Note that LatticeOfCongruences (13.4.5), and its analogues for right and left congruences,
return the reflexive transitive closure of the digraph returned by this function (with any multiple edges
removed). If there are a large number of congruences, then it might be the case that forming the
reflexive transitive closure takes a significant amount of time, and so it might be desirable to use this
function instead.

See CongruencesOfSemigroup (13.4.1).
Example

gap> S := OrderEndomorphisms(2);;
gap> CayleyDigraphOfCongruences(S);
<poset of 3 two-sided congruences over <regular transformation monoid
of size 3, degree 2 with 2 generators>>

gap> CayleyDigraphOfLeftCongruences(S);
<poset of 3 left congruences over <regular transformation monoid
of size 3, degree 2 with 2 generators>>

gap> CayleyDigraphOfRightCongruences(S);
<poset of 5 right congruences over <regular transformation monoid
of size 3, degree 2 with 2 generators>>

gap> IsIsomorphicDigraph(CayleyDigraphOfRightCongruences(S),
> Digraph([[2, 3, 4], [2, 5, 5], [5, 3, 5], [5, 5, 4], [5, 5, 5]]));
true
gap> S := FullTransformationMonoid(4);;
gap> restriction := [Transformation([1, 1, 1, 1]),
> Transformation([1, 1, 1, 2]),
> Transformation([1, 1, 1, 3])];;
gap> CayleyDigraphOfCongruences(S, Combinations(restriction, 2));
<poset of 2 two-sided congruences over
<full transformation monoid of degree 4>>

13.4.7 PosetOfPrincipalCongruences (for a semigroup)

▷ PosetOfPrincipalCongruences(S) (attribute)

▷ PosetOfPrincipalLeftCongruences(S) (attribute)

▷ PosetOfPrincipalRightCongruences(S) (attribute)

▷ PosetOfPrincipalCongruences(S, restriction) (operation)

▷ PosetOfPrincipalLeftCongruences(S, restriction) (operation)

▷ PosetOfPrincipalRightCongruences(S, restriction) (operation)

Returns: A congruence poset.
If S is a semigroup, then PosetOfPrincipalCongruences returns a congruence poset ob-

ject which contains all the principal congruences of S , ordered by containment according to
IsSubrelation (13.5.1). A congruence is principal if it can be defined by a single generating
pair. PosetOfPrincipalLeftCongruences and PosetOfPrincipalRightCongruences do the
same thing for left and right congruences respectively.

If restriction is specified and is a collection of elements from S , then the result will only
include principal congruences generated by pairs of elements from restriction . Otherwise, all

Semigroups 239

principal congruences will be calculated.
See also LatticeOfCongruences (13.4.5) and PrincipalCongruencesOfSemigroup (13.4.3).

Example
gap> S := Semigroup(Transformation([1, 3, 1]),
> Transformation([2, 3, 3]));;
gap> PosetOfPrincipalLeftCongruences(S);
<poset of 12 left congruences over <transformation semigroup
of size 11, degree 3 with 2 generators>>

gap> PosetOfPrincipalCongruences(S);
<lattice of 3 two-sided congruences over <transformation semigroup
of size 11, degree 3 with 2 generators>>

gap> restriction := [Transformation([3, 2, 3]),
> Transformation([3, 1, 3]),
> Transformation([2, 2, 2])];;
gap> poset := PosetOfPrincipalRightCongruences(S,
> Combinations(restriction, 2));
<poset of 3 right congruences over <transformation semigroup
of size 11, degree 3 with 2 generators>>

13.4.8 CongruencesOfPoset

▷ CongruencesOfPoset(poset) (attribute)

Returns: A list.
If poset is a congruence poset object, then this attribute returns a list of all the congruence objects

in the poset (these may be left, right, or two-sided). The order of this list corresponds to the order of
the entries in the poset.

See also LatticeOfCongruences (13.4.5) and CongruencesOfSemigroup (13.4.1).
Example

gap> S := OrderEndomorphisms(2);;
gap> latt := LatticeOfRightCongruences(S);
<lattice of 5 right congruences over <regular transformation monoid
of size 3, degree 2 with 2 generators>>

gap> CongruencesOfPoset(latt);
[<2-sided semigroup congruence over <regular transformation monoid

of size 3, degree 2 with 2 generators> with 0 generating pairs>,
<right semigroup congruence over <regular transformation monoid

of size 3, degree 2 with 2 generators> with 1 generating pairs>,
<right semigroup congruence over <regular transformation monoid

of size 3, degree 2 with 2 generators> with 1 generating pairs>,
<right semigroup congruence over <regular transformation monoid

of size 3, degree 2 with 2 generators> with 1 generating pairs>,
<right semigroup congruence over <regular transformation monoid

of size 3, degree 2 with 2 generators> with 2 generating pairs>]

13.4.9 UnderlyingSemigroupOfCongruencePoset

▷ UnderlyingSemigroupOfCongruencePoset(poset) (attribute)

Returns: A semigroup.
If poset is a congruence poset object, then this attribute returns the semigroup on which all its

congruences are defined.

Semigroups 240

Example
gap> S := OrderEndomorphisms(2);
<regular transformation monoid of degree 2 with 2 generators>
gap> latt := LatticeOfRightCongruences(S);
<lattice of 5 right congruences over <regular transformation monoid
of size 3, degree 2 with 2 generators>>

gap> UnderlyingSemigroupOfCongruencePoset(latt) = S;
true

13.4.10 PosetOfCongruences

▷ PosetOfCongruences(coll) (operation)

Returns: A congruence poset.
If coll is a list or collection of semigroup congruences (which may be left, right, or two-sided)

then this operation returns the congruence poset formed by these congruences partially ordered by
containment.

This operation does not create any new congruences or take any joins. See
also JoinSemilatticeOfCongruences (13.4.11), IsCongruencePoset (13.4.4), and
LatticeOfCongruences (13.4.5).

Example
gap> S := OrderEndomorphisms(2);;
gap> pair1 := [Transformation([1, 1]), IdentityTransformation];;
gap> pair2 := [IdentityTransformation, Transformation([2, 2])];;
gap> coll := [RightSemigroupCongruence(S, pair1),
> RightSemigroupCongruence(S, pair2),
> RightSemigroupCongruence(S, [])];;
gap> poset := PosetOfCongruences(coll);
<poset of 3 right congruences over <regular transformation monoid
of size 3, degree 2 with 2 generators>>

gap> OutNeighbours(poset);
[[1], [2], [1, 2, 3]]

13.4.11 JoinSemilatticeOfCongruences

▷ JoinSemilatticeOfCongruences(poset) (attribute)

Returns: A congruence poset.
If poset is a congruence poset (i.e. it satisfies IsCongruencePoset (13.4.4)), then this function

returns the congruence poset formed by these congruences partially ordered by containment, along
with all their joins. This includes the empty join which equals the trivial congruence.

The digraph returned by this function represents the Cayley graph of the semilattice generated by
CongruencesOfPoset (13.4.8) with identity adjoined. The reflexive transitive closure of this digraph
is a join semillatice in the sense of IsJoinSemilatticeDigraph (Digraphs: IsJoinSemilatticeDi-
graph).

See also IsCongruencePoset (13.4.4) and PosetOfCongruences (13.4.10).
Example

gap> S := SymmetricInverseMonoid(2);;
gap> pair1 := [PartialPerm([1], [1]), PartialPerm([2], [1])];;
gap> pair2 := [PartialPerm([1], [1]), PartialPerm([1, 2], [1, 2])];;
gap> pair3 := [PartialPerm([1, 2], [1, 2]),

Semigroups 241

> PartialPerm([1, 2], [2, 1])];;
gap> coll := [RightSemigroupCongruence(S, pair1),
> RightSemigroupCongruence(S, pair2),
> RightSemigroupCongruence(S, pair3)];;
gap> D := JoinSemilatticeOfCongruences(PosetOfCongruences(coll));
<poset of 4 right congruences over
<symmetric inverse monoid of degree 2>>

gap> IsJoinSemilatticeDigraph(DigraphReflexiveTransitiveClosure(D));
true

13.4.12 GeneratingCongruencesOfJoinSemilattice

▷ GeneratingCongruencesOfJoinSemilattice(poset) (attribute)

Returns: A list of congruences.
If poset satisfies IsCayleyDigraphOfCongruences (13.4.4), then this attribute holds the gen-

erating set for the semilattice of congruences (where the operation is join).
Example

gap> S := OrderEndomorphisms(3);;
gap> D := CayleyDigraphOfCongruences(S);
<poset of 4 two-sided congruences over <regular transformation monoid
of size 10, degree 3 with 3 generators>>

gap> GeneratingCongruencesOfJoinSemilattice(D);
[<universal semigroup congruence over <regular transformation monoid

of size 10, degree 3 with 3 generators>>,
<2-sided semigroup congruence over <regular transformation monoid

of size 10, degree 3 with 3 generators> with 1 generating pairs>,
<2-sided semigroup congruence over <regular transformation monoid

of size 10, degree 3 with 3 generators> with 1 generating pairs>
]

13.4.13 MinimalCongruences (for a list or collection)

▷ MinimalCongruences(coll) (attribute)

▷ MinimalCongruences(poset) (attribute)

Returns: A list.
If coll is a list or collection of semigroup congruences (which may be left, right, or two-sided)

then this attribute returns a list of all the congruences from coll which do not contain any of the
others as subrelations.

Alternatively, a congruence poset poset can be specified; in this case, the congruences contained
in poset will be used in place of coll , and information already known about their containments will
be used.

This function should not be confused with MinimalCongruencesOfSemigroup (13.4.2). See also
IsCongruencePoset (13.4.4) and PosetOfCongruences (13.4.10).

Example
gap> S := SymmetricInverseMonoid(2);;
gap> pair1 := [PartialPerm([1], [1]), PartialPerm([2], [1])];;
gap> pair2 := [PartialPerm([1], [1]), PartialPerm([1, 2], [1, 2])];;
gap> pair3 := [PartialPerm([1, 2], [1, 2]),
> PartialPerm([1, 2], [2, 1])];;

Semigroups 242

gap> coll := [RightSemigroupCongruence(S, pair1),
> RightSemigroupCongruence(S, pair2),
> RightSemigroupCongruence(S, pair3)];;
gap> MinimalCongruences(PosetOfCongruences(coll));
[<right semigroup congruence over <symmetric inverse monoid of degree\
2> with 1 generating pairs>,
<right semigroup congruence over <symmetric inverse monoid of degree\

2> with 1 generating pairs>]
gap> poset := LatticeOfCongruences(S);
<lattice of 4 two-sided congruences over
<symmetric inverse monoid of degree 2>>

gap> MinimalCongruences(poset);
[<2-sided semigroup congruence over <symmetric inverse monoid of degr\
ee 2> with 0 generating pairs>]

13.4.14 NumberOfRightCongruences (for a semigroup, positive integer, and list or col-
lection)

▷ NumberOfRightCongruences(S, n, extra) (operation)

▷ NumberOfLeftCongruences(S, n, extra) (operation)

▷ NumberOfRightCongruences(S, n) (operation)

▷ NumberOfLeftCongruences(S, n) (operation)

▷ NumberOfRightCongruences(S) (attribute)

▷ NumberOfLeftCongruences(S) (operation)

Returns: A non-negative integer.
NumberOfRightCongruences returns the number of right congruences of the semigroup S with

at most n classes that contain the pairs in extra ; NumberOfLeftCongruences is defined dually for
left congruences rather than right congruences.

If the optional third argument extra is not present, then NumberOfRightCongruences returns
the number of right congruences of S with at most n classes.

If the optional second argument n is not present, then NumberOfRightCongruences returns the
number of right congruences of S .

Note that the 2 and 3 argument variants of this function can be applied to infinite semigroups, but
the 1 argument variant cannot.

If the lattice of right or left congruences of S is known, then that is used by
NumberOfRightCongruences. If this lattice is not known, then Sim’s low index congruence al-
gorithm is used.

See IteratorOfRightCongruences (13.4.15) to actually obtain the congruences counted by this
function.

Example
gap> S := PartitionMonoid(2);
<regular bipartition *-monoid of size 15, degree 2 with 3 generators>
gap> NumberOfRightCongruences(S, 10);
86
gap> NumberOfLeftCongruences(S, 10);
86
gap> NumberOfRightCongruences(S, Size(S), [[S.1, S.2], [S.1, S.3]]);
1

Semigroups 243

gap> NumberOfLeftCongruences(S, Size(S), [[S.1, S.2], [S.1, S.3]]);
1

13.4.15 IteratorOfRightCongruences (for a semigroup, positive integer, and list or col-
lection)

▷ IteratorOfRightCongruences(S, n, extra) (operation)

▷ IteratorOfLeftCongruences(S, n, extra) (operation)

▷ IteratorOfRightCongruences(S, n) (operation)

▷ IteratorOfLeftCongruences(S, n) (operation)

▷ IteratorOfRightCongruences(S) (attribute)

▷ IteratorOfLeftCongruences(S) (operation)

Returns: An iterator.
IteratorOfRightCongruences returns an iterator where calling NextIterator (Reference:

NextIterator) returns the next right congruence of the semigroup S with at most n classes that contain
the pairs in extra ; IteratorOfLeftCongruences is defined dually for left congruences rather than
right congruences.

If the optional third argument extra is not present, then IteratorOfRightCongruences uses
an empty list by default.

If the optional second argument n is not present, then IteratorOfRightCongruences uses
Size(S) by default.

Note that the 2 and 3 argument variants of this function can be applied to infinite semigroups, but
the 1 argument variant cannot.

If the lattice of right or left congruences of S is known, then that is used by
IteratorOfRightCongruences. If this lattice is not known, then Sim’s low index congruence algo-
rithm is used.

Example
gap> F := FreeMonoidAndAssignGeneratorVars("a", "b");
<free monoid on the generators [a, b]>
gap> R := [[a ^ 3, a], [b ^ 2, b], [(a * b) ^ 2, a]];
[[a^3, a], [b^2, b], [(a*b)^2, a]]
gap> S := F / R;
<fp monoid with 2 generators and 3 relations of length 14>
gap> NumberOfRightCongruences(S);
6
gap> it := IteratorOfRightCongruences(S);
<iterator>
gap> OutNeighbours(WordGraph(NextIterator(it)));
[[1, 1]]
gap> OutNeighbours(WordGraph(NextIterator(it)));
[[2, 1], [2, 2]]
gap> OutNeighbours(WordGraph(NextIterator(it)));
[[2, 2], [2, 2]]
gap> OutNeighbours(WordGraph(NextIterator(it)));
[[2, 3], [2, 2], [2, 3]]
gap> OutNeighbours(WordGraph(NextIterator(it)));
[[2, 3], [2, 2], [3, 3]]
gap> OutNeighbours(WordGraph(NextIterator(it)));
[[2, 3], [2, 2], [4, 3], [4, 4]]

Semigroups 244

gap> NextIterator(it);
fail

13.5 Comparing congruences

13.5.1 IsSubrelation

▷ IsSubrelation(cong1, cong2) (operation)

Returns: True or false.
If cong1 and cong2 are congruences over the same semigroup, then this operation returns whether

cong2 is a refinement of cong1 , i.e. whether every pair in cong2 is contained in cong1 .
Example

gap> S := ReesZeroMatrixSemigroup(SymmetricGroup(3),
> [[(), (1, 3, 2)], [(1, 2), 0]]);;
gap> cong1 := SemigroupCongruence(S, [RMSElement(S, 1, (1, 2, 3), 1),
> RMSElement(S, 1, (), 1)]);;
gap> cong2 := SemigroupCongruence(S, []);;
gap> IsSubrelation(cong1, cong2);
true
gap> IsSubrelation(cong2, cong1);
false

13.5.2 IsSuperrelation

▷ IsSuperrelation(cong1, cong2) (operation)

Returns: True or false.
If cong1 and cong2 are congruences over the same semigroup, then this operation returns whether

cong1 is a refinement of cong2 , i.e. whether every pair in cong1 is contained in cong2 .
See IsSubrelation (13.5.1).

Example
gap> S := ReesZeroMatrixSemigroup(SymmetricGroup(3),
> [[(), (1, 3, 2)], [(1, 2), 0]]);;
gap> cong1 := SemigroupCongruence(S, [RMSElement(S, 1, (1, 2, 3), 1),
> RMSElement(S, 1, (), 1)]);;
gap> cong2 := SemigroupCongruence(S, []);;
gap> IsSuperrelation(cong1, cong2);
false
gap> IsSuperrelation(cong2, cong1);
true

13.5.3 MeetSemigroupCongruences

▷ MeetSemigroupCongruences(c1, c2) (operation)

▷ MeetLeftSemigroupCongruences(c1, c2) (operation)

▷ MeetRightSemigroupCongruences(c1, c2) (operation)

Returns: A semigroup congruence.
This operation returns the meet of the two semigroup congruences c1 and c2 -- that is, the largest

semigroup congruence contained in both c1 and c2 .

Semigroups 245

Example
gap> S := ReesZeroMatrixSemigroup(SymmetricGroup(3),
> [[(), (1, 3, 2)], [(1, 2), 0]]);;
gap> cong1 := SemigroupCongruence(S, [RMSElement(S, 1, (1, 2, 3), 1),
> RMSElement(S, 1, (), 1)]);;
gap> cong2 := SemigroupCongruence(S, []);;
gap> MeetSemigroupCongruences(cong1, cong2);
<semigroup congruence over <Rees 0-matrix semigroup 2x2 over

Sym([1 .. 3])> with linked triple (1,2,2)>

13.5.4 JoinSemigroupCongruences

▷ JoinSemigroupCongruences(c1, c2) (operation)

▷ JoinLeftSemigroupCongruences(c1, c2) (operation)

▷ JoinRightSemigroupCongruences(c1, c2) (operation)

Returns: A semigroup congruence.
This operation returns the join of the two semigroup congruences c1 and c2 -- that is, the smallest

semigroup congruence containing all the relations in both c1 and c2 .
Example

gap> S := ReesZeroMatrixSemigroup(SymmetricGroup(3),
> [[(), (1, 3, 2)], [(1, 2), 0]]);;
gap> cong1 := SemigroupCongruence(S, [RMSElement(S, 1, (1, 2, 3), 1),
> RMSElement(S, 1, (), 1)]);;
gap> cong2 := SemigroupCongruence(S, []);;
gap> JoinSemigroupCongruences(cong1, cong2);
<semigroup congruence over <Rees 0-matrix semigroup 2x2 over

Sym([1 .. 3])> with linked triple (3,2,2)>

13.6 Congruences on Rees matrix semigroups

This section describes the implementation of congruences of simple and 0-simple semigroups in the
Semigroups package, and the functions associated with them. This code and this part of the manual
were written by Michael Young. Most of the theorems used in this chapter are from Section 3.5 of
[How95].

By the Rees Theorem, any 0-simple semigroup S is isomorphic to a Rees 0-matrix semigroup (see
(Reference: Rees Matrix Semigroups)) over a group, with a regular sandwich matrix. That is,

S ∼= M 0[G; I,Λ;P],

where G is a group, Λ and I are non-empty sets, and P is regular in the sense that it has no rows or
columns consisting solely of zeroes.

The congruences of a Rees 0-matrix semigroup are in 1-1 correspondence with the linked triple,
which is a triple of the form [N, S, T] where:

• N is a normal subgroup of the underlying group G,

• S is an equivalence relation on the columns of P,

• T is an equivalence relation on the rows of P,

Semigroups 246

satisfying the following conditions:

• a pair of S-related columns must contain zeroes in precisely the same rows,

• a pair of T-related rows must contain zeroes in precisely the same columns,

• if i and j are S-related, k and l are T-related and the matrix entries pk,i, pk, j, pl,i, pl, j ̸= 0, then
qk,l,i, j ∈ N, where

qk,l,i, j = pk,i p−1
l,i pl, j p−1

k, j .

By Theorem 3.5.9 in [How95], for any finite 0-simple Rees 0-matrix semigroup, there is a bijection
between its non-universal congruences and its linked triples. In this way, we can internally represent
any congruence of such a semigroup by storing its associated linked triple instead of a set of generating
pairs, and thus perform many calculations on it more efficiently.

If a congruence is defined by a linked triple (N, S, T), then a single class of that congruence can
be defined by a triple (Nx, i / S, k / S), where Nx is a right coset of N, i / S is the equivalence
class of i in S, and k / S is the equivalence class of k in T. Thus we can internally represent any class
of such a congruence as a triple simply consisting of a right coset and two positive integers.

An analogous condition exists for finite simple Rees matrix semigroups without zero.

13.6.1 IsRMSCongruenceByLinkedTriple

▷ IsRMSCongruenceByLinkedTriple(obj) (category)

▷ IsRZMSCongruenceByLinkedTriple(obj) (category)

Returns: true or false.
These categories describe a type of semigroup congruence over a Rees matrix or 0-matrix semi-

group. Externally, an object of this type may be used in the same way as any other object in the
category IsSemigroupCongruence (Reference: IsSemigroupCongruence) but it is represented in-
ternally by its linked triple, and certain functions may take advantage of this information to reduce
computation times.

An object of this type may be constructed with RMSCongruenceByLinkedTriple or
RZMSCongruenceByLinkedTriple, or this representation may be selected automatically by
SemigroupCongruence (13.2.1).

Example
gap> G := Group([(1, 4, 5), (1, 5, 3, 4)]);;
gap> mat := [[0, 0, (1, 4, 5), 0, 0, (1, 4, 3, 5)],
> [0, (), 0, 0, (3, 5), 0],
> [(), 0, 0, (3, 5), 0, 0]];;
gap> S := ReesZeroMatrixSemigroup(G, mat);;
gap> N := Group([(1, 4)(3, 5), (1, 5)(3, 4)]);;
gap> colBlocks := [[1], [2, 5], [3, 6], [4]];;
gap> rowBlocks := [[1], [2], [3]];;
gap> cong := RZMSCongruenceByLinkedTriple(S, N, colBlocks, rowBlocks);;
gap> IsRZMSCongruenceByLinkedTriple(cong);
true

Semigroups 247

13.6.2 RMSCongruenceByLinkedTriple

▷ RMSCongruenceByLinkedTriple(S, N, colBlocks, rowBlocks) (function)

▷ RZMSCongruenceByLinkedTriple(S, N, colBlocks, rowBlocks) (function)

Returns: A Rees matrix or 0-matrix semigroup congruence by linked triple.
This function returns a semigroup congruence over the Rees matrix or 0-matrix semigroup S

corresponding to the linked triple (N , colBlocks , rowBlocks). The argument N should be a normal
subgroup of the underlying semigroup of S ; colBlocks should be a partition of the columns of the
matrix of S ; and rowBlocks should be a partition of the rows of the matrix of S . For example, if the
matrix has 5 rows, then a possibility for rowBlocks might be [[1, 3], [2, 5], [4]].

If the arguments describe a valid linked triple on S , then an object in the category
IsRZMSCongruenceByLinkedTriple is returned. This object can be used like any other semigroup
congruence in GAP.

If the arguments describe a triple which is not linked in the sense described above, then this
function returns an error.

Example
gap> G := Group([(1, 4, 5), (1, 5, 3, 4)]);;
gap> mat := [[0, 0, (1, 4, 5), 0, 0, (1, 4, 3, 5)],
> [0, (), 0, 0, (3, 5), 0],
> [(), 0, 0, (3, 5), 0, 0]];;
gap> S := ReesZeroMatrixSemigroup(G, mat);;
gap> N := Group([(1, 4)(3, 5), (1, 5)(3, 4)]);;
gap> colBlocks := [[1], [2, 5], [3, 6], [4]];;
gap> rowBlocks := [[1], [2], [3]];;
gap> cong := RZMSCongruenceByLinkedTriple(S, N, colBlocks, rowBlocks);;

13.6.3 IsRMSCongruenceClassByLinkedTriple

▷ IsRMSCongruenceClassByLinkedTriple(obj) (category)

▷ IsRZMSCongruenceClassByLinkedTriple(obj) (category)

Returns: true or false.
These categories contain the congruence classes of a semigroup congruence of the categories

IsRMSCongruenceByLinkedTriple (13.6.1) and IsRZMSCongruenceByLinkedTriple (13.6.1) re-
spectively.

An object of one of these types may be used in the same way as any other object in the category
IsCongruenceClass (13.3.1), but the class is represented internally by information related to the
congruence’s linked triple, and certain functions may take advantage of this information to reduce
computation times.

Example
gap> G := Group([(1, 4, 5), (1, 5, 3, 4)]);;
gap> mat := [[0, 0, (1, 4, 5), 0, 0, (1, 4, 3, 5)],
> [0, (), 0, 0, (3, 5), 0],
> [(), 0, 0, (3, 5), 0, 0]];;
gap> S := ReesZeroMatrixSemigroup(G, mat);;
gap> N := Group([(1, 4)(3, 5), (1, 5)(3, 4)]);;
gap> colBlocks := [[1], [2, 5], [3, 6], [4]];;
gap> rowBlocks := [[1], [2], [3]];;
gap> cong := RZMSCongruenceByLinkedTriple(S, N, colBlocks, rowBlocks);;
gap> classes := EquivalenceClasses(cong);;

Semigroups 248

gap> IsRZMSCongruenceClassByLinkedTriple(classes[1]);
true

13.6.4 RMSCongruenceClassByLinkedTriple

▷ RMSCongruenceClassByLinkedTriple(cong, nCoset, colClass, rowClass) (operation)

▷ RZMSCongruenceClassByLinkedTriple(cong, nCoset, colClass, rowClass) (operation)

Returns: A Rees matrix or 0-matrix semigroup congruence class by linked triple.
This operation returns one congruence class of the congruence cong , as defined by the other three

parameters.
The argument cong must be a Rees matrix or 0-matrix semigroup congruence by linked triple. If

the linked triple consists of the three parameters N, colBlocks and rowBlocks, then nCoset must be a
right coset of N, colClass must be a positive integer corresponding to a position in the list colBlocks,
and rowClass must be a positive integer corresponding to a position in the list rowBlocks.

If the arguments are valid, an IsRMSCongruenceClassByLinkedTriple or
IsRZMSCongruenceClassByLinkedTriple object is returned, which can be used like any
other equivalence class in GAP. Otherwise, an error is returned.

Example
gap> G := Group([(1, 4, 5), (1, 5, 3, 4)]);;
gap> mat := [[0, 0, (1, 4, 5), 0, 0, (1, 4, 3, 5)],
> [0, (), 0, 0, (3, 5), 0],
> [(), 0, 0, (3, 5), 0, 0]];;
gap> S := ReesZeroMatrixSemigroup(G, mat);;
gap> N := Group([(1, 4)(3, 5), (1, 5)(3, 4)]);;
gap> colBlocks := [[1], [2, 5], [3, 6], [4]];;
gap> rowBlocks := [[1], [2], [3]];;
gap> cong := RZMSCongruenceByLinkedTriple(S, N, colBlocks, rowBlocks);;
gap> class := RZMSCongruenceClassByLinkedTriple(cong,
> RightCoset(N, (1, 5)), 2, 3);
<2-sided congruence class of (2,(3,4),3)>

13.6.5 IsLinkedTriple

▷ IsLinkedTriple(S, N, colBlocks, rowBlocks) (operation)

Returns: true or false.
This operation returns true if and only if the arguments (N , colBlocks , rowBlocks) describe a

linked triple of the Rees matrix or 0-matrix semigroup S , as described above.
Example

gap> G := Group([(1, 4, 5), (1, 5, 3, 4)]);;
gap> mat := [[0, 0, (1, 4, 5), 0, 0, (1, 4, 3, 5)],
> [0, (), 0, 0, (3, 5), 0],
> [(), 0, 0, (3, 5), 0, 0]];;
gap> S := ReesZeroMatrixSemigroup(G, mat);;
gap> N := Group([(1, 4)(3, 5), (1, 5)(3, 4)]);;
gap> colBlocks := [[1], [2, 5], [3, 6], [4]];;
gap> rowBlocks := [[1], [2], [3]];;
gap> IsLinkedTriple(S, N, colBlocks, rowBlocks);
true

Semigroups 249

13.6.6 AsSemigroupCongruenceByGeneratingPairs

▷ AsSemigroupCongruenceByGeneratingPairs(cong) (operation)

Returns: A semigroup congruence.
This operation takes cong , a semigroup congruence, and returns the same congruence relation,

but described by GAP’s default method of defining semigroup congruences: a set of generating pairs
for the congruence.

Example
gap> S := ReesZeroMatrixSemigroup(SymmetricGroup(3),
> [[(), (1, 3, 2)], [(1, 2), 0]]);;
gap> cong := CongruencesOfSemigroup(S)[3];;
gap> AsSemigroupCongruenceByGeneratingPairs(cong);
<semigroup congruence over <Rees 0-matrix semigroup 2x2 over

Sym([1 .. 3])> with linked triple (3,2,2)>

13.7 Congruences on inverse semigroups

This section describes the implementation of congruences of inverse semigroups in the Semigroups
package, and the functions associated with them. This code and this part of the manual were written
by Michael Young. Most of the theorems used in this chapter are from Section 5.3 of [How95].

The congruences of an inverse semigroup are in 1-1 correspondence with its congruence pairs. A
congruence pair is a pair (N, t) such that:

• N is a normal subsemigroup of S -- that is, a self-conjugate subsemigroup which contains all
the idempotents of S,

• t is a normal congruence on E, the subsemigroup of all idempotents in S -- that is, a congruence
on E such that if (e, f) is a pair in t, then the pair (a−1ea,a−1 f a) is also in t,

satisfying the following conditions:

• If ae ∈ N and (e,a−1a) ∈ t, then a ∈ N,

• If a ∈ N, then (aa−1,a−1a) ∈ t.

By Theorem 5.3.3 in [How95], for any inverse semigroup, there is a bijection between its congruences
and its congruence pairs. In this way, we can internally represent any congruence of such a semigroup
by storing its associated congruence pair instead of a set of generating pairs, and thus perform many
calculations on it more efficiently.

If we have a congruence C with congruence pair (N, t), it turns out that N is its kernel (that is,
the set of all elements congruent to an idempotent) and that t is its trace (that is, the restriction of C
to the idempotents). Hence, we refer to a congruence stored in this format as a "congruence by kernel
and trace".

See cong_by_ker_trace_threshold in Section 6.3 for details on when this method is used.

13.7.1 IsInverseSemigroupCongruenceByKernelTrace

▷ IsInverseSemigroupCongruenceByKernelTrace(cong) (Category)

Returns: true or false.

Semigroups 250

This category contains any inverse semigroup congruence cong which is represented internally
by its kernel and trace. The SemigroupCongruence (13.2.1) function may create an object of this
category if its first argument S is an inverse semigroup and has sufficiently large size. It can be treated
like any other semigroup congruence object.

See [How95] Section 5.3 for more details. See also
InverseSemigroupCongruenceByKernelTrace (13.7.2).

Example
gap> S := InverseSemigroup([
> PartialPerm([4, 3, 1, 2]),
> PartialPerm([1, 4, 2, 0, 3])],
> rec(cong_by_ker_trace_threshold := 0));;
gap> cong := SemigroupCongruence(S, []);
<semigroup congruence over <inverse partial perm semigroup
of size 351, rank 5 with 2 generators> with congruence pair (24,24)>

gap> IsInverseSemigroupCongruenceByKernelTrace(cong);
true

13.7.2 InverseSemigroupCongruenceByKernelTrace

▷ InverseSemigroupCongruenceByKernelTrace(S, kernel, traceBlocks) (function)

Returns: An inverse semigroup congruence by kernel and trace.
If S is an inverse semigroup, kernel is a subsemigroup of S , traceBlocks is a list of lists

describing a congruence on the idempotents of S , and (kernel ,trace) describes a valid congruence
pair for S (see [How95] Section 5.3) then this function returns the semigroup congruence defined by
that congruence pair.

See also KernelOfSemigroupCongruence (13.7.4) and TraceOfSemigroupCongruence
(13.7.5).

Example
gap> S := InverseSemigroup([
> PartialPerm([2, 3]), PartialPerm([2, 0, 3])]);;
gap> kernel := InverseSemigroup([
> PartialPerm([1, 0, 3]), PartialPerm([0, 2, 3]),
> PartialPerm([1, 2]), PartialPerm([3]),
> PartialPerm([2])]);;
gap> trace := [
> [PartialPerm([0, 2, 3])],
> [PartialPerm([1, 2])],
> [PartialPerm([1, 0, 3])],
> [PartialPerm([0, 0, 3]), PartialPerm([0, 2]),
> PartialPerm([1]), PartialPerm([], [])]];;
gap> cong := InverseSemigroupCongruenceByKernelTrace(S, kernel, trace);
<semigroup congruence over <inverse partial perm semigroup of rank 3
with 2 generators> with congruence pair (13,4)>

13.7.3 AsInverseSemigroupCongruenceByKernelTrace

▷ AsInverseSemigroupCongruenceByKernelTrace(cong) (attribute)

Returns: An inverse semigroup congruence by kernel and trace.

Semigroups 251

If cong is a semigroup congruence over an inverse semigroup, then this attribute returns an object
which describes the same congruence, but with an internal representation defined by that congruence’s
kernel and trace.

See [How95] section 5.3 for more details.
Example

gap> I := InverseSemigroup([
> PartialPerm([2, 3]), PartialPerm([2, 0, 3])]);;
gap> cong := SemigroupCongruenceByGeneratingPairs(I,
> [[PartialPerm([0, 1, 3]), PartialPerm([0, 1])],
> [PartialPerm([]), PartialPerm([1, 2])]]);
<2-sided semigroup congruence over <inverse partial perm semigroup of
rank 3 with 2 generators> with 2 generating pairs>

gap> cong2 := AsInverseSemigroupCongruenceByKernelTrace(cong);
<semigroup congruence over <inverse partial perm semigroup
of size 19, rank 3 with 2 generators> with congruence pair (19,1)>

13.7.4 KernelOfSemigroupCongruence

▷ KernelOfSemigroupCongruence(cong) (attribute)

Returns: An inverse semigroup.
If cong is a congruence over a semigroup with inverse op, then this attribute returns the kernel of

that congruence; that is, the inverse subsemigroup consisting of all elements which are related to an
idempotent by cong .

Example
gap> I := InverseSemigroup([
> PartialPerm([2, 3]), PartialPerm([2, 0, 3])]);;
gap> cong := SemigroupCongruence(I,
> [[PartialPerm([0, 1, 3]), PartialPerm([0, 1])],
> [PartialPerm([]), PartialPerm([1, 2])]]);
<2-sided semigroup congruence over <inverse partial perm semigroup
of size 19, rank 3 with 2 generators> with 2 generating pairs>

gap> KernelOfSemigroupCongruence(cong);
<inverse partial perm semigroup of size 19, rank 3 with 5 generators>

13.7.5 TraceOfSemigroupCongruence

▷ TraceOfSemigroupCongruence(cong) (attribute)

Returns: A list of lists.
If cong is an inverse semigroup congruence by kernel and trace, then this attribute returns the

restriction of cong to the idempotents of the semigroup. This is in block form: each idempotent will
appear in precisely one list, and two idempotents will be in the same list if and only if they are related
by cong .

Example
gap> I := InverseSemigroup([
> PartialPerm([2, 3]), PartialPerm([2, 0, 3])]);;
gap> cong := SemigroupCongruence(I,
> [[PartialPerm([0, 1, 3]), PartialPerm([0, 1])],
> [PartialPerm([]), PartialPerm([1, 2])]]);
<2-sided semigroup congruence over <inverse partial perm semigroup
of size 19, rank 3 with 2 generators> with 2 generating pairs>

Semigroups 252

gap> TraceOfSemigroupCongruence(cong);
[[<empty partial perm>, <identity partial perm on [1]>,

<identity partial perm on [2]>,
<identity partial perm on [1, 2]>,
<identity partial perm on [3]>,
<identity partial perm on [2, 3]>,
<identity partial perm on [1, 3]>]]

13.7.6 IsInverseSemigroupCongruenceClassByKernelTrace

▷ IsInverseSemigroupCongruenceClassByKernelTrace(obj) (Category)

Returns: true or false.
This category contains any congruence class which belongs to a congruence which is represented

internally by its kernel and trace. See InverseSemigroupCongruenceByKernelTrace (13.7.2).
See [How95] Section 5.3 for more details.

Example
gap> I := InverseSemigroup([
> PartialPerm([2, 3]), PartialPerm([2, 0, 3])],
> rec(cong_by_ker_trace_threshold := 0));;
gap> cong := SemigroupCongruence(I,
> [[PartialPerm([0, 1, 3]), PartialPerm([0, 1])],
> [PartialPerm([]), PartialPerm([1, 2])]]);;
gap> class := EquivalenceClassOfElement(cong,
> PartialPerm([1, 2], [2, 3]));;
gap> IsInverseSemigroupCongruenceClassByKernelTrace(class);
true

13.7.7 MinimumGroupCongruence

▷ MinimumGroupCongruence(S) (attribute)

Returns: An inverse semigroup congruence by kernel and trace.
If S is an inverse semigroup, then this function returns the least congruence on S whose quotient

is a group.
Example

gap> S := InverseSemigroup([
> PartialPerm([5, 2, 0, 0, 1, 4]),
> PartialPerm([1, 4, 6, 3, 5, 0, 2])]);;
gap> cong := MinimumGroupCongruence(S);
<semigroup congruence over <inverse partial perm semigroup
of size 101, rank 7 with 2 generators> with congruence pair (59,1)>

gap> IsGroupAsSemigroup(S / cong);
true

13.8 Congruences on graph inverse semigroups

13.8.1 IsCongruenceByWangPair

▷ IsCongruenceByWangPair(cong) (property)

Semigroups 253

A congruence by Wang pair cong is a congruence of a graph inverse semigroup S which is ex-
pressed in terms of two sets H and W of vertices of the corresponding graph of S . The set H must
be a hereditary subset (closed under reachability) and all vertices in W must have all but one of their
out-neighbours in H . For more information on Wang pairs see [Wan19] and [AMM23].

Example
gap> D := Digraph([[3, 4], [3, 4], [4], []]);
<immutable digraph with 4 vertices, 5 edges>
gap> S := GraphInverseSemigroup(D);
<finite graph inverse semigroup with 4 vertices, 5 edges>
gap> cong := CongruenceByWangPair(S, [3, 4], []);
<graph inverse semigroup congruence with H = [3, 4] and W = []>
gap> IsCongruenceByWangPair(cong);
true
gap> cong := CongruenceByWangPair(S, [4], [2]);
<graph inverse semigroup congruence with H = [4] and W = [2]>
gap> IsCongruenceByWangPair(cong);
true
gap> e_1 := S.1;
e_1
gap> e_3 := S.3;
e_3
gap> cong := SemigroupCongruence(S, [[e_1, e_3]]);
<2-sided semigroup congruence over <finite graph inverse semigroup wit\
h 4 vertices, 5 edges> with 1 generating pairs>
gap> IsCongruenceByWangPair(cong);
false

13.8.2 CongruenceByWangPair

▷ CongruenceByWangPair(S, H, W) (function)

Returns: A semigroup congruence.
This function returns a semigroup congruence over the graph inverse semigroup S in the form of

a Wang pair.
If S is a finite graph inverse semigroup H and W are two lists of vertices in the graph of S repre-

senting a valid hereditary subset and a W-set respectively, then this function will return the semigroup
congruence defined by this Wang pair. For the definition of Wang pair IsCongruenceByWangPair
(13.8.1).

Example
gap> D := Digraph([[3, 4], [3, 4], [4], []]);
<immutable digraph with 4 vertices, 5 edges>
gap> S := GraphInverseSemigroup(D);
<finite graph inverse semigroup with 4 vertices, 5 edges>
gap> cong := CongruenceByWangPair(S, [3, 4], []);
<graph inverse semigroup congruence with H = [3, 4] and W = []>
gap> cong := CongruenceByWangPair(S, [4], [2]);
<graph inverse semigroup congruence with H = [4] and W = [2]>
gap> cong := CongruenceByWangPair(S, [3, 4], []);
<graph inverse semigroup congruence with H = [3, 4] and W = []>

Semigroups 254

13.8.3 AsCongruenceByWangPair

▷ AsCongruenceByWangPair(cong) (operation)

Returns: A congruence by Wang pair.
This operation takes cong , a finite graph inverse semigroup congruence, and returns an object

representing the same congruence, but described as a congruence by Wang pairs: a pair of sets H
and W of the corresponding graph of S that are a hereditary subset and a W-set of the graph of S
respectively. For more information about Wang pairs see [Wan19] and [AMM23].

Example
gap> D := Digraph([[2, 3], [3], [4], []]);
<immutable digraph with 4 vertices, 4 edges>
gap> S := GraphInverseSemigroup(D);
<finite graph inverse semigroup with 4 vertices, 4 edges>
gap> CongruenceByWangPair(S, [4], [2]);
<graph inverse semigroup congruence with H = [4] and W = [2]>
gap> cong := AsSemigroupCongruenceByGeneratingPairs(last);
<2-sided semigroup congruence over <finite graph inverse semigroup wit\
h 4 vertices, 4 edges> with 2 generating pairs>
gap> AsCongruenceByWangPair(cong);
<graph inverse semigroup congruence with H = [4] and W = [2]>
gap> CongruenceByWangPair(S, [3, 4], [1]);
<graph inverse semigroup congruence with H = [3, 4] and W = [1]>
gap> cong := AsSemigroupCongruenceByGeneratingPairs(last);
<2-sided semigroup congruence over <finite graph inverse semigroup wit\
h 4 vertices, 4 edges> with 3 generating pairs>
gap> AsCongruenceByWangPair(cong);
<graph inverse semigroup congruence with H = [3, 4] and W = [1]>

13.8.4 GeneratingCongruencesOfLattice

▷ GeneratingCongruencesOfLattice(S) (attribute)

Returns: A semigroup.
This attribute takes a finite graph inverse semigroup S and returns a minimal generating set for the

lattice of congruences of S , as described in [AMM23]. This operation works only if the corresponding
digraph of the graph inverse semigroup is simple. If there are multiple edges, an error is returned.

Example
gap> D := Digraph([[2, 3], [3], [4], []]);
<immutable digraph with 4 vertices, 4 edges>
gap> S := GraphInverseSemigroup(D);
<finite graph inverse semigroup with 4 vertices, 4 edges>
gap> CongruenceByWangPair(S, [4], [2]);
<graph inverse semigroup congruence with H = [4] and W = [2]>
gap> cong := AsSemigroupCongruenceByGeneratingPairs(last);
<2-sided semigroup congruence over <finite graph inverse semigroup wit\
h 4 vertices, 4 edges> with 2 generating pairs>
gap> AsCongruenceByWangPair(cong);
<graph inverse semigroup congruence with H = [4] and W = [2]>
gap> CongruenceByWangPair(S, [3, 4], [1]);
<graph inverse semigroup congruence with H = [3, 4] and W = [1]>
gap> cong := AsSemigroupCongruenceByGeneratingPairs(last);
<2-sided semigroup congruence over <finite graph inverse semigroup wit\

Semigroups 255

h 4 vertices, 4 edges> with 3 generating pairs>
gap> AsCongruenceByWangPair(cong);
<graph inverse semigroup congruence with H = [3, 4] and W = [1]>

13.9 Rees congruences

A Rees congruence is defined by a semigroup ideal. It is a congruence on a semigroup S which has
one congruence class equal to a semigroup ideal I of S, and every other congruence class being a
singleton.

13.9.1 SemigroupIdealOfReesCongruence

▷ SemigroupIdealOfReesCongruence(cong) (attribute)

Returns: A semigroup ideal.
If cong is a rees congruence (see IsReesCongruence (Reference: IsReesCongruence)) then

this attribute returns the two-sided ideal that was used to define it, i.e.~the ideal of elements in the
only non-trivial congruence class of cong .

Example
gap> S := Semigroup([
> Transformation([2, 3, 4, 3, 1, 1]),
> Transformation([6, 4, 4, 4, 6, 1])]);;
gap> I := SemigroupIdeal(S,
> Transformation([4, 4, 4, 4, 4, 2]),
> Transformation([3, 3, 3, 3, 3, 2]));;
gap> cong := ReesCongruenceOfSemigroupIdeal(I);;
gap> SemigroupIdealOfReesCongruence(cong);
<non-regular transformation semigroup ideal of degree 6 with

2 generators>

13.9.2 IsReesCongruenceClass

▷ IsReesCongruenceClass(obj) (category)

Returns: true or false.
This category describes a congruence class of a Rees congruence. A congruence class of a Rees

congruence either contains all the elements of an ideal, or is a singleton (see IsReesCongruence
(Reference: IsReesCongruence)).

An object of this type may be used in the same way as any other congruence class object.
Example

gap> S := Semigroup(
> Transformation([2, 3, 4, 3, 1, 1]),
> Transformation([6, 4, 4, 4, 6, 1]));;
gap> I := SemigroupIdeal(S,
> Transformation([4, 4, 4, 4, 4, 2]),
> Transformation([3, 3, 3, 3, 3, 2]));;
gap> cong := ReesCongruenceOfSemigroupIdeal(I);;
gap> classes := EquivalenceClasses(cong);;
gap> IsReesCongruenceClass(classes[1]);
true

Semigroups 256

13.10 Universal and trivial congruences

The linked triples of a completely 0-simple Rees 0-matrix semigroup describe only its non-universal
congruences. In any one of these, the zero element of the semigroup is related only to itself. However,
for any semigroup S the universal relation S×S is a congruence; called the universal congruence. The
universal congruence on a semigroup has its own unique representation.

Since many things we want to calculate about congruences are trivial in the case
of the universal congruence, this package contains a category specifically designed for it,
IsUniversalSemigroupCongruence. We also define IsUniversalSemigroupCongruenceClass,
which represents the single congruence class of the universal congruence.

13.10.1 IsUniversalSemigroupCongruence

▷ IsUniversalSemigroupCongruence(obj) (property)

Returns: true or false.
This property describes a type of semigroup congruence, which must refer to the universal semi-

group congruence S×S. Externally, an object of this type may be used in the same way as any other
object in the category IsSemigroupCongruence (Reference: IsSemigroupCongruence).

An object of this type may be constructed with UniversalSemigroupCongruence or this repre-
sentation may be selected automatically as an alternative to an IsRZMSCongruenceByLinkedTriple
object (since the universal congruence cannot be represented by a linked triple).

Example
gap> S := Semigroup([Transformation([3, 2, 3])]);;
gap> U := UniversalSemigroupCongruence(S);;
gap> IsUniversalSemigroupCongruence(U);
true

13.10.2 IsUniversalSemigroupCongruenceClass

▷ IsUniversalSemigroupCongruenceClass(obj) (category)

Returns: true or false.
This category describes a class of the universal semigroup congruence (see

IsUniversalSemigroupCongruence (13.10.1)). A universal semigroup congruence by defini-
tion has precisely one congruence class, which contains all of the elements of the semigroup in
question.

Example
gap> S := Semigroup([Transformation([3, 2, 3])]);;
gap> U := UniversalSemigroupCongruence(S);;
gap> classes := EquivalenceClasses(U);;
gap> IsUniversalSemigroupCongruenceClass(classes[1]);
true

13.10.3 UniversalSemigroupCongruence

▷ UniversalSemigroupCongruence(S) (operation)

Returns: A universal semigroup congruence.
This operation returns the universal semigroup congruence for the semigroup S . It can be used in

the same way as any other semigroup congruence object.

Semigroups 257

Example
gap> S := ReesZeroMatrixSemigroup(SymmetricGroup(3),
> [[(), (1, 3, 2)], [(1, 2), 0]]);;
gap> UniversalSemigroupCongruence(S);
<universal semigroup congruence over
<Rees 0-matrix semigroup 2x2 over Sym([1 .. 3])>>

13.10.4 TrivialCongruence

▷ TrivialCongruence(S) (attribute)

Returns: A trivial semigroup congruence.
This operation returns the trivial semigroup congruence for the semigroup S . It can be used in the

same way as any other semigroup congruence object.
Example

gap> S := ReesZeroMatrixSemigroup(SymmetricGroup(3),
> [[(), (1, 3, 2)], [(1, 2), 0]]);;
gap> TrivialCongruence(S);
<semigroup congruence over <Rees 0-matrix semigroup 2x2 over

Sym([1 .. 3])> with linked triple (1,2,2)>
gap> S := PartitionMonoid(2);
<regular bipartition *-monoid of size 15, degree 2 with 3 generators>
gap> TrivialCongruence(S);
<2-sided semigroup congruence over <regular bipartition *-monoid
of size 15, degree 2 with 3 generators> with 0 generating pairs>

Chapter 14

Semigroup homomorphisms

In this chapter we describe the various ways to define a homomorphism from a semigroup to another
semigroup.

14.1 Homomorphisms of arbitrary semigroups

14.1.1 SemigroupHomomorphismByImages (for two semigroups and two lists)

▷ SemigroupHomomorphismByImages(S, T, gens, imgs) (operation)

▷ SemigroupHomomorphismByImages(S, T, imgs) (operation)

▷ SemigroupHomomorphismByImages(S, T) (operation)

▷ SemigroupHomomorphismByImages(S, gens, imgs) (operation)

Returns: A semigroup homomorphism, or fail.
SemigroupHomomorphismByImages attempts to construct a homomorphism from the semigroup

S to the semigroup T by mapping the i-th element of gens to the i-th element of imgs . If this
mapping corresponds to a homomorphism, the homomorphism is returned, and if not, then fail is
returned. Similarly, if gens does not generate S , fail is returned.

If omitted, the arguments gens and imgs default to the generators of S and T respectively. See
GeneratorsOfSemigroup (Reference: GeneratorsOfSemigroup).

If T is not given, then it defaults to the semigroup generated by imgs , resulting in the mapping
being surjective.

Example
gap> S := FullTransformationMonoid(3);;
gap> gens := GeneratorsOfSemigroup(S);;
gap> J := FullTransformationMonoid(4);;
gap> imgs := ListWithIdenticalEntries(4,
> ConstantTransformation(3, 1));;
gap> hom := SemigroupHomomorphismByImages(S, J, gens, imgs);
<full transformation monoid of degree 3> ->
<full transformation monoid of degree 4>

14.1.2 SemigroupHomomorphismByFunctionNC

▷ SemigroupHomomorphismByFunctionNC(S, T, fun) (operation)

▷ SemigroupHomomorphismByFunction(S, T, fun) (operation)

Returns: A semigroup homomorphism or fail.

258

Semigroups 259

SemigroupHomomorphismByFunctionNC returns a semigroup homomorphism with source S and
range T , such that each element s in S is mapped to the element fun(s), where fun is a GAP
function.

The function SemigroupHomomorphismByFunctionNC performs no checks on whether the func-
tion actually gives a homomorphism, and so it is possible for this operation to return a mapping from
S to T that is not a homomorphism.

The function SemigroupHomomorphismByFunction checks that the mapping from S to T defined
by fun satisfies RespectsMultiplication (Reference: RespectsMultiplication), which can be
expensive. If RespectsMultiplication (Reference: RespectsMultiplication) does not hold, then
fail is returned.

Example
gap> g := Semigroup([(1, 2, 3, 4), (1, 2)]);;
gap> h := Semigroup([(1, 2, 3), (1, 2)]);;
gap> hom := SemigroupHomomorphismByFunction(g, h,
> function(x)
> if SignPerm(x) = -1 then return (1, 2);
> else return ();
> fi; end);
<semigroup of size 24, with 2 generators> ->
<semigroup of size 6, with 2 generators>

The following methods relate to semigroup homomorphisms by images or by function:

• Range (Reference: range),

• Image (Reference: Image),

• Images (Reference: Images),

• ImageElm (Reference: ImageElm),

• PreImage (Reference: PreImage),

• PreImages (Reference: PreImages),

• PreImagesRepresentative (Reference: PreImagesRepresentative),

• PreImagesRange (Reference: PreImagesRange),

• PreImagesElm (Reference: PreImagesElm),

• PreImagesSet (Reference: PreImagesSet),

• IsSurjective (Reference: IsSurjective),

• IsInjective (Reference: IsInjective),

• IsBijective (Reference: IsBijective),

• Source (Reference: Source),

• Range (Reference: range),

• ImagesSource (Reference: ImagesSource),

• KernelOfSemigroupHomomorphism (14.1.7).

Semigroups 260

14.1.3 IsSemigroupHomomorphismByImages

▷ IsSemigroupHomomorphismByImages(hom) (filter)

Returns: true or false.
IsSemigroupHomomorphismByImages returns true if hom is a semigroup homomorphism by

images and false if it is not. A semigroup homomorphism is a mapping from a semigroup S to a semi-
group T that respects multiplication. This representation describes semigroup homomorphisms inter-
nally by the generators of S and their images in T. See SemigroupHomomorphismByImages (14.1.1).

Example
gap> S := FullTransformationMonoid(3);;
gap> gens := GeneratorsOfSemigroup(S);;
gap> T := FullTransformationMonoid(4);;
gap> imgs := ListWithIdenticalEntries(4, ConstantTransformation(3, 1));;
gap> hom := SemigroupHomomorphismByImages(S, T, gens, imgs);
<full transformation monoid of degree 3> ->
<full transformation monoid of degree 4>
gap> IsSemigroupHomomorphismByImages(hom);
true

14.1.4 IsSemigroupHomomorphismByFunction

▷ IsSemigroupHomomorphismByFunction(hom) (filter)

Returns: true or false.
IsSemigroupHomomorphismByFunction returns true if hom was created using

SemigroupHomomorphismByFunction (14.1.2) and false if it was not. Note that this filter
may return true even if the underlying GAP function does not define a homomorphism. A semi-
group homomorphism is a mapping from a semigroup S to a semigroup T that respects multiplication.
This representation describes semigroup homomorphisms internally using a GAP function mapping
elements of S to their images in T.

Example
gap> S := Semigroup([(1, 2, 3, 4), (1, 2)]);;
gap> T := Semigroup([(1, 2, 3), (1, 2)]);;
gap> hom := SemigroupHomomorphismByFunction(S, T,
> function(x) if SignPerm(x) = -1 then return (1, 2);
> else return ();fi; end);
<semigroup of size 24, with 2 generators> ->
<semigroup of size 6, with 2 generators>
gap> IsSemigroupHomomorphismByFunction(hom);
true

14.1.5 AsSemigroupHomomorphismByImages (for a semigroup homomorphism by
function)

▷ AsSemigroupHomomorphismByImages(hom) (operation)

Returns: A semigroup homomorphism, or fail.
AsSemigroupHomomorphismByImages takes hom , a semigroup homomorphism, and returns the

same mapping but represented internally using the generators of Source(hom) and their images in
Range(hom). If hom not a semigroup homomorphism, then fail is returned. For example, this could

Semigroups 261

happen if hom was created using SemigroupIsomorphismByFunction (14.2.9) and a function which
does not give a homomorphism.

Example
gap> S := Semigroup([(1, 2, 3, 4), (1, 2)]);;
gap> T := Semigroup([(1, 2, 3), (1, 2)]);;
gap> hom := SemigroupHomomorphismByFunction(S, T,
> function(x) if SignPerm(x) = -1 then return (1, 2);
> else return (); fi; end);
<semigroup of size 24, with 2 generators> ->
<semigroup of size 6, with 2 generators>

14.1.6 AsSemigroupHomomorphismByFunction (for a semigroup homomorphism by
images)

▷ AsSemigroupHomomorphismByFunction(hom) (operation)

Returns: A semigroup homomorphism.
AsSemigroupHomomorphismByFunction takes hom , a semigroup homomorphism, and returns

the same mapping but described by a GAP function mapping elements of Source(hom) to their
images in Range(hom).

Example
gap> T := TrivialSemigroup();;
gap> S := GLM(2, 2);;
gap> gens := GeneratorsOfSemigroup(S);;
gap> imgs := ListX(gens, x -> IdentityTransformation);;
gap> hom := SemigroupHomomorphismByImages(S, T, gens, imgs);;
gap> hom := AsSemigroupHomomorphismByFunction(hom);
<general linear monoid 2x2 over GF(2)> ->
<trivial transformation group of degree 0 with 1 generator>

14.1.7 KernelOfSemigroupHomomorphism

▷ KernelOfSemigroupHomomorphism(hom) (attribute)

Returns: A semigroup congruence.
KernelOfSemigroupHomomorphism returns the kernel of the semigroup homomorphism hom .

The kernel of a semigroup homomorphism hom is a semigroup congruence relating pairs of elements
in Source(hom) mapping to the same element under hom .

Example
gap> S := Semigroup([Transformation([2, 1, 5, 1, 5]),
> Transformation([1, 1, 1, 5, 3]),
> Transformation([2, 5, 3, 5, 3])]);;
gap> congs := CongruencesOfSemigroup(S);;
gap> cong := congs[3];;
gap> T := S / cong;;
gap> gens := GeneratorsOfSemigroup(S);;
gap> images := List(gens, gen -> EquivalenceClassOfElement(cong, gen));;
gap> hom1 := SemigroupHomomorphismByImages(S, T, gens, images);;
gap> cong = KernelOfSemigroupHomomorphism(hom1);
true

Semigroups 262

14.2 Isomorphisms of arbitrary semigroups

14.2.1 IsIsomorphicSemigroup

▷ IsIsomorphicSemigroup(S, T) (operation)

Returns: true or false.
If S and T are semigroups, then this operation attempts to determine whether S and T

are isomorphic semigroups by using the operation IsomorphismSemigroups (14.2.6). If
IsomorphismSemigroups(S, T) returns an isomorphism, then IsIsomorphicSemigroup(S,
T) returns true, while if IsomorphismSemigroups(S, T) returns fail, then
IsIsomorphicSemigroup(S, T) returns false.

Note that in some cases, at present, there is no method for determining whether S is isomorphic to
T , even if it is obvious to the user whether or not S and T are isomorphic. There are plans to improve
this in the future.

Example
gap> S := Semigroup(PartialPerm([1, 2, 4], [1, 3, 5]),
> PartialPerm([1, 3, 5], [1, 2, 4]));;
gap> T := AsSemigroup(IsTransformationSemigroup, S);;
gap> IsIsomorphicSemigroup(S, T);
true
gap> IsIsomorphicSemigroup(FullTransformationMonoid(4),
> PartitionMonoid(4));
false

14.2.2 SmallestMultiplicationTable

▷ SmallestMultiplicationTable(S) (attribute)

Returns: The lex-least multiplication table of a semigroup.
This function returns the lex-least multiplication table of a semigroup isomorphic to the semigroup

S . SmallestMultiplicationTable returns the lex-least multiplication of any semigroup isomor-
phic to S . Due to the high complexity of computing the smallest multiplication table of a semigroup,
this function only performs well for semigroups with at most approximately 50 elements.

SmallestMultiplicationTable is based on the function IdSmallSemigroup (Smallsemi:
IdSmallSemigroup) by Andreas Distler.

From Version 3.3.0 of Semigroups this attribute is computed using MinimalImage (images:
MinimalImage) from the the images package. See also: CanonicalMultiplicationTable (14.2.3).

Example
gap> S := Semigroup(
> Bipartition([[1, 2, 3, -1, -3], [-2]]),
> Bipartition([[1, 2, 3, -1], [-2], [-3]]),
> Bipartition([[1, 2, 3], [-1], [-2, -3]]),
> Bipartition([[1, 2, -1], [3, -2], [-3]]));;
gap> Size(S);
8
gap> SmallestMultiplicationTable(S);
[[1, 1, 3, 4, 5, 6, 7, 8], [1, 1, 3, 4, 5, 6, 7, 8],

[1, 1, 3, 4, 5, 6, 7, 8], [1, 3, 3, 4, 5, 6, 7, 8],
[5, 5, 6, 7, 5, 6, 7, 8], [5, 5, 6, 7, 5, 6, 7, 8],
[5, 6, 6, 7, 5, 6, 7, 8], [5, 6, 6, 7, 5, 6, 7, 8]]

https://gap-packages.github.io/images/

Semigroups 263

14.2.3 CanonicalMultiplicationTable

▷ CanonicalMultiplicationTable(S) (attribute)

Returns: A canonical multiplication table (up to isomorphism) of a semigroup.
This function returns a multiplication table of a semigroup isomorphic to the semigroup S .

CanonicalMultiplicationTable returns a multiplication that is canonical, in the sense that if two
semigroups S and T are isomorphic, then the return values of CanonicalMultiplicationTable are
equal.

CanonicalMultiplicationTable uses the machinery for canonical labelling of vertex coloured
digraphs in bliss via BlissCanonicalLabelling (Digraphs: BlissCanonicalLabelling for a di-
graph and a list).

The multiplication table returned by this function is the
result of OnMultiplicationTable(MultiplicationTable(S),
CanonicalMultiplicationTablePerm(S));

Note that the performance of CanonicalMultiplicationTable is vastly superior to that of
SmallestMultiplicationTable.

See also: CanonicalMultiplicationTablePerm (14.2.4) and OnMultiplicationTable
(14.2.5).

Example
gap> S := Semigroup(
> Bipartition([[1, 2, 3, -1, -3], [-2]]),
> Bipartition([[1, 2, 3, -1], [-2], [-3]]),
> Bipartition([[1, 2, 3], [-1], [-2, -3]]),
> Bipartition([[1, 2, -1], [3, -2], [-3]]));;
gap> Size(S);
8
gap> CanonicalMultiplicationTable(S);
[[1, 2, 2, 8, 1, 2, 7, 8], [1, 2, 2, 8, 1, 2, 7, 8],

[1, 2, 6, 4, 5, 6, 7, 8], [1, 2, 5, 4, 5, 6, 7, 8],
[1, 2, 6, 4, 5, 6, 7, 8], [1, 2, 6, 4, 5, 6, 7, 8],
[1, 2, 1, 8, 1, 2, 7, 8], [1, 2, 1, 8, 1, 2, 7, 8]]

14.2.4 CanonicalMultiplicationTablePerm

▷ CanonicalMultiplicationTablePerm(S) (attribute)

Returns: A permutation.
This function returns a permutation p such that OnMultiplicationTable(MultiplicationTable(S),

p); equals CanonicalMultiplicationTable(S).
See CanonicalMultiplicationTable (14.2.3) for more details.
CanonicalMultiplicationTablePerm uses the machinery for canonical labelling of vertex

coloured digraphs in bliss via BlissCanonicalLabelling (Digraphs: BlissCanonicalLabelling
for a digraph and a list).

Example
gap> S := Semigroup(
> Bipartition([[1, 2, 3, -1, -3], [-2]]),
> Bipartition([[1, 2, 3, -1], [-2], [-3]]),
> Bipartition([[1, 2, 3], [-1], [-2, -3]]),
> Bipartition([[1, 2, -1], [3, -2], [-3]]));;
gap> Size(S);

http://www.tcs.tkk.fi/Software/bliss/
http://www.tcs.tkk.fi/Software/bliss/

Semigroups 264

8
gap> CanonicalMultiplicationTablePerm(S);
(1,5,8,3,6,7,2,4)

14.2.5 OnMultiplicationTable

▷ OnMultiplicationTable(table, p) (operation)

Returns: A multiplication table.
If table is a multiplication table of a semigroup and the second argument p is a permutation of [1

.. Length(table)], then this operation returns a multiplication table of a semigroup isomorphic
to that defined by table where the elements [1 .. Length(table)] are relabelled according to
p .

Example
gap> table := [[1, 1, 3, 4, 5, 6, 7, 8],
> [1, 1, 3, 4, 5, 6, 7, 8],
> [1, 1, 3, 4, 5, 6, 7, 8],
> [1, 3, 3, 4, 5, 6, 7, 8],
> [5, 5, 6, 7, 5, 6, 7, 8],
> [5, 5, 6, 7, 5, 6, 7, 8],
> [5, 6, 6, 7, 5, 6, 7, 8],
> [5, 6, 6, 7, 5, 6, 7, 8]];;
gap> p := (1, 2, 3, 4)(10, 11, 12);;
gap> OnMultiplicationTable(table, p);
[[1, 2, 4, 4, 5, 6, 7, 8], [1, 2, 2, 4, 5, 6, 7, 8],

[1, 2, 2, 4, 5, 6, 7, 8], [1, 2, 2, 4, 5, 6, 7, 8],
[7, 5, 5, 6, 5, 6, 7, 8], [7, 5, 5, 6, 5, 6, 7, 8],
[7, 5, 6, 6, 5, 6, 7, 8], [7, 5, 6, 6, 5, 6, 7, 8]]

14.2.6 IsomorphismSemigroups

▷ IsomorphismSemigroups(S, T) (operation)

Returns: An isomorphism, or fail.
This operation attempts to find an isomorphism from the semigroup S to the semigroup T . If it

finds one, then it is returned, and if not, then fail is returned.
IsomorphismSemigroups uses the machinery for finding isomorphisms between vertex coloured

digraphs in bliss via IsomorphismDigraphs (Digraphs: IsomorphismDigraphs for digraphs and
homogeneous lists) using digraphs constructed from the multiplication tables of S and T .

Note that finding an isomorphism between two semigroups is difficult, and may not be
possible for semigroups whose size exceeds a few hundred elements. On the other hand,
IsomorphismSemigroups may be able deduce that S and T are not isomorphic by finding that some
of their semigroup-theoretic properties differ.

Example
gap> S := RectangularBand(IsTransformationSemigroup, 4, 5);
<regular transformation semigroup of size 20, degree 9 with 5
generators>

gap> T := RectangularBand(IsBipartitionSemigroup, 4, 5);
<regular bipartition semigroup of size 20, degree 3 with 5 generators>
gap> IsomorphismSemigroups(S, T) <> fail;
true

http://www.tcs.tkk.fi/Software/bliss/

Semigroups 265

gap> D := DClass(FullTransformationMonoid(5),
> Transformation([1, 2, 3, 4, 1]));;
gap> S := PrincipalFactor(D);;
gap> StructureDescription(UnderlyingSemigroup(S));
"S4"
gap> S;
<Rees 0-matrix semigroup 10x5 over S4>
gap> D := DClass(PartitionMonoid(5),
> Bipartition([[1], [2, -2], [3, -3], [4, -4], [5, -5], [-1]]));;
gap> T := PrincipalFactor(D);;
gap> StructureDescription(UnderlyingSemigroup(T));
"S4"
gap> T;
<Rees 0-matrix semigroup 15x15 over S4>
gap> IsomorphismSemigroups(S, T);
fail
gap> I := SemigroupIdeal(FullTransformationMonoid(5),
> Transformation([1, 1, 2, 3, 4]));;
gap> T := PrincipalFactor(DClass(I, I.1));;
gap> StructureDescription(UnderlyingSemigroup(T));
"S4"
gap> T;
<Rees 0-matrix semigroup 10x5 over S4>
gap> IsomorphismSemigroups(S, T) <> fail;
true

14.2.7 AutomorphismGroup (for a semigroup)

▷ AutomorphismGroup(S) (operation)

Returns: A group.
This operation returns the group of automorphisms of the semigroup S . AutomorphismGroup

uses bliss via AutomorphismGroup (Digraphs: AutomorphismGroup for a digraph and a homo-
geneous list) using a vertex coloured digraph constructed from the multiplication table of S . Conse-
quently, this method is only really feasible for semigroups whose size does not exceed a few hundred
elements.

Example
gap> S := RectangularBand(IsTransformationSemigroup, 4, 5);
<regular transformation semigroup of size 20, degree 9 with 5
generators>

gap> StructureDescription(AutomorphismGroup(S));
"S4 x S5"

14.2.8 SemigroupIsomorphismByImages (for two semigroups and two lists)

▷ SemigroupIsomorphismByImages(S, T, gens, imgs) (operation)

▷ SemigroupIsomorphismByImages(S, T, imgs) (operation)

▷ SemigroupIsomorphismByImages(S, T) (operation)

▷ SemigroupIsomorphismByImages(S, gens, imgs) (operation)

Returns: A semigroup isomorphism, or fail.

http://www.tcs.tkk.fi/Software/bliss/

Semigroups 266

SemigroupIsomorphismByImages attempts to construct a isomorphism from the semigroup S to
the semigroup T , by mapping the i-th element of gens to the i-th element of imgs . If this mapping
corresponds to an isomorphism, the isomorphism is returned, and if not, then fail is returned. An
isomorphism is a bijective homomorphism. See also SemigroupHomomorphismByImages (14.1.1).

Example
gap> S := Semigroup([
> Matrix(IsNTPMatrix, [[0, 1, 2], [4, 3, 0], [0, 2, 0]], 9, 4),
> Matrix(IsNTPMatrix, [[1, 1, 0], [4, 1, 1], [0, 0, 0]], 9, 4)]);;
gap> T := AsSemigroup(IsTransformationSemigroup, S);;
gap> iso := SemigroupIsomorphismByImages(S, T);
<semigroup of size 46, 3x3 ntp matrices with 2 generators> ->
<transformation semigroup of size 46, degree 47 with 2 generators>

14.2.9 SemigroupIsomorphismByFunctionNC

▷ SemigroupIsomorphismByFunctionNC(S, T, fun, invFun) (operation)

▷ SemigroupIsomorphismByFunction(S, T, fun, invFun) (operation)

Returns: A semigroup isomorphism or fail.
SemigroupIsomorphismByFunctionNC returns a semigroup isomorphism with source S and

range T , such that each element s in S is mapped to the element fun(s), where fun is a GAP
function, and invFun its inverse, mapping fun(s) back to s.

The function SemigroupIsomorphismByFunctionNC performs no checks on whether the func-
tion actually gives an isomorphism, and so it is possible for this operation to return a map-
ping from S to T that is not a homomorphism, or not a bijection, or where the return value of
InverseGeneralMapping (Reference: InverseGeneralMapping) is not the inverse of the returned
function.

The function SemigroupIsomorphismByFunction checks that: the mapping from S to T defined
by fun satisfies RespectsMultiplication (Reference: RespectsMultiplication); that the function
from T to S defined by invFun satisfies RespectsMultiplication (Reference: RespectsMultipli-
cation); and that these functions are mutual inverses. This can be expensive. If any of these checks
fails, then fail is returned.

Example
gap> S := MonogenicSemigroup(IsTransformationSemigroup, 3, 2);;
gap> T := MonogenicSemigroup(IsBipartitionSemigroup, 3, 2);;
gap> map := x -> T.1 ^ Length(Factorization(S, x));;
gap> inv := x -> S.1 ^ Length(Factorization(T, x));;
gap> iso := SemigroupIsomorphismByFunction(S, T, map, inv);
<commutative non-regular transformation semigroup of size 4, degree 5

with 1 generator> -> <commutative non-regular block bijection
semigroup of size 4, degree 6 with 1 generator>

14.2.10 IsSemigroupIsomorphismByFunction

▷ IsSemigroupIsomorphismByFunction(iso) (filter)

Returns: true or false.
IsSemigroupIsomorphismByFunction returns true if hom satisfies

IsSemigroupHomomorphismByFunction (14.1.4) and IsBijective (Reference: IsBijec-
tive), and false if does not. Note that this filter may return true even if the underlying GAP

Semigroups 267

function does not define a homomorphism. A semigroup isomorphism is a mapping from a semi-
group S to a semigroup T that respects multiplication. This representation describes semigroup
isomorphisms internally by using a GAP function mapping elements of S to their images in T. See
SemigroupIsomorphismByFunction (14.2.9).

Example
gap> S := MonogenicSemigroup(IsTransformationSemigroup, 3, 2);;
gap> T := MonogenicSemigroup(IsBipartitionSemigroup, 3, 2);;
gap> map := x -> T.1 ^ Length(Factorization(S, x));;
gap> inv := x -> S.1 ^ Length(Factorization(T, x));;
gap> iso := SemigroupIsomorphismByFunction(S, T, map, inv);
<commutative non-regular transformation semigroup of size 4, degree 5

with 1 generator> -> <commutative non-regular block bijection
semigroup of size 4, degree 6 with 1 generator>

gap> IsSemigroupIsomorphismByFunction(iso);
true

14.2.11 AsSemigroupIsomorphismByFunction (for a semigroup homomorphism by
images)

▷ AsSemigroupIsomorphismByFunction(hom) (operation)

Returns: A semigroup isomorphism, or fail.
AsSemigroupIsomorphismByFunction takes a semigroup homomorphism hom and returns a

semigroup isomorphism represented using GAP functions for the isomorphism and its inverse. If hom
is not bijective, then fail is returned.

Example
gap> S := FullTransformationMonoid(3);;
gap> gens := GeneratorsOfSemigroup(S);;
gap> imgs := ListWithIdenticalEntries(4, ConstantTransformation(3, 1));;
gap> hom := SemigroupHomomorphismByImages(S, S, gens, gens);;
gap> AsSemigroupIsomorphismByFunction(hom);
<full transformation monoid of degree 3> ->
<full transformation monoid of degree 3>

14.2.12 SmallerDegreeTransformationRepresentation

▷ SmallerDegreeTransformationRepresentation(S) (attribute)

Returns: An isomorphism to a transformation semigroup.
This function attempts to find a small degree transformation representation of the semigroup S .

The implementation attempts to find a right congruence of S that S acts on (the equivalence classes
of) faithfully.

If S is not a finitely presented semigroup, then the returned isomorphism is the composition of
an isomorphism to a finitely presented semigroup and an isomorphism from that finitely presented
semigroup to a transformation semigroup.

The runtime of this function depends on the presentation for S that is either given explicitly or
computed by the Semigroups package, but it is difficult to predict what properties of the presentation
lead to a shorter runtime. This is unlikely to terminate in a reasonable amount of time for semigroups
with more than approx. 10000 elements, but might also not terminate quickly for smaller semigroups
depending on the presentation used.

Semigroups 268

Example
gap> S := BrauerMonoid(3);
<regular bipartition *-monoid of degree 3 with 3 generators>
gap> IsomorphismTransformationSemigroup(S);
<regular bipartition *-monoid of size 15, degree 3 with 3 generators>
-> <transformation monoid of size 15, degree 15 with 3 generators>
gap> SmallerDegreeTransformationRepresentation(S);
CompositionMapping(
<fp semigroup with 4 generators and 20 relations of length 81> ->
<transformation monoid of degree 7 with 3 generators>,
<regular bipartition *-monoid of size 15, degree 3 with 3 generators>
-> <fp semigroup with 4 generators and 20 relations of length 81>)
gap> S := JonesMonoid(5);
<regular bipartition *-monoid of degree 5 with 4 generators>
gap> Size(S);
42
gap> SmallerDegreeTransformationRepresentation(S);
CompositionMapping(
<fp semigroup with 5 generators and 28 relations of length 120> ->
<transformation monoid of degree 10 with 4 generators>,
<regular bipartition *-monoid of size 42, degree 5 with 4 generators>
-> <fp semigroup with 5 generators and 28 relations of length 120>)

14.2.13 MinimalFaithfulTransformationDegree

▷ MinimalFaithfulTransformationDegree(S) (attribute)

Returns: A positive integer.
This function returns the minimal degree of a faithful transformation representation of the semi-

group S . This is currently only implemented for a very small number of types of semigroups.
Example

gap> S := RightZeroSemigroup(10);
<transformation semigroup of degree 7 with 10 generators>
gap> MinimalFaithfulTransformationDegree(S);
7

14.3 Isomorphisms of Rees (0-)matrix semigroups

An isomorphism between two regular finite Rees (0-)matrix semigroups whose underlying semi-
groups are groups can be described by a triple defined in terms of the matrices and underlying groups
of the semigroups. For a full description of the theory involved, see Section 3.4 of [How95].

An isomorphism described in this way can be constructed using RMSIsoByTriple (14.3.2)
or RZMSIsoByTriple (14.3.2), and will satisfy the filter IsRMSIsoByTriple (14.3.1) or
IsRZMSIsoByTriple (14.3.1).

14.3.1 IsRMSIsoByTriple

▷ IsRMSIsoByTriple (Category)

▷ IsRZMSIsoByTriple (Category)

Semigroups 269

The isomorphisms between finite Rees matrix or 0-matrix semigroups S and T over groups G and
H, respectively, specified by a triple consisting of:

1. an isomorphism of the underlying graph of S to the underlying graph of of T

2. an isomorphism from G to H

3. a function from Rows(S) union Columns(S) to H

belong to the categories IsRMSIsoByTriple and IsRZMSIsoByTriple. Basic operators for
such isomorphism are given in 14.3.7, and basic operations are: Range (Reference: range),
Source (Reference: Source), ELM_LIST (14.3.3), CompositionMapping (Reference: Composi-
tionMapping), ImagesElm (14.3.5), ImagesRepresentative (14.3.5), InverseGeneralMapping
(Reference: InverseGeneralMapping), PreImagesRepresentative (Reference: PreImagesRep-
resentative), IsOne (Reference: IsOne).

14.3.2 RMSIsoByTriple

▷ RMSIsoByTriple(R1, R2, triple) (operation)

▷ RZMSIsoByTriple(R1, R2, triple) (operation)

Returns: An isomorphism.
If R1 and R2 are isomorphic regular Rees 0-matrix semigroups whose underlying semigroups

are groups then RZMSIsoByTriple returns the isomorphism between R1 and R2 defined by triple ,
which should be a list consisting of the following:

• triple[1] should be a permutation describing an isomorphism from the graph of R1 to
the graph of R2 , i.e. it should satisfy OnDigraphs(RZMSDigraph(R1), triple[1]) =
RZMSDigraph(R2).

• triple[2] should be an isomorphism from the underlying group of R1 to the underlying group
of R2 (see UnderlyingSemigroup (Reference: UnderlyingSemigroup for a Rees 0-matrix
semigroup)).

• triple[3] should be a list of elements from the underlying group of R2 . If the Matrix
(Reference: Matrix) of R1 has m columns and n rows, then the list should have length m+n,
where the first m entries should correspond to the columns of R1 ’s matrix, and the last n entries
should correspond to the rows. These column and row entries should correspond to the ui and
vλ elements in Theorem 3.4.1 of [How95].

If triple describes a valid isomorphism from R1 to R2 then this will return an object in the category
IsRZMSIsoByTriple (14.3.1); otherwise an error will be returned.

If R1 and R2 are instead Rees matrix semigroups (without zero) then RMSIsoByTriple should be
used instead. This operation is used in the same way, but it should be noted that since an RMS’s graph
is a complete bipartite graph, triple[1] can be any permutation on [1 .. m + n], so long as no
point in [1 .. m] is mapped to a point in [m + 1 .. m + n].

Example
gap> g := SymmetricGroup(3);;
gap> mat := [[0, 0, (1, 3)], [(1, 2, 3), (), (2, 3)], [0, 0, ()]];;
gap> R := ReesZeroMatrixSemigroup(g, mat);;
gap> id := IdentityMapping(g);;

Semigroups 270

gap> g_elms_list := [(), (), (), (), (), ()];;
gap> RZMSIsoByTriple(R, R, [(), id, g_elms_list]);
((), IdentityMapping(SymmetricGroup([1 .. 3])),
[(), (), (), (), (), ()])

14.3.3 ELM_LIST (for IsRMSIsoByTriple)

▷ ELM_LIST(map, pos) (operation)

Returns: A component of an isomorphism of Rees (0-)matrix semigroups by triple.
ELM_LIST(map, i) returns the ith component of the Rees (0-)matrix semigroup isomorphism

by triple map when i = 1, 2, 3.
The components of an isomorphism of Rees (0-)matrix semigroups by triple are:

1. An isomorphism of the underlying graphs of the source and range of map , respectively.

2. An isomorphism of the underlying groups of the source and range of map , respectively.

3. An function from the union of the rows and columns of the source of map to the underlying
group of the range of map .

14.3.4 CompositionMapping2 (for IsRMSIsoByTriple)

▷ CompositionMapping2(map1, map2) (operation)

▷ CompositionMapping2(map1, map2) (operation)

Returns: A Rees (0-)matrix semigroup by triple.
If map1 and map2 are isomorphisms of Rees matrix or 0-matrix semigroups specified by triples

and the range of map2 is contained in the source of map1 , then CompositionMapping2(map1,
map2) returns the isomorphism from Source(map2) to Range(map1) specified by the triple with
components:

1. map1[1] * map2[1]

2. map1[2] * map2[2]

3. the componentwise product of map1[1] * map2[3] and map1[3] * map2[2].
Example

gap> R := ReesZeroMatrixSemigroup(Group([(1, 2, 3, 4)]),
> [[(1, 3)(2, 4), (1, 4, 3, 2), (), (1, 2, 3, 4), (1, 3)(2, 4), 0],
> [(1, 4, 3, 2), 0, (), (1, 4, 3, 2), (1, 2, 3, 4), (1, 2, 3, 4)],
> [(), (), (1, 4, 3, 2), (1, 2, 3, 4), 0, (1, 2, 3, 4)],
> [(1, 2, 3, 4), (1, 4, 3, 2), (1, 2, 3, 4), 0, (), (1, 2, 3, 4)],
> [(1, 3)(2, 4), (1, 2, 3, 4), 0, (), (1, 4, 3, 2), (1, 2, 3, 4)],
> [0, (1, 2, 3, 4), (1, 2, 3, 4), (1, 2, 3, 4), (1, 2, 3, 4), ()]]);
<Rees 0-matrix semigroup 6x6 over Group([(1,2,3,4)])>
gap> G := AutomorphismGroup(R);;
gap> G.2;
((), IdentityMapping(Group([(1,2,3,4)])),
[(), (), (), (), (), (), (), (), (), (), (), ()])
gap> G.3;
((2, 4)(3, 5)(8,10)(9,11), GroupHomomorphismByImages(Group(
[(1,2,3,4)]), Group([(1,2,3,4)]), [(1,2,3,4)],

Semigroups 271

[(1,2,3,4)]), [(), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4),
(1,3)(2,4), (1,3)(2,4), (), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4),
(1,3)(2,4), (1,3)(2,4)])

gap> CompositionMapping2(G.2, G.3);
((2, 4)(3, 5)(8,10)(9,11), GroupHomomorphismByImages(Group(
[(1,2,3,4)]), Group([(1,2,3,4)]), [(1,2,3,4)],
[(1,2,3,4)]), [(), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4),

(1,3)(2,4), (1,3)(2,4), (), (1,3)(2,4), (1,3)(2,4), (1,3)(2,4),
(1,3)(2,4), (1,3)(2,4)])

14.3.5 ImagesElm (for IsRMSIsoByTriple)

▷ ImagesElm(map, pt) (operation)

▷ ImagesRepresentative(map, pt) (operation)

Returns: An element of a Rees (0-)matrix semigroup or a list containing such an element.
If map is an isomorphism of Rees matrix or 0-matrix semigroups specified by a triple and pt is

an element of the source of map , then ImagesRepresentative(map, pt) = pt ^ map returns the
image of pt under map .

The image of pt under map of Range(map) is the element with components:

1. pt[1] ^ map[1]

2. (pt[1] ^ map[3]) * (pt[2] ^ map[2]) * (pt[3] ^ map[3]) ^ -1

3. pt[3] ^ map[1].

ImagesElm(map, pt) simply returns [ImagesRepresentative(map, pt)].
Example

gap> R := ReesZeroMatrixSemigroup(Group([(2, 8), (2, 8, 6)]),
> [[0, (2, 8), 0, 0, 0, (2, 8, 6)],
> [(), 0, (2, 8, 6), (2, 6), (2, 6, 8), 0],
> [(2, 8, 6), 0, (2, 6, 8), (2, 8), (), 0],
> [(2, 8, 6), 0, (2, 6, 8), (2, 8), (), 0],
> [0, (2, 8, 6), 0, 0, 0, (2, 8)],
> [(2, 8, 6), 0, (2, 6, 8), (2, 8), (), 0]]);
<Rees 0-matrix semigroup 6x6 over Group([(2,8), (2,8,6)])>
gap> map := RZMSIsoByTriple(R, R,
> [(), IdentityMapping(Group([(2, 8), (2, 8, 6)])),
> [(), (2, 6, 8), (), (), (), (2, 8, 6),
> (2, 8, 6), (), (), (), (2, 6, 8), ()]]);;
gap> ImagesElm(map, RMSElement(R, 1, (2, 8), 2));
[(1,(2,8),2)]

14.3.6 CanonicalReesZeroMatrixSemigroup

▷ CanonicalReesZeroMatrixSemigroup(S) (attribute)

▷ CanonicalReesMatrixSemigroup(S) (attribute)

Returns: A Rees zero matrix semigroup.
If S is a Rees 0-matrix semigroup then CanonicalReesZeroMatrixSemigroup returns an iso-

morphic Rees 0-matrix semigroup T with the same UnderlyingSemigroup (Reference: Underly-
ingSemigroup for a Rees 0-matrix semigroup) as S but the Matrix (Reference: Matrix) of T has

Semigroups 272

been canonicalized. The output T is canonical in the sense that for any two inputs which are isomorphic
Rees zero matrix semigroups the output of this function is the same.

CanonicalReesMatrixSemigroup works the same but for Rees matrix semigroups.
Example

gap> S := ReesZeroMatrixSemigroup(SymmetricGroup(3),
> [[(), (1, 3, 2)], [(), ()]]);;
gap> T := CanonicalReesZeroMatrixSemigroup(S);
<Rees 0-matrix semigroup 2x2 over Sym([1 .. 3])>
gap> Matrix(S);
[[(), (1,3,2)], [(), ()]]
gap> Matrix(T);
[[(), ()], [(), (1,2,3)]]

14.3.7 Operators for isomorphisms of Rees (0-)matrix semigroups

map[i]
map[i] returns the i th component of the Rees (0-)matrix semigroup isomorphism by triple
map when i = 1, 2, 3; see ELM_LIST (14.3.3).

map1 * map2
returns the composition of map2 and map1 ; see CompositionMapping2 (14.3.4).

map1 < map2
returns true if map1 is lexicographically less than map2 .

map1 = map2
returns true if the Rees (0-)matrix semigroup isomorphisms by triple map1 and map2 have
equal source and range, and are equal as functions, and false otherwise.

It is possible for map1 and map2 to be equal but to have distinct components.

pt ^ map
returns the image of the element pt of the source of map under the isomorphism map ; see
ImagesElm (14.3.5).

Chapter 15

Finitely presented semigroups and Tietze
transformations

In this chapter we describe the functions implemented in Semigroups that extend the features avail-
able in GAP for dealing with finitely presented semigroups and monoids.

Section 15.1 (written by Maria Tsalakou and Murray Whyte) and Section 15.2 (written by Luke
Elliott) demonstrate a number of helper functions that allow the user to convert between different
representations of words and relations.

In the later sections, written and implemented by Ben Spiers and Tom Conti-Leslie, we describe
how to change the relations of a finitely presented semigroup either manually or automatically using
Tietze transformations (which is abbreviated to STZ.

15.1 Changing representation for words and strings

This section contains various methods for dealing with words, which for these purposes are lists of
positive integers.

15.1.1 WordToString (for a string and a list)

▷ WordToString(A, w) (operation)

Returns: A string.
Returns the word w , in the form of a string of letters of the alphabet A . The alphabet is given as a

string containing its members.
Example

gap> WordToString("abcd", [4, 2, 3, 1, 1, 4, 2, 3]);
"dbcaadbc"

15.1.2 RandomWord (for two integers)

▷ RandomWord(l, n) (operation)

Returns: A word.
Returns a random word of length l over n letters.

Example
gap> RandomWord(8, 5);
[2, 4, 3, 4, 5, 3, 3, 2]

273

Semigroups 274

gap> RandomWord(8, 5);
[3, 3, 5, 5, 5, 4, 4, 5]
gap> RandomWord(8, 4);
[1, 4, 1, 1, 3, 3, 4, 4]

15.1.3 StandardiseWord

▷ StandardiseWord(w) (operation)

▷ StandardizeWord(w) (operation)

Returns: A list of positive integers.
This function takes a word w , consisting of n distinct positive integers and returns a word s where

the characters of s correspond to those of w in order of first appearance.
The word w is changed in-place into word s.

Example
gap> w := [3, 1, 2];
[3, 1, 2]
gap> StandardiseWord(w);
[1, 2, 3]
gap> w;
[1, 2, 3]
gap> w := [4, 2, 10, 2];
[4, 2, 10, 2]
gap> StandardiseWord(w);
[1, 2, 3, 2]

15.1.4 StringToWord (for a string)

▷ StringToWord(s) (operation)

Returns: A list of positive integers.
This function takes a string s , consisting of n distinct positive integers and returns a word w (i.e.

a list of positive integers) over the alphabet [1 .. n]. The positive integers of w correspond to the
characters of s , in order of first appearance.

Example
gap> w := "abac";
"abac"
gap> StringToWord(w);
[1, 2, 1, 3]
gap> w := "ccala";
"ccala"
gap> StringToWord(w);
[1, 1, 2, 3, 2]
gap> w := "a1b5";
"a1b5"
gap> StringToWord(w);
[1, 2, 3, 4]

Semigroups 275

15.2 Helper functions

This section describes operations implemented in Semigroups that are designed to interact with stan-
dard GAP methods for creating finitely presented semigroups and monoids (see (Reference: Finitely
Presented Semigroups and Monoids)).

15.2.1 ParseRelations

▷ ParseRelations(gens, rels) (operation)

Returns: A list of pairs of semigroup or monoid elements.
ParseRelations converts a string describing relations for a semigroup or monoid to the list of

pairs of semigroup or monoid elements it represents. Any white space given is ignored. The output
list is then compatible with other GAP functions. In the below examples we see free semigroups and
monoids being directly quotiented by the output of the ParseRelations function.

The argument gens must be a list of generators for a free semigroup, each being a single alphabet
letter (in upper or lower case). The argument rels must be string that lists the equalities desired.

To take a quotient of a free monoid, it is necessary to use GeneratorsOfMonoid (Reference:
GeneratorsOfMonoid) as the 1st argument to ParseRelations and the identity may appear as 1 in
the specified relations.

Example
gap> f := FreeSemigroup("x", "y", "z");;
gap> AssignGeneratorVariables(f);
gap> ParseRelations([x, y, z], " x=(y^2z) ^2x, y=xxx , z=y^3");
[[x, (y^2*z)^2*x], [y, x^3], [z, y^3]]
gap> r := ParseRelations([x, y, z], " x=(y^2z)^2x, y=xxx=z , z=y^3");
[[x, (y^2*z)^2*x], [y, x^3], [x^3, z], [z, y^3]]
gap> f / r;
<fp semigroup with 3 generators and 4 relations of length 23>
gap> f2 := FreeSemigroup("a");
<free semigroup on the generators [a]>
gap> f2 / ParseRelations(GeneratorsOfSemigroup(f2), "a = a^2");
<fp semigroup with 1 generator and 1 relation of length 4>
gap> FreeMonoidAndAssignGeneratorVars("a", "b")
> / ParseRelations([a, b], "a^2=1,b^3=1,(ab)^3=1");
<fp monoid with 2 generators and 3 relations of length 13>

15.2.2 ElementOfFpSemigroup

▷ ElementOfFpSemigroup(S, word) (operation)

Returns: An element of the fp semigroup S .
When S is a finitely presented semigroup and word is an associative word in the associated free

semigroup (see IsAssocWord (Reference: IsAssocWord)), this returns the fp semigroup element
with representative word .

This function is just a short form of the GAP library implementation of ElementOfFpSemigroup
(Reference: ElementOfFpSemigroup) which does not require retrieving an element family.

Example
gap> f := FreeSemigroup("x", "y");;
gap> AssignGeneratorVariables(f);
gap> s := f / [[x * x, x], [y * y, y]];

Semigroups 276

<fp semigroup with 2 generators and 2 relations of length 8>
gap> a := ElementOfFpSemigroup(s, x * y);
x*y
gap> b := ElementOfFpSemigroup(s, x * y * y);
x*y^2
gap> a in s;
true
gap> a = b;
true

15.2.3 ElementOfFpMonoid

▷ ElementOfFpMonoid(M, word) (operation)

Returns: An element of the fp monoid M .
When M is a finitely presented monoid and word is an associative word in the associated free

monoid (see IsAssocWord (Reference: IsAssocWord)), this returns the fp monoid element with
representative word .

This is analogous to ElementOfFpSemigroup (15.2.2).

15.2.4 FreeMonoidAndAssignGeneratorVars

▷ FreeMonoidAndAssignGeneratorVars(arg...) (function)

▷ FreeSemigroupAndAssignGeneratorVars(arg...) (function)

Returns: A free semigroup or monoid.
FreeMonoidAndAssignGeneratorVars is synonym with:

Example
FreeMonoid(arg...);
AssignGeneratorVariables(last);

These functions exist so that the String method for a finitely presented semigroup or monoid to be
valid GAP input which can be used to reconstruct the semigroup or monoid.

Example
gap> F := FreeSemigroupAndAssignGeneratorVars("x", "y");;
gap> IsBound(x);
true
gap> IsBound(y);
true

15.2.5 IsSubsemigroupOfFpMonoid

▷ IsSubsemigroupOfFpMonoid(S) (property)

Returns: true or false.
This property is true if the object S is a subsemigroup of an fp monoid, and false oth-

erwise. This property is just a synonym for IsSemigroup (Reference: IsSemigroup) and
IsElementOfFpMonoidCollection.

Example
gap> F := FreeSemigroup("a", "b");
<free semigroup on the generators [a, b]>
gap> AssignGeneratorVariables(F);

Semigroups 277

gap> R := [[a ^ 3, a], [b ^ 2, b], [(a * b) ^ 2, a]];
[[a^3, a], [b^2, b], [(a*b)^2, a]]
gap> S := F / R;
<fp semigroup with 2 generators and 3 relations of length 14>
gap> IsSubsemigroupOfFpMonoid(S);
false
gap> map := EmbeddingFpMonoid(S);
<fp semigroup with 2 generators and 3 relations of length 14> ->
<fp monoid with 2 generators and 3 relations of length 14>
gap> IsSubsemigroupOfFpMonoid(Image(map));
true
gap> IsSubsemigroupOfFpMonoid(Range(map));
true

15.3 Creating Tietze transformation objects

It is possible to use GAP to create finitely presented semigroups without the Semigroups package,
by creating a free semigroup, then quotienting by a list of relations. This is described in the reference
manual ((Reference: Finitely Presented Semigroups and Monoids)).

However, finitely presented semigroups do not allow for their relations to be simplified, so in the
following sections, we describe how to create and modify the semigroup Tietze (IsStzPresentation
(15.3.2)) object associated with an fp semigroup. This object can be automatically simplified, or
the user can manually apply Tietze transformations to add or remove relations or generators in the
presentation.

This object is analogous to PresentationFpGroup (Reference: PresentationFpGroup) imple-
mented for fp groups in the main GAP distribution ((Reference: Presentations and Tietze Trans-
formations)), but its features are semigroup-specific. Most of the functions used to create, view and
manipulate semigroup Tietze objects are prefixed with STZ.

15.3.1 StzPresentation

▷ StzPresentation(S) (operation)

Returns: A semigroup Tietze (Stz) object.
If s is an fp semigroup (IsFpSemigroup (Reference: IsFpSemigroup)), then this function re-

turns a modifiable object representing the generators and relations of s .
Example

gap> F := FreeSemigroup("a", "b", "c");;
gap> AssignGeneratorVariables(F);;
gap> S := F / [[a * b, c], [b * c, a], [c * a, b]];
<fp semigroup with 3 generators and 3 relations of length 12>
gap> stz := StzPresentation(S);
<fp semigroup presentation with 3 generators and 3 relations
with length 12>

15.3.2 IsStzPresentation

▷ IsStzPresentation(stz) (filter)

Returns: true or false.

Semigroups 278

Every semigroup Tietze object is an element of the category IsStzPresentation. Internally,
each Stz object contains a list of generators (each represented as a string) and a list of relations (each
represented as a pair of LetterRep words, see LetterRepAssocWord (Reference: LetterRepAssoc-
Word)). These generator and relation lists can be modified using Tietze transformations (15.5).

When a IsStzPresentation object stz is created from an fp semigroup s using stz
:= StzPresentation(s), the generators and relations of stz are initially equal to the gen-
erators and relations of s. However, as the Stz object stz is modified, these lists may
change, and their current state can be viewed using GeneratorsOfStzPresentation (15.3.3) and
RelationsOfStzPresentation (15.3.4).

Example
gap> F := FreeSemigroup("a", "b", "c");;
gap> AssignGeneratorVariables(F);;
gap> S := F / [[a * b, c], [b * c, a], [c * a, b]];
<fp semigroup with 3 generators and 3 relations of length 12>
gap> stz := StzPresentation(S);
<fp semigroup presentation with 3 generators and 3 relations
with length 12>

gap> IsStzPresentation(stz);
true

15.3.3 GeneratorsOfStzPresentation

▷ GeneratorsOfStzPresentation(stz) (attribute)

Returns: A list of strings.
If stz is an StzPresentation (15.3.1) object, then GeneratorsOfStzPresentation will re-

turn (as strings) the generators of the fp semigroup that the presentation was created from. In the
StzPresentation (15.3.1) object, it is only necessary to know how many generators there are, but
for the purposes of representing generators and relations of the presentation object and building a new
fp semigroup from the object, the strings representing the generators are stored.

As Tietze transformations are performed on stz , the generators will change, but the labels will
remain as close to the original labels as possible, so that if a generator in the fp semigroup obtained
from the presentation is the same as a generator in the original fp semigroup, then they should have
the same label.

Example
gap> F := FreeSemigroup("a", "b", "c");
<free semigroup on the generators [a, b, c]>
gap> T := F / [[F.1, F.2 ^ 5 * F.3],
> [F.2 ^ 6, F.2 ^ 3]];
<fp semigroup with 3 generators and 2 relations of length 19>
gap> stz := StzPresentation(T);
<fp semigroup presentation with 3 generators and 2 relations
with length 19>

gap> GeneratorsOfStzPresentation(stz);
["a", "b", "c"]

15.3.4 RelationsOfStzPresentation

▷ RelationsOfStzPresentation(stz) (attribute)

Returns: A list of pairs of words in LetterRep (LetterRepAssocWord (Reference: Letter-

Semigroups 279

RepAssocWord)) form.
If stz is an StzPresentation (15.3.1) object, then RelationsOfStzPresentation will return

in letter rep form the current relations of the presentation object. When the presentation object is first
created, these will be the LetterRep forms of the relations of the fp semigroup object that is used to
create stz . As Tietze transformations are performed on the presentation object, the relations returned
by this function will change to reflect the transformations.

Example
gap> F := FreeSemigroup("a", "b", "c");
<free semigroup on the generators [a, b, c]>
gap> T := F / [[F.1, F.2 ^ 5 * F.3],
> [F.2 ^ 6, F.2 ^ 3]];
<fp semigroup with 3 generators and 2 relations of length 19>
gap> stz := StzPresentation(T);
<fp semigroup presentation with 3 generators and 2 relations
with length 19>

gap> RelationsOfStzPresentation(stz);
[[[1], [2, 2, 2, 2, 2, 3]],

[[2, 2, 2, 2, 2, 2], [2, 2, 2]]]

15.3.5 UnreducedFpSemigroup (for a presentation)

▷ UnreducedFpSemigroup(stz) (attribute)

Returns: An fp semigroup.
If stz is an StzPresentation (15.3.1) object, then UnreducedFpSemigroup will return the fp

semigroup that was used to create stz using StzPresentation (15.3.1).
Example

gap> F := FreeSemigroup("a", "b", "c");
<free semigroup on the generators [a, b, c]>
gap> T := F / [[F.1, F.2 ^ 5 * F.3],
> [F.2 ^ 6, F.2 ^ 3]];
<fp semigroup with 3 generators and 2 relations of length 19>
gap> stz := StzPresentation(T);
<fp semigroup presentation with 3 generators and 2 relations
with length 19>

gap> UnreducedFpSemigroup(stz) = T;
true

15.3.6 Length

▷ Length(stz) (operation)

Returns: A non-negative integer.
If stz is an StzPresentation (15.3.1) object, then the Length of the object is defined as the

number of generators plus the lengths of each word in each relation of stz .
Example

gap> F := FreeSemigroup("a", "b", "c");
<free semigroup on the generators [a, b, c]>
gap> T := F / [[F.1, F.2 ^ 5 * F.3],
> [F.2 ^ 6, F.2 ^ 3], [F.2 ^ 2, F.2]];
<fp semigroup with 3 generators and 3 relations of length 22>
gap> stz := StzPresentation(T);

Semigroups 280

<fp semigroup presentation with 3 generators and 3 relations
with length 22>

gap> Length(stz);
22

15.4 Printing Tietze transformation objects

Since the relations are stored as flat lists of numbers, there are several methods installed to print the
presentations in more user-friendly forms.

All printing methods in this section are displayed as information (Info (Reference: Info)) in the
class InfoFpSemigroup at level 1. Setting SetInfoLevevl(InfoFpSemigroup, 0) will suppress
the messages, while any higher number will display them.

15.4.1 StzPrintRelations

▷ StzPrintRelations(stz[, list]) (operation)

If stz is an StzPresentation (15.3.1) object and list is a list of positive integers, then
StzPrintRelations prints for each i in list the i th relation to the console in terms of the stored
labels for the generators (that is, as words over the alphabet consisting of the generators of stz).

If list is not specified then StzPrintRelations prints all relations of stz in order.
Example

gap> F := FreeSemigroup("a", "b", "c");
<free semigroup on the generators [a, b, c]>
gap> T := F / [[F.1, F.2 ^ 5 * F.3],
> [F.2 ^ 6, F.2 ^ 3], [F.2 ^ 2, F.2]];
<fp semigroup with 3 generators and 3 relations of length 22>
gap> stz := StzPresentation(T);
<fp semigroup presentation with 3 generators and 3 relations
with length 22>

gap> StzPrintRelations(stz, [2, 3]);
#I 2. b^6 = b^3
#I 3. b^2 = b
gap> StzPrintRelations(stz);
#I 1. a = b^5*c
#I 2. b^6 = b^3
#I 3. b^2 = b

15.4.2 StzPrintRelation

▷ StzPrintRelation(stz, int) (operation)

If stz is an StzPresentation (15.3.1) object, then StzPrintRelation calls
StzPrintRelations with parameters stz and [int].

Example
gap> F := FreeSemigroup("a", "b", "c");
<free semigroup on the generators [a, b, c]>
gap> T := F / [[F.1, F.2 ^ 5 * F.3],
> [F.2 ^ 6, F.2 ^ 3], [F.2 ^ 2, F.2]];

Semigroups 281

<fp semigroup with 3 generators and 3 relations of length 22>
gap> stz := StzPresentation(T);
<fp semigroup presentation with 3 generators and 3 relations
with length 22>

gap> StzPrintRelation(stz, 2);
#I 2. b^6 = b^3

15.4.3 StzPrintGenerators

▷ StzPrintGenerators(stz[, list]) (operation)

If stz is an StzPresentation (15.3.1) object and list is a list of positive integers, then
StzPrintGenerators for each i in list the i th generator and the number of occurrences of that
generator in the relations is printed to the screen.

If list is not specified then StzPrintGenerators prints all generators of stz in order.
Example

gap> F := FreeSemigroup("a", "b", "c");
<free semigroup on the generators [a, b, c]>
gap> T := F / [[F.1, F.2 ^ 5 * F.3],
> [F.2 ^ 6, F.2 ^ 3], [F.2 ^ 2, F.2]];
<fp semigroup with 3 generators and 3 relations of length 22>
gap> stz := StzPresentation(T);
<fp semigroup presentation with 3 generators and 3 relations
with length 22>

gap> StzPrintGenerators(stz, [1, 2]);
#I 1. a 1 occurrences
#I 2. b 17 occurrences
gap> StzPrintGenerators(stz);
#I 1. a 1 occurrences
#I 2. b 17 occurrences
#I 3. c 1 occurrences

15.4.4 StzPrintPresentation

▷ StzPrintPresentation(stz) (operation)

If stz is an StzPresentation (15.3.1) object, then StzPrintPresentation prints a compre-
hensive overview of stz , including the generators and number of occurrences of each generator in the
relations, the relations as words over the generators, and the forward and backward maps that indicate
how the unreduced semigroup maps to the semigroup currently described by stz .

Example
gap> F := FreeSemigroup("a", "b", "c");
<free semigroup on the generators [a, b, c]>
gap> T := F / [[F.1, F.2 ^ 5 * F.3],
> [F.2 ^ 6, F.2 ^ 3], [F.2 ^ 2, F.2]];
<fp semigroup with 3 generators and 3 relations of length 22>
gap> stz := StzPresentation(T);
<fp semigroup presentation with 3 generators and 3 relations
with length 22>

gap> StzPrintPresentation(stz);

Semigroups 282

#I Current generators:
#I 1. a 1 occurrences
#I 2. b 17 occurrences
#I 3. c 1 occurrences
#I
#I Current relations:
#I 1. a = b^5*c
#I 2. b^6 = b^3
#I 3. b^2 = b
#I
#I There are 3 generators and 3 relations of total length 22.
#I
#I Generators of original fp semigroup expressed as
#I combinations of generators in current presentation:
#I 1. a = a
#I 2. b = b
#I 3. c = c
#I
#I Generators of current presentation expressed as
#I combinations of generators of original fp semigroup:
#I 1. a = a
#I 2. b = b
#I 3. c = c

15.5 Changing Tietze transformation objects

Fundamentally, there are four different changes that can be made to a presentation without chang-
ing the algebraic structure of the fp semigroup that can be derived from it. These four changes are
called Tietze transformations, and they are primarily implemented in this section as operations on an
StzPresentation object that will throw errors if the conditions have not been met to perform the
Tietze transformation.

However, the checks required in order to ensure that a Tietze transformation is valid sometimes
require verifying equality of two words in an fp semigroup (for example, to ensure that a relation we
are adding to the list of relations can be derived from the relations already present). Since these checks
sometimes do not terminate, a second implementation of Tietze transformations assumes good faith
and does not perform any checks to see whether the requested Tietze transformation actually maintains
the structure of the semigroup. This latter type should be used at the user’s discretion. If only the first
type are used, the presentation will always give a semigroup isomorphic to the one used to create the
object, but if instead one is not changing the presentation with the intention of maintaining algebraic
structure, these no-check functions are available for use.

The four Tietze transformations on a presentation are adding a relation, removing a relation, adding
a generator, and removing a generator, with particular conditions on what can be added/removed in
order to maintain structure. More details on each transformation and its arguments and conditions is
given in each entry below. In addition to the four elementary transformations, there is an additional
function StzSubstituteRelation which applies multiple Tietze transformations in sequence.

Semigroups 283

15.5.1 StzAddRelation

▷ StzAddRelation(stz, pair) (operation)

If stz is an StzPresentation (15.3.1) object and pair is a list containing two LetterRep
words over the generators of stz , then StzAddRelation will perform a Tietze transformation of the
first type and add a new relation to stz . This only happens if the new relation that would be formed
from pair can be constructed from the other existing relations; that is, if we can perform elementary
operations using the existing relations of stz to convert pair[1] into pair[2].

If, instead, pair is a list containing two elements of the fp semigroup S that was used to create
stz, and the two words are equal in that semigroup, then this function will add the LetterRep of
these words as a new relation to stz .

Example
gap> F := FreeSemigroup("a", "b", "c");
<free semigroup on the generators [a, b, c]>
gap> T := F / [[F.1, F.2 ^ 5 * F.3],
> [F.2 ^ 6, F.2 ^ 3]];
<fp semigroup with 3 generators and 2 relations of length 19>
gap> stz := StzPresentation(T);
<fp semigroup presentation with 3 generators and 2 relations
with length 19>

gap> pair := [[2, 2, 2, 2, 2, 2, 2, 2, 2], [2, 2, 2]];;
gap> StzAddRelation(stz, pair);
gap> RelationsOfStzPresentation(stz);
[[[1], [2, 2, 2, 2, 2, 3]],

[[2, 2, 2, 2, 2, 2], [2, 2, 2]],
[[2, 2, 2, 2, 2, 2, 2, 2, 2], [2, 2, 2]]]

gap> pair2 := [[1, 1], [3]];
[[1, 1], [3]]
gap> StzAddRelation(stz, pair2);
Error, StzAddRelation: second argument <pair> must list two
words that are equal in the presentation <stz>

15.5.2 StzRemoveRelation

▷ StzRemoveRelation(stz, index) (operation)

If stz is an StzPresentation (15.3.1) object and index is a positive integer less than or equal
to the number of relations of stz , then StzRemoveRelation will perform a Tietze transformation of
the second type and remove the index th relation of stz if that relation is such that one side of it can
be obtained from the other by a sequence of elementary operations using only the other relations of
stz .

Example
gap> F := FreeSemigroup("a", "b", "c");
<free semigroup on the generators [a, b, c]>
gap> T := F / [[F.1, F.2 ^ 5 * F.3],
> [F.2 ^ 6, F.2 ^ 3], [F.2 ^ 2, F.2]];
<fp semigroup with 3 generators and 3 relations of length 22>
gap> stz := StzPresentation(T);
<fp semigroup presentation with 3 generators and 3 relations
with length 22>

Semigroups 284

gap> StzRemoveRelation(stz, 2);
gap> RelationsOfStzPresentation(stz);
[[[1], [2, 2, 2, 2, 2, 3]], [[2, 2], [2]]]
gap> StzRemoveRelation(stz, 2);
Error, StzRemoveRelation: second argument <index> must point to
a relation that is redundant in the presentation <stz>

15.5.3 StzAddGenerator

▷ StzAddGenerator(stz, word[, name]) (operation)

If stz is an StzPresentation (15.3.1) object and word is a LetterRep word over the generators
of stz , then StzAddGenerator will perform a Tietze transformation which adds a new generator to
stz and a new relation of the form newgenerator = word .

If, instead, word is a word over the fp semigroup S that was used to create stz , then this function
will add the new generator and a new relation with the new generator equal to the LetterRep of this
word as a new relation to stz .

A new name for the generator is chosen and added automatically based on the names of the existing
generators to GeneratorsOfStzPresentation (15.3.3) if the argument name is not included. If it
is, and if name is a string that is not equal to an existing generator, then the string added to the list of
generators will be name instead.

Example
gap> F := FreeSemigroup("a", "b", "c");
<free semigroup on the generators [a, b, c]>
gap> T := F / [[F.1, F.2 ^ 5 * F.3],
> [F.2 ^ 6, F.2 ^ 3], [F.2 ^ 2, F.2]];
<fp semigroup with 3 generators and 3 relations of length 22>
gap> stz := StzPresentation(T);
<fp semigroup presentation with 3 generators and 3 relations
with length 22>

gap> StzAddGenerator(stz, [2, 2, 2]);
gap> RelationsOfStzPresentation(stz);
[[[1], [2, 2, 2, 2, 2, 3]],

[[2, 2, 2, 2, 2, 2], [2, 2, 2]], [[2, 2], [2]],
[[2, 2, 2], [4]]]

15.5.4 StzRemoveGenerator

▷ StzRemoveGenerator(stz, gen/genname[, index]) (operation)

If stz is an StzPresentation (15.3.1) object and gen is a positive integer less than or equal to
the number of generators of stz , then StzRemoveGenerator will perform a Tietze transformation
which removes the gen th generator of stz .

The argument stz must contain a relation of the form gen = word or word = gen , where word
contains no occurrences of the generator gen being removed. The generator is then removed from the
presentation by replacing every instance of gen with a copy of word.

If the second argument is a string genname rather than a positive integer gen , then the function
searches the generators of stz for a generator with the same name and attempts to remove the gener-
ator if the same conditions as above are met.

Semigroups 285

If the argument index is included and is a positive integer less than or equal to the number of
relations, then rather than searching the relations for the first to satisfy the necessary conditions, the
function checks the index th relation to see if it satisfies those conditions, and applies the Tietze
transformation by removing this relation.

Example
gap> F := FreeSemigroup("a", "b", "c");
<free semigroup on the generators [a, b, c]>
gap> T := F / [[F.1, F.2 ^ 5 * F.3],
> [F.2 ^ 6, F.2 ^ 3], [F.2 ^ 2, F.2]];
<fp semigroup with 3 generators and 3 relations of length 22>
gap> stz := StzPresentation(T);
<fp semigroup presentation with 3 generators and 3 relations
with length 22>

gap> StzRemoveGenerator(stz, 1);
gap> RelationsOfStzPresentation(stz);
[[[1, 1, 1, 1, 1, 1], [1, 1, 1]], [[1, 1], [1]]]

15.5.5 StzSubstituteRelation

▷ StzSubstituteRelation(stz, index, side) (operation)

If stz is an StzPresentation (15.3.1) object and index is a positive integer less than or equal
to the number of relations of stz and side is either 1 or 2, then StzRemoveGenerator will perform
a sequence of Tietze transformations in order to replace, for the index th relation (say [u, v]), to
replace all instances of the side th word of the relation in all other relations by the other side (so, for
side=1, all instances of u in all other relations of stz are replaced by v). This requires two Tietze
transformations per relation containing u, one to add a new redundant relation with each u replaced
by v, and another to remove the original (now redundant) relation.

Example
gap> F := FreeSemigroup("a", "b", "c");
<free semigroup on the generators [a, b, c]>
gap> T := F / [[F.1, F.2 ^ 5 * F.3],
> [F.2 ^ 6, F.2 ^ 3], [F.2 ^ 2, F.2]];
<fp semigroup with 3 generators and 3 relations of length 22>
gap> stz := StzPresentation(T);
<fp semigroup presentation with 3 generators and 3 relations
with length 22>

gap> StzSubstituteRelation(stz, 3, 1);
gap> RelationsOfStzPresentation(stz);
[[[1], [2, 2, 2, 3]], [[2, 2, 2], [2, 2]],

[[2, 2], [2]]]
gap> StzSubstituteRelation(stz, 3, 1);
gap> RelationsOfStzPresentation(stz);
[[[1], [2, 2, 3]], [[2, 2], [2]], [[2, 2], [2]]]

15.6 Converting a Tietze transformation object into a fp semigroup

Semigroup Tietze transformation objects (IsStzPresentation (15.3.2)) are not actual fp semigroups
in the sense of IsFpSemigroup (Reference: IsFpSemigroup). This is because their generators and

Semigroups 286

relations can be modified (see section 15.5). However, an StzPresentation (15.3.1) can be con-
verted back into an actual finitely presented semigroup using the methods described in this section.

The intended use of semigroup Tietze objects is as follows: given an fp semigroup S, create
a modifiable presentation using stz := StzPresentation(S), apply Tietze transformations to it
(perhaps in order to simplify the presentation), then generate a new fp semigroup T given by stz
which is isomorphic to S, but has a simpler presentation. Once T is obtained, it may be of interest to
map elements of S over to T, where they may be represented by different combinations of generators.
The isomorphism achieving this is described in this section (see StzIsomorphism (15.6.3)).

15.6.1 TietzeForwardMap

▷ TietzeForwardMap(stz) (attribute)

Returns: A list of lists of positive integers.
If stz is an StzPresentation (15.3.1) object, then TietzeForwardMap returns a list of lists of

positive integers. There is an element of this list for every generator of the unreduced semigroup of
the presentation (see UnreducedFpSemigroup (15.3.5)) that indicates the word (in LetterRep form)
in the semigroup object currently defined by the presentation that the generator maps to.

This mapping is updated as the presentation object is transformed. It begins as a list of the form
[[1], [2], [3], . . ., [n]] where n is the number of generators of the unreduced semi-
group.

Example
gap> F := FreeSemigroup("a", "b", "c");
<free semigroup on the generators [a, b, c]>
gap> S := F / [[F.1, F.3 ^ 3], [F.2 ^ 2, F.3 ^ 2]];
<fp semigroup with 3 generators and 2 relations of length 11>
gap> stz := StzPresentation(S);
<fp semigroup presentation with 3 generators and 2 relations
with length 11>

gap> StzRemoveGenerator(stz, 1);
gap> TietzeForwardMap(stz);
[[2, 2, 2], [1], [2]]

15.6.2 TietzeBackwardMap

▷ TietzeBackwardMap(stz) (attribute)

Returns: A list of lists of positive integers.
If stz is an StzPresentation (15.3.1) object, then TietzeBackwardMap returns a list of lists

of positive integers. There is an element of this list for every generator of the semigroup that the pre-
sentation currently defines that indicates the word (in LetterRep form) in the unreduced semigroup
of the presentation (see UnreducedFpSemigroup (15.3.5)) that the generator maps to.

This mapping is updated as the presentation object is transformed. It begins as a list of the form
[[1], [2], [3], . . ., [n]] where n is the number of generators of the unreduced semi-
group.

Example
gap> F := FreeSemigroup("a", "b", "c");
<free semigroup on the generators [a, b, c]>
gap> S := F / [[F.1, F.3 ^ 3], [F.2 ^ 2, F.3 ^ 2]];
<fp semigroup with 3 generators and 2 relations of length 11>
gap> stz := StzPresentation(S);

Semigroups 287

<fp semigroup presentation with 3 generators and 2 relations
with length 11>

gap> StzRemoveGenerator(stz, 1);
gap> TietzeBackwardMap(stz);
[[2], [3]]

15.6.3 StzIsomorphism

▷ StzIsomorphism(stz) (operation)

Returns: A mapping object.
If stz is an StzPresentation (15.3.1) object, then StzIsomorphism returns a mapping object

that maps the unreduced semigroup of the presentation (see UnreducedFpSemigroup (15.3.5)) to an
FpSemigroup object that is defined by the generators and relations of the semigroup presentation at
the moment this function is ran.

If a StzIsomorphism is generated from stz , and the presentation stz is further modified after-
wards (for example by applying more Tietze transformations or StzSimplifyOnce (15.7.1) to stz),
then running StzIsomorphism(stz) a second time will produce a different result consistent with the
new generators and relations of stz .

This mapping is built from the TietzeForwardMap (15.6.1) and TietzeBackwardMap (15.6.2)
attributes from the presentation object, since if we know how to map the generators of the respective
semigroups, then we know how to map any element of that semigroup.

This function is the primary way to obtain the simplified semigroup from the presentation object,
by applying Range to the mapping that this function returns.

Example
gap> F := FreeSemigroup("a", "b", "c");
<free semigroup on the generators [a, b, c]>
gap> S := F / [[F.1, F.3 ^ 3], [F.2 ^ 2, F.3 ^ 2]];
<fp semigroup with 3 generators and 2 relations of length 11>
gap> stz := StzPresentation(S);
<fp semigroup presentation with 3 generators and 2 relations
with length 11>

gap> StzRemoveGenerator(stz, "a");
gap> map := StzIsomorphism(stz);
<fp semigroup with 3 generators and 2 relations of length 11> ->
<fp semigroup with 2 generators and 1 relation of length 6>
gap> S.1 ^ map;
c^3

15.7 Automatically simplifying a Tietze transformation object

It is possible to create a presentation object from an fp semigroup object and attempt to manually re-
duce it by applying Tietze transformations. However, there may be many different reductions that can
be applied, so StzSimplifyOnce can be used to automatically check a number of different possible
reductions and apply the best one. Then, StzSimplifyPresentation repeatedly applies StzSim-
plifyOnce to the presentation object until it fails to reduce the presentation any further. The metric
with respect to which the IsStzPresentation object is reduced is Length (15.3.6).

Semigroups 288

15.7.1 StzSimplifyOnce

▷ StzSimplifyOnce(stz) (operation)

Returns: true or false.
If stz is an StzPresentation (15.3.1) object, then StzSimplifyOnce will check the possible

reductions in length for a number of different possible Tietze transformations, and apply the choice
which gives the least length. If a valid transformation was found then the function returns true, and if
no transformation was performed because none would lead to a reduction in length, then the function
returns false.

There are four different possible transformations that StzSimplifyOnce may apply. The function
searches for redundant generators and checks if removing them would reduce the overall length of
the presentation, it checks whether substituting one side of each relation throughout the rest of the
relations would reduce the length, it checks whether there are any trivial relations (of the form w = w
for some word w) or any duplicated relations (relations which are formed from precisely the same
words as another relation), and it checks whether any frequently occurring subwords in the relations
can be replaced with a new generator to reduce the length. For more details, see 15.5

At InfoLevel 2 (which is the default value, and which can be set using
SetInfoLevel(InfoFpSemigroup, 2)), the precise transformations performed are printed to
the screen.

Example
gap> F := FreeSemigroup("a", "b", "c");
<free semigroup on the generators [a, b, c]>
gap> T := F / [[F.1, F.2 ^ 5 * F.3],
> [F.2 ^ 6, F.2 ^ 3]];
<fp semigroup with 3 generators and 2 relations of length 19>
gap> stz := StzPresentation(T);
<fp semigroup presentation with 3 generators and 2 relations
with length 19>

gap> StzSimplifyOnce(stz);
#I <Removing redundant generator a using relation : 1. a = b^5*c>
true
gap> stz;
<fp semigroup presentation with 2 generators and 1 relation
with length 11>

15.7.2 StzSimplifyPresentation

▷ StzSimplifyPresentation(stz) (operation)

If stz is an StzPresentation object, then StzSimplifyPresentation will repeatedly apply
the best of a few possible reductions to stz until it can no longer reduce the length of the presentation.

Example
gap> F := FreeSemigroup("a", "b", "c");
<free semigroup on the generators [a, b, c]>
gap> T := F / [[F.1, F.2 ^ 5 * F.3],
> [F.2 ^ 6, F.2 ^ 3]];
<fp semigroup on the generators [a, b, c]>
gap> stz := StzPresentation(T);
<fp semigroup presentation with 3 generators and 2 relations
with length 19>

Semigroups 289

gap> StzSimplifyPresentation(stz);
gap> RelationsOfStzPresentation(stz);
[[[1, 1, 1], [3]], [[3, 3], [3]]]

15.8 Automatically simplifying an fp semigroup

It may be the case that, rather than working with a Tietze transformation object, we want to start
with an fp semigroup object and obtain the most simplified version of that fp semigroup that
StzSimplifyPresentation can produce. In this case, SimplifyFpSemigroup can be applied to
obtain a mapping from its argument to a reduced fp semigroup. If the mapping is not of interest,
SimplifiedFpSemigroup can be used to directly obtain a new fp semigroup isomorphic to the first
with reduced relations and generators (the mapping is stored as an attribute of the output). With these
functions, the user never has to consider precisely what Tietze transformations to perform, and never
has to worry about using the StzPresentation object or its associated operations. They can start
with an fp semigroup and obtain a simplified fp semigroup.

15.8.1 SimplifyFpSemigroup

▷ SimplifyFpSemigroup(S) (operation)

Returns: A mapping object.
If S is a finitely presented semigroup, then SimplifyFpSemigroup will return a mapping ob-

ject which will map S to a finitely presented semigroup which has had its presentation simplified.
SimplifyFpSemigroup creates an StzPresentation object stz from S , which is then reduced us-
ing Tietze transformations until the presentation cannot be reduced in length any further.

SimplifyFpSemigroup applies the function StzSimplifyPresentation (15.7.2) to stz , which
repeatedly checks whether a number of different possible transformations will cause a reduction in
length, and if so applies the best one. This loop continues until no transformations cause any re-
ductions, in which case the mapping is returned. The newly reduced FpSemigroup can be accessed
either by taking the range of the mapping or calling SimplifiedFpSemigroup, which first runs
SimplifyFpSemigroup and then returns the range of the mapping with the mapping held as an at-
tribute.

For more information on how the mapping is created and used, go to 15.6.
Example

gap> F := FreeSemigroup("a", "b", "c");
<free semigroup on the generators [a, b, c]>
gap> T := F / [[F.1, F.2 ^ 5 * F.3],
> [F.2 ^ 6, F.2 ^ 3]];
<fp semigroup on the generators [a, b, c]>
gap> map := SimplifyFpSemigroup(T);;
#I Applying StzSimplifyPresentation...
#I StzSimplifyPresentation is verbose by default. Use SetInfoLevel(InfoFpSemigroup, 1) to hide
#I output while maintaining ability to use StzPrintRelations, StzPrintGenerators, etc.
#I Current: <fp semigroup presentation with 3 generators and 2 relations with length 19>
#I <Removing redundant generator a using relation : 1. a = b^5*c>
#I Current: <fp semigroup presentation with 2 generators and 1 relation with length 11>
#I <Creating new generator to replace instances of word: b^3>
#I Current: <fp semigroup presentation with 3 generators and 2 relations with length 10>
gap> IsMapping(map);

Semigroups 290

true
gap> T.1;
a
gap> T.1 ^ map;
b^5*c
gap> RelationsOfFpSemigroup(Range(map));
[[b^3, d], [d^2, d]]

15.8.2 SimplifiedFpSemigroup

▷ SimplifiedFpSemigroup(S) (operation)

Returns: A finitely presented semigroup.
If S is an fp semigroup object (IsFpSemigroup (Reference: IsFpSemigroup)), then

SimplifiedFpSemigroup will return an FpSemigroup object T which is isomorphic to S which
has been reduced to minimise its length. SimplifiedFpSemigroup applies SimplifyFpSemigroup
(15.8.1) and assigns the Range of the isomorphism object which is returned to T , adding the isomor-
phism to T as an attribute. In this way, while T is a completely new FpSemigroup object, words in S
can be mapped to T using the map obtained from the attribute FpTietzeIsomorphism (15.8.4).

For more information on the mapping between the semigroups and how it is created, see 15.6.
Example

gap> F := FreeSemigroup("a", "b", "c");;
gap> S := F / [[F.1 ^ 4, F.1], [F.1, F.1 ^ 44], [F.1 ^ 8, F.2 * F.3]];;
gap> T := SimplifiedFpSemigroup(S);;
#I Applying StzSimplifyPresentation...
#I StzSimplifyPresentation is verbose by default. Use SetInfoLevel(InfoFpSemigroup, 1) to hide
#I output while maintaining ability to use StzPrintRelations, StzPrintGenerators, etc.
#I Current: <fp semigroup presentation with 3 generators and 3 relations with length 63>
#I <Replacing all instances in other relations of relation: 1. a^4 = a>
#I Current: <fp semigroup presentation with 3 generators and 3 relations with length 24>
#I <Replacing all instances in other relations of relation: 1. a^4 = a>
#I Current: <fp semigroup presentation with 3 generators and 3 relations with length 18>
#I <Replacing all instances in other relations of relation: 1. a^4 = a>
#I Current: <fp semigroup presentation with 3 generators and 3 relations with length 15>
#I <Replacing all instances in other relations of relation: 3. a = a^2>
#I Current: <fp semigroup presentation with 3 generators and 3 relations with length 12>
#I <Removing duplicate relation: 1. a = a^2>
#I Current: <fp semigroup presentation with 3 generators and 2 relations with length 9>
#I <Removing redundant generator a using relation : 2. a = b*c>
#I Current: <fp semigroup presentation with 2 generators and 1 relation with length 8>
gap> map := FpTietzeIsomorphism(T);;
gap> S.1 ^ map;
b*c
gap> S.1 ^ map = T.1 * T.2;
true
gap> invmap := InverseGeneralMapping(map);;
gap> T.1 ^ invmap = S.2;
true
gap> T.1 = S.2;
false

Semigroups 291

15.8.3 UnreducedFpSemigroup (for a semigroup)

▷ UnreducedFpSemigroup(S) (attribute)

Returns: T , an fp semigroup object.
If S is an fp semigroup object that has been obtained through calling SimplifiedFpSemigroup

(15.8.2) on some fp semigroup T then UnreducedFpSemigroup returns the original semigroup
object before simplification. These are unrelated semigroup objects, except that S will have a
FpTietzeIsomorphism (15.8.4) attribute that returns an isomorphic mapping from T to S .

If SimplifyFpSemigroup (15.8.1) has been called on an fp semigroup T , then
UnreducedFpSemigroup can be used on the Range of the resultant mapping to obtain the
domain.

Example
gap> F := FreeSemigroup("a", "b", "c");
<free semigroup on the generators [a, b, c]>
gap> T := F / [[F.1, F.2 ^ 5 * F.3],
> [F.2 ^ 6, F.2 ^ 3]];
<fp semigroup on the generators [a, b, c]>
gap> S := SimplifiedFpSemigroup(T);
#I Applying StzSimplifyPresentation...
#I StzSimplifyPresentation is verbose by default. Use SetInfoLevel(InfoFpSemigroup, 1) to hide
#I output while maintaining ability to use StzPrintRelations, StzPrintGenerators, etc.
#I Current: <fp semigroup presentation with 3 generators and 2 relations with length 19>
#I <Removing redundant generator a using relation : 1. a = b^5*c>
#I Current: <fp semigroup presentation with 2 generators and 1 relation with length 11>
#I <Creating new generator to replace instances of word: b^3>
#I Current: <fp semigroup presentation with 3 generators and 2 relations with length 10>
<fp semigroup on the generators [b, c, d]>
gap> UnreducedFpSemigroup(S) = T;
true

15.8.4 FpTietzeIsomorphism

▷ FpTietzeIsomorphism(S) (attribute)

Returns: A mapping object.
If S is an fp semigroup object that has been obtained through calling SimplifiedFpSemigroup

(15.8.2) on some fp semigroup T , then FpTietzeIsomorphism returns an isomorphism from T to S .
Simplification produces an fp semigroup isomorphic to the original fp semigroup, and these two fp
semigroup objects can interact with each other through the mapping given by this function.

Example
gap> F := FreeSemigroup("a", "b", "c");
<free semigroup on the generators [a, b, c]>
gap> T := F / [[F.1, F.2 ^ 5 * F.3],
> [F.2 ^ 6, F.2 ^ 3]];
<fp semigroup on the generators [a, b, c]>
gap> S := SimplifiedFpSemigroup(T);
#I Applying StzSimplifyPresentation...
#I StzSimplifyPresentation is verbose by default. Use SetInfoLevel(InfoFpSemigroup, 1) to hide
#I output while maintaining ability to use StzPrintRelations, StzPrintGenerators, etc.
#I Current: <fp semigroup presentation with 3 generators and 2 relations with length 19>
#I <Removing redundant generator a using relation : 1. a = b^5*c>
#I Current: <fp semigroup presentation with 2 generators and 1 relation with length 11>

Semigroups 292

#I <Creating new generator to replace instances of word: b^3>
#I Current: <fp semigroup presentation with 3 generators and 2 relations with length 10>
<fp semigroup on the generators [b, c, d]>
gap> T.2;
b
gap> S.1;
b
gap> T.2 = S.1;
false
gap> map := FpTietzeIsomorphism(S);;
gap> T.2 ^ map = S.1;
true

Chapter 16

Visualising semigroups and elements

There are two operations TikzString (16.3.1) and DotString (16.1.1) in Semigroups for creating
LATEX and dot (also known as GraphViz) format pictures of the Green’s class structure of a semi-
group and for visualising certain types of elements of a semigroup. There is also a function Splash
(Digraphs: Splash) for automatically processing the output of TikzString (16.3.1) and DotString
(16.1.1) and opening the resulting pdf file.

16.1 dot pictures

In this section, we describe the operations in Semigroups for creating pictures in dot format.
The operations described in this section return strings, which can be written to a file using the

function FileString (GAPDoc: FileString) or viewed using Splash (Digraphs: Splash).

16.1.1 DotString

▷ DotString(S[, options]) (operation)

Returns: A string.
If the argument S is a semigroup, and the optional second argument options is a record, then this

operation produces a graphical representation of the partial order of the D-classes of the semigroup
S together with the eggbox diagram of each D-class. The output is in dot format (also known as
GraphViz) format. For details about this file format, and information about how to display or edit this
format see https://www.graphviz.org.

The string returned by DotString can be written to a file using the command FileString
(GAPDoc: FileString).

The D-classes are shown as eggbox diagrams with L -classes as rows and R-classes as
columns; group H -classes are shaded gray and contain an asterisk. The L -classes and R-classes
within a D-class are arranged to correspond to the normalization of the principal factor given by
NormalizedPrincipalFactor (10.4.8). The D-classes are numbered according to their index in
GreensDClasses(S), so that an i appears next to the eggbox diagram of GreensDClasses(S)[i].
A line from one D-class to another indicates that the higher D-class is greater than the lower one in
the D-order on S .

If the optional second argument options is present, it can be used to specify some options for
output.

293

https://www.graphviz.org

Semigroups 294

number
if options.number is false, then the D-classes in the diagram are not numbered according
to their index in the list of D-classes of S . The default value for this option is true.

maximal
if options.maximal is true, then the structure description of the group H -classes is dis-
played; see StructureDescription (Reference: StructureDescription). Setting this at-
tribute to true can adversely affect the performance of DotString. The default value for this
option is false.

normal
if options.normal is false, then the L - and R-classes within each D-class arranged
to correspond to PrincipalFactor (10.4.8). If options.normal is true, they are in-
stead arranged to correspond to NormalizedPrincipalFactor (10.4.8). Setting this at-
tribute to false may improve the performance of DotString as it avoids the computation of
InjectionNormalizedPrincipalFactor (10.4.7). The default value for this option is true.

Example
gap> S := FullTransformationMonoid(3);
<full transformation monoid of degree 3>
gap> DotString(S);
"//dot\ndigraph DClasses {\nnode [shape=plaintext]\nedge [color=blac\
k,arrowhead=none]\n1 [shape=box style=invisible label=<\n<TABLE BORDE\
R=\"0\" CELLBORDER=\"1\" CELLPADDING=\"10\" CELLSPACING=\"0\" PORT=\"\
1\">\n<TR BORDER=\"0\"><TD COLSPAN=\"1\" BORDER = \"0\" > 1</TD></TR>\
<TR><TD BGCOLOR=\"gray\">*</TD></TR>\n</TABLE>>];\n2 [shape=box style\
=invisible label=<\n<TABLE BORDER=\"0\" CELLBORDER=\"1\" CELLPADDING=\
\"10\" CELLSPACING=\"0\" PORT=\"2\">\n<TR BORDER=\"0\"><TD COLSPAN=\"\
3\" BORDER = \"0\" > 2</TD></TR><TR><TD BGCOLOR=\"gray\">*</TD><TD BG\
COLOR=\"gray\">*</TD><TD BGCOLOR=\"white\"></TD></TR>\n<TR><TD BGCOLO\
R=\"gray\">*</TD><TD BGCOLOR=\"white\"></TD><TD BGCOLOR=\"gray\">*</T\
D></TR>\n<TR><TD BGCOLOR=\"white\"></TD><TD BGCOLOR=\"gray\">*</TD><T\
D BGCOLOR=\"gray\">*</TD></TR>\n</TABLE>>];\n3 [shape=box style=invis\
ible label=<\n<TABLE BORDER=\"0\" CELLBORDER=\"1\" CELLPADDING=\"10\"\
CELLSPACING=\"0\" PORT=\"3\">\n<TR BORDER=\"0\"><TD COLSPAN=\"1\" BO\

RDER = \"0\" > 3</TD></TR><TR><TD BGCOLOR=\"gray\">*</TD></TR>\n<TR><\
TD BGCOLOR=\"gray\">*</TD></TR>\n<TR><TD BGCOLOR=\"gray\">*</TD></TR>\
\n</TABLE>>];\n1 -> 2\n2 -> 3\n }"
gap> FileString("t3.dot", DotString(S));
1040

16.1.2 DotString (for a Cayley digraph)

▷ DotString(digraph) (operation)

Returns: A string.
If digraph is a Digraph (Digraphs: Digraph) in the category IsCayleyDigraph (Digraphs:

IsCayleyDigraph), then DotString returns a graphical representation of digraph . The output is
in dot format (also known as GraphViz) format. For details about this file format, and information
about how to display or edit this format see https://www.graphviz.org.

The string returned by DotString can be written to a file using the command FileString
(GAPDoc: FileString).

https://www.graphviz.org

Semigroups 295

See also DotLeftCayleyDigraph (16.1.4) and TikzLeftCayleyDigraph (16.3.2).

16.1.3 DotSemilatticeOfIdempotents

▷ DotSemilatticeOfIdempotents(S) (attribute)

Returns: A string.
This function produces a graphical representation of the semilattice of the idempotents of an in-

verse semigroup S where the elements of S have a unique semigroup inverse accessible via Inverse
(Reference: Inverse). The idempotents are grouped by the D-class they belong to.

The output is in dot format (also known as GraphViz) format. For details about this file format,
and information about how to display or edit this format see https://www.graphviz.org.

Example
gap> S := DualSymmetricInverseMonoid(4);
<inverse block bijection monoid of degree 4 with 3 generators>
gap> DotSemilatticeOfIdempotents(S);
"//dot\ngraph graphname {\n node [shape=point]\nranksep=2;\nsubgraph \
cluster_1{\n15 \n}\nsubgraph cluster_2{\n5 11 14 12 13 8 \n}\nsubgraph\
cluster_3{\n2 10 6 3 4 9 7 \n}\nsubgraph cluster_4{\n1 \n}\n2 -- 1\n3\
-- 1\n4 -- 1\n5 -- 2\n5 -- 3\n5 -- 4\n6 -- 1\n7 -- 1\n8 -- 2\n8 -- 6\

\n8 -- 7\n9 -- 1\n10 -- 1\n11 -- 2\n11 -- 9\n11 -- 10\n12 -- 3\n12 -- \
6\n12 -- 9\n13 -- 3\n13 -- 7\n13 -- 10\n14 -- 4\n14 -- 6\n14 -- 10\n15\
-- 5\n15 -- 8\n15 -- 11\n15 -- 12\n15 -- 13\n15 -- 14\n }"

16.1.4 DotLeftCayleyDigraph

▷ DotLeftCayleyDigraph(S) (operation)

▷ DotRightCayleyDigraph(S) (operation)

Returns: A string.
If S is a semigroup satisfying CanUseFroidurePin (6.1.4), then DotLeftCayleyDigraph is

simply short for DotString(LeftCayleyDigraph(S)).
DotRightCayleyDigraph can be used to produce a dot string for the right Cayley graph of S .
See DotString (16.1.1) for more details, and see also TikzLeftCayleyDigraph (16.3.2).

Example
gap> DotLeftCayleyDigraph(Semigroup(IdentityTransformation));
"//dot\ndigraph hgn{\nnode [shape=circle]\n1 [label=\"a\"]\n1 -> 1\n}\
\n"
gap> DotRightCayleyDigraph(Semigroup(IdentityTransformation));
"//dot\ndigraph hgn{\nnode [shape=circle]\n1 [label=\"a\"]\n1 -> 1\n}\
\n"

16.2 tex output

In this section, we describe the operations in Semigroups for creating LATEX representations of GAP
objects. For pictures of GAP objects please see Section 16.3.

https://www.graphviz.org

Semigroups 296

16.2.1 TexString

▷ TexString(f[, n]) (operation)

Returns: A string.
This function produces a string containing LaTeX code for the transformation f . If the optional

parameter n is used, then this is taken to be the degree of the transformation f , if the parameter n is not
given, then DegreeOfTransformation (Reference: DegreeOfTransformation) is used by default.
If n is less than the degree of f , then an error is given.

Example
gap> TexString(Transformation([6, 2, 4, 3, 6, 4]));
"\\begin{pmatrix}\n 1 & 2 & 3 & 4 & 5 & 6 \\\\\n 6 & 2 & 4 & 3 & 6 &\
4\n\\end{pmatrix}"

gap> TexString(Transformation([1, 2, 1, 3]), 5);
"\\begin{pmatrix}\n 1 & 2 & 3 & 4 & 5 \\\\\n 1 & 2 & 1 & 3 & 5\n\\en\
d{pmatrix}"

16.3 tikz pictures

In this section, we describe the operations in Semigroups for creating pictures in tikz format.
The functions described in this section return a string, which can be written to a file using the

function FileString (GAPDoc: FileString) or viewed using Splash (Digraphs: Splash).

16.3.1 TikzString

▷ TikzString(obj[, options]) (operation)

Returns: A string.
This function produces a graphical representation of the object obj using the tikz package for

LATEX. More precisely, this operation outputs a string containing a minimal LATEX document which
can be compiled using LATEX to produce a picture of obj .

Currently the following types of objects are supported:

blocks
If obj is the left or right blocks of a bipartition, then TikzString returns a graphical represen-
tation of these blocks; see Section 3.6.

bipartitions
If obj is a bipartition, then TikzString returns a graphical representation of obj .

If the optional second argument options is a record with the component colors set to true,
then the blocks of f will be colored using the standard tikz colors. Due to the limited number
of colors available in tikz this option only works when the degree of obj is less than 20. See
Chapter 3 for more details about bipartitions.

pbrs If obj is a PBR (4.2.1), then TikzString returns a graphical representation obj ; see Chapter 4.

Cayley graphs
If obj is a Digraph (Digraphs: Digraph) in the category IsCayleyDigraph (Digraphs: Is-
CayleyDigraph), then TikzString returns a picture of obj . No attempt is made whatsoever to

Semigroups 297

produce a sensible picture of the digraph obj , in fact, the vertices are all given the same coordi-
nates. Human intervention is required to produce a meaningful picture from the value returned
by this method. It is intended to make the task of drawing such a Cayley graph more straight-
forward by providing everything except the final layout of the graph. Please use DotString
(16.1.1) if you want an automatically laid out diagram of the digraph obj .

Example
gap> x := Bipartition([[1, 4, -2, -3], [2, 3, 5, -5], [-1, -4]]);;
gap> TikzString(RightBlocks(x));
"%tikz\n\\documentclass{minimal}\n\\usepackage{tikz}\n\\begin{documen\
t}\n\\begin{tikzpicture}\n \\draw[ultra thick](5,2)circle(.115);\n \
\\draw(1.8,5) node [top] {{1}};\n \\fill(4,2)circle(.125);\n \\dr\
aw(1.8,4) node [top] {{2}};\n \\fill(3,2)circle(.125);\n \\draw(1\
.8,3) node [top] {{3}};\n \\draw[ultra thick](2,2)circle(.115);\n \
\\draw(1.8,2) node [top] {{4}};\n \\fill(1,2)circle(.125);\n \\d\

raw(1.8,1) node [top] {{5}};\n\n \\draw (5,2.125) .. controls (5,2\
.8) and (2,2.8) .. (2,2.125);\n \\draw (4,2.125) .. controls (4,2.6)\
and (3,2.6) .. (3,2.125);\n\\end{tikzpicture}\n\n\\end{document}"

gap> x := Bipartition([[1, 5], [2, 4, -3, -5], [3, -1, -2], [-4]]);;
gap> TikzString(x);
"%tikz\n\\documentclass{minimal}\n\\usepackage{tikz}\n\\begin{documen\
t}\n\\begin{tikzpicture}\n\n %block #1\n %vertices and labels\n \\\
fill(1,2)circle(.125);\n \\draw(0.95, 2.2) node [above] {{ 1}};\n \
\\fill(5,2)circle(.125);\n \\draw(4.95, 2.2) node [above] {{ 5}};\

\n\n %lines\n \\draw(1,1.875) .. controls (1,1.1) and (5,1.1) .. (5\
,1.875);\n\n %block #2\n %vertices and labels\n \\fill(2,2)circle(\
.125);\n \\draw(1.95, 2.2) node [above] {{ 2}};\n \\fill(4,2)circ\
le(.125);\n \\draw(3.95, 2.2) node [above] {{ 4}};\n \\fill(3,0)c\
ircle(.125);\n \\draw(3, -0.2) node [below] {{ -3}};\n \\fill(5,0\
)circle(.125);\n \\draw(5, -0.2) node [below] {{ -5}};\n\n %lines\
\n \\draw(2,1.875) .. controls (2,1.3) and (4,1.3) .. (4,1.875);\n \
\\draw(3,0.125) .. controls (3,0.7) and (5,0.7) .. (5,0.125);\n \\dr\
aw(2,2)--(3,0);\n\n %block #3\n %vertices and labels\n \\fill(3,2)\
circle(.125);\n \\draw(2.95, 2.2) node [above] {{ 3}};\n \\fill(1\
,0)circle(.125);\n \\draw(1, -0.2) node [below] {{ -1}};\n \\fill\
(2,0)circle(.125);\n \\draw(2, -0.2) node [below] {{ -2}};\n\n %l\
ines\n \\draw(1,0.125) .. controls (1,0.6) and (2,0.6) .. (2,0.125);\
\n \\draw(3,2)--(2,0);\n\n %block #4\n %vertices and labels\n \\f\
ill(4,0)circle(.125);\n \\draw(4, -0.2) node [below] {{ -4}};\n\n \
%lines\n\\end{tikzpicture}\n\n\\end{document}"
gap> TikzString(UniversalPBR(2));
"%latex\n\\documentclass{minimal}\n\\usepackage{tikz}\n\\begin{docume\
nt}\n\\usetikzlibrary{arrows}\n\\usetikzlibrary{arrows.meta}\n\\newco\
mmand{\\arc}{\\draw[semithick, -{>[width = 1.5mm, length = 2.5mm]}]}\
\n\\begin{tikzpicture}[\n vertex/.style={circle, draw, fill=black, i\
nner sep =0.04cm},\n ghost/.style={circle, draw = none, inner sep = \
0.14cm},\n botloop/.style={min distance = 8mm, out = -70, in = -110}\
,\n toploop/.style={min distance = 8mm, out = 70, in = 110}]\n\n % \
vertices and labels\n \\foreach \\i in {1,...,2} {\n \\node [vert\
ex] at (\\i/1.5, 3) {};\n \\node [ghost] (\\i) at (\\i/1.5, 3) {};\
\n }\n\n \\foreach \\i in {1,...,2} {\n \\node [vertex] at (\\i/\
1.5, 0) {};\n \\node [ghost] (-\\i) at (\\i/1.5, 0) {};\n }\n\n \
% arcs from vertex 1\n \\arc (1) to (-2);\n \\arc (1) to (-1);\n \

Semigroups 298

\\arc (1) edge [toploop] (1);\n \\arc (1) .. controls (1.06666666666\
66667, 2.125) and (0.93333333333333324, 2.125) .. (2);\n\n % arcs fr\
om vertex -1\n \\arc (-1) .. controls (1.0666666666666667, 0.875) an\
d (0.93333333333333324, 0.875) .. (-2);\n \\arc (-1) edge [botloop] \
(-1);\n \\arc (-1) to (1);\n \\arc (-1) to (2);\n\n % arcs from ve\
rtex 2\n \\arc (2) to (-2);\n \\arc (2) to (-1);\n \\arc (2) .. co\
ntrols (0.93333333333333324, 2.125) and (1.0666666666666667, 2.125) .\
. (1);\n \\arc (2) edge [toploop] (2);\n\n % arcs from vertex -2\n \
\\arc (-2) edge [botloop] (-2);\n \\arc (-2) .. controls (0.9333333\

3333333324, 0.875) and (1.0666666666666667, 0.875) .. (-1);\n \\arc \
(-2) to (1);\n \\arc (-2) to (2);\n\n\\end{tikzpicture}\n\\end{docum\
ent}"

16.3.2 TikzLeftCayleyDigraph

▷ TikzLeftCayleyDigraph(S) (operation)

▷ TikzRightCayleyDigraph(S) (operation)

Returns: A string.
If S is a semigroup satisfying CanUseFroidurePin (6.1.4), then TikzLeftCayleyDigraph is

simply short for TikzString(LeftCayleyDigraph(S)).
TikzRightCayleyDigraph can be used to produce a tikz string for the right Cayley graph of S .
See TikzString (16.3.1) for more details, and see also DotLeftCayleyDigraph (16.1.4).

Example
gap> TikzLeftCayleyDigraph(Semigroup(IdentityTransformation));
"\\begin{tikzpicture}[scale=1, auto, \n vertex/.style={c\
ircle, draw, thick, fill=white, minimum size=0.65cm},\n \
edge/.style={arrows={-angle 90}, thick},\n loop/.style={\
min distance=5mm,looseness=5,arrows={-angle 90},thick}]\n\
\n % Vertices . . .\n \\node [vertex] (a) at (0, 0) {};\
\n \\node at (0, 0) {a};\n\n % Edges . . .\n \\path[\
->] (a) edge [loop]\n node {a} (a);\n\\end{ti\
kzpicture}"
gap> TikzRightCayleyDigraph(Semigroup(IdentityTransformation));
"\\begin{tikzpicture}[scale=1, auto, \n vertex/.style={c\
ircle, draw, thick, fill=white, minimum size=0.65cm},\n \
edge/.style={arrows={-angle 90}, thick},\n loop/.style={\
min distance=5mm,looseness=5,arrows={-angle 90},thick}]\n\
\n % Vertices . . .\n \\node [vertex] (a) at (0, 0) {};\
\n \\node at (0, 0) {a};\n\n % Edges . . .\n \\path[\
->] (a) edge [loop]\n node {a} (a);\n\\end{ti\
kzpicture}"

Chapter 17

IO

17.1 Reading and writing elements to a file

The functions ReadGenerators (17.1.1) and WriteGenerators (17.1.2) can be used to read or write,
respectively, elements of a semigroup to a file.

17.1.1 ReadGenerators

▷ ReadGenerators(filename[, nr]) (function)

Returns: A list of lists of semigroup elements.
If filename is an IO package file object or is the name of a file created using WriteGenerators

(17.1.2), then ReadGenerators returns the contents of this file as a list of lists of elements of a
semigroup.

If the optional second argument nr is present, then ReadGenerators returns the elements stored
in the nr th line of filename .

Example
gap> file := Concatenation(SEMIGROUPS.PackageDir,
> "/data/tst/testdata");;
gap> ReadGenerators(file, 13);
[<identity partial perm on [2, 3, 4, 5, 6]>,

<identity partial perm on [2, 3, 5, 6]>, [1,2](5)(6)]

17.1.2 WriteGenerators

▷ WriteGenerators(filename, list[, append][, function]) (function)

Returns: IO_OK or IO_ERROR.
This function provides a method for writing collections of elements of a semigroup to a file. The

resulting file can be further compressed using gzip or xz.
The argument list should be a list of lists of elements, or semigroups.
The argument filename should be a string containing the name of a file or an IO pack-

age file object where the entries in list will be written; see IO_File (IO: IO_File mode) and
IO_CompressedFile (IO: IO_CompressedFile).

If the optional third argument append is not present or is given and equals "w", then the previous
content of the file is deleted and overwritten. If the third argument is "a", then list is appended to
the file.

299

Semigroups 300

If any element of list is a semigroup, then the generators of that semigroup are written to
filename . More specifically, the list returned by GeneratorsOfSemigroup (Reference: Gener-
atorsOfSemigroup) is written to the file.

This function returns IO_OK (IO: IO_OK) if everything went well or IO_ERROR (IO: IO_Error)
if something went wrong.

The file produced by WriteGenerators can be read using ReadGenerators (17.1.1).
From Version 3.0.0 onwards the Semigroups package used the IO package pickling functionality;

see (IO: Pickling and unpickling) for more details. This approach is used because it is more general
and more robust than the methods used by earlier versions of Semigroups, although the performance
is somewhat worse, and the resulting files are somewhat larger.

17.1.3 IteratorFromGeneratorsFile

▷ IteratorFromGeneratorsFile(filename) (function)

Returns: An iterator.
If filename is a file or a string containing the name of a file created using

WriteGenerators (17.1.2), then IteratorFromGeneratorsFile returns an iterator iter such that
NextIterator(iter) returns the next collection of generators stored in the file filename .

This function is a convenient way of, for example, looping over a collection of generators in a file
without loading every object in the file into memory. This might be useful if the file contains more
information than there is available memory.

If you want to get an iterator for a file written using WriteGenerators from a version of Semi-
groups before version 3.0.0, then you can use IteratorFromOldGeneratorsFile.

17.2 Reading and writing multiplication tables to a file

The functions ReadMultiplicationTable (17.2.1) and WriteMultiplicationTable (17.2.2) can
be used to read or write, respectively, multiplication tables to a file.

17.2.1 ReadMultiplicationTable

▷ ReadMultiplicationTable(filename[, nr]) (function)

Returns: A list of multiplication tables.
If filename is a file or is the name of a file created using WriteMultiplicationTable (17.2.2),

then ReadMultiplicationTable returns the contents of this file as a list of multiplication tables.
If the optional second argument nr is present, then ReadMultiplicationTable returns the mul-

tiplication table stored in the nr th line of filename .
Example

gap> file := Concatenation(SEMIGROUPS.PackageDir,
> "/data/tst/tables.gz");;
gap> tab := ReadMultiplicationTable(file, 12);
[[1, 1, 3, 4, 5, 6, 7, 8, 9, 6], [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],

[3, 3, 1, 5, 4, 7, 6, 9, 8, 7], [4, 4, 9, 6, 3, 8, 5, 1, 7, 8],
[5, 5, 8, 7, 1, 9, 4, 3, 6, 9], [6, 6, 7, 8, 9, 1, 3, 4, 5, 1],
[7, 7, 6, 9, 8, 3, 1, 5, 4, 3], [8, 8, 5, 1, 7, 4, 9, 6, 3, 4],
[9, 9, 4, 3, 6, 5, 8, 7, 1, 5], [6, 10, 7, 8, 9, 1, 3, 4, 5, 2]

]

https://gap-packages.github.io/io

Semigroups 301

17.2.2 WriteMultiplicationTable

▷ WriteMultiplicationTable(filename, list[, append]) (function)

Returns: IO_OK or IO_ERROR.
This function provides a method for writing collections of multiplication tables to a file. The

resulting file can be further compressed using gzip or xz. This function applies to square arrays with
a maximum of 255 rows where the entries are integers from [1, 2, .., n] (where n is the number
of rows in the array.

The argument list should be a list of multiplication tables.
The argument filename should be a file or a string containing the name of a file where the

entries in list will be written or an IO package file object; see IO_File (IO: IO_File mode) and
IO_CompressedFile (IO: IO_CompressedFile).

If the optional third argument append is not present or is given and equals "w", then the previous
content of the file is deleted and overwritten. If the third argument is given and equals "a" then list is
appended to the file. This function returns IO_OK (IO: IO_OK) if everything went well or IO_ERROR
(IO: IO_Error) if something went wrong.

The multiplication tables saved in filename can be recovered from the file using
ReadMultiplicationTable (17.2.1).

17.2.3 IteratorFromMultiplicationTableFile

▷ IteratorFromMultiplicationTableFile(filename) (function)

Returns: An iterator.
If filename is a file or a string containing the name of a file created using

WriteMultiplicationTable (17.2.2), then IteratorFromMultiplicationTableFile returns an
iterator iter such that NextIterator(iter) returns the next multiplication table stored in the file
filename .

This function is a convenient way of, for example, looping over a collection of multiplication
tables in a file without loading every object in the file into memory. This might be useful if the file
contains more information than there is available memory.

Chapter 18

Translations

In this chapter we describe the functionality in Semigroups for working with translations of semi-
groups. The notation used (as well as a number of results) is based on [Pet70]. Translations are of
interest mainly due to their role in ideal extensions. A description of this role can also be found in
[Pet70]. The implementation of translations in this package is only applicable to finite semigroups
satisfying CanUseFroidurePin (6.1.4).

For a semigroup S, a transformation λ of S (written on the left) is a left translation if for all s, t in
S, λ (s)t = λ (st). A right translation ρ (written on the right) is defined dually.

The set L of left translations of S is a semigroup under composition of functions, as is the set R
of right translations. The associativity of S guarantees that left [right] multiplication by any element s
of S represents a left [right] translation; this is the inner left [right] translation λs [ρs]. The inner left
[right] translations form an ideal in L [R].

A left translation λ and right translation ρ are linked if for all s, t in S, sλ (t) = (s)ρt. A pair
of linked translations is called a bitranslation. The set of all bitranslations forms a semigroup H
called the translational hull of S where the operation is componentwise. If the components are inner
translations corresponding to multiplication by the same element, then the bitranslation is inner. The
inner bitranslations form an ideal of the translational hull.

Translations of a normalized Rees matrix semigroup T (see RMSNormalization (6.5.7)) over a
group G can be represented through certain tuples, which can be computed very efficiently compared
to arbitrary translations. For left translations these tuples consist of a function from the row indices of
T to G and a transformation on the row indices of T ; the same is true of right translations and columns.
More specifically, given a normalised Rees matrix semigroup S over a group G with sandwich matrix
P, rows I and columns J, the left translations are characterised by pairs (θ ,χ) where θ is a function
from I to G and χ is a transformation of I. The left translation λ defined by (θ ,χ) acts on S via

λ ((i,a,µ)) = ((i)χ,(i)θ ·a,µ),

where i ∈ I, a ∈ G, and µ ∈ J Dually, right translations ρ are characterised by pairs (ω,ψ) where
ω is a function from J to G and ψ is a transformation of J, with action given by

((i,a,µ))ρ = (i,a · (µ)ψ,(µ)ψ).

Similarly, bitranslations (λ ,ρ) of S can be characterised by triples (g,χ,ψ) such that g ∈ G, χ and
ψ are transformations of I,J respectively, and

pµ,(i)χ ·g · p(1)ψ,i = pµ,(1)χ ·g · p(mu)ψ,i.

302

Semigroups 303

The action of λ on S is then given by

λ ((i,a,µ)) = ((i)χ,b · p(1)ψ,i ·a,µ),

and of ρ on S by

((i,a,µ))ρ = (i,a · pµ,(1)χ ·b,(µ)ψ).

Further details may be found in [CP77].

18.1 Methods for translations

18.1.1 IsXTranslation

▷ IsSemigroupTranslation(arg) (filter)

▷ IsLeftTranslation(arg) (filter)

▷ IsRightTranslation(arg) (filter)

Returns: true or false
All, and only, left [right] translations belong to IsLeftTranslation [IsRightTranslation].

These are both subcategories of IsSemigroupTranslation, which itself is a subcategory of
IsAssociativeElement.

Example
gap> S := RectangularBand(3, 4);;
gap> l := Representative(LeftTranslations(S));;
gap> IsSemigroupTranslation(l);
true
gap> IsLeftTranslation(l);
true
gap> IsRightTranslation(l);
false
gap> l = One(LeftTranslations(S));
true
gap> l * l = l;
true

18.1.2 IsBitranslation (for IsAssociativeElement and IsMultiplicativeElementWith-
One)

▷ IsBitranslation(arg) (filter)

Returns: true or false
All, and only, bitranslations belong to IsBitranslation. This is a subcategory of

IsAssociativeElement (Reference: IsAssociativeElement).
Example

gap> G := Group((1, 2), (3, 4));;
gap> A := AsList(G);;
gap> mat := [[A[1], 0, A[1]],
> [A[2], A[2], A[4]]];;
gap> S := ReesZeroMatrixSemigroup(G, mat);;
gap> L := LeftTranslations(S);;
gap> R := RightTranslations(S);;

Semigroups 304

gap> l := OneOp(Representative(L));;
gap> r := OneOp(Representative(R));;
gap> H := TranslationalHull(S);;
gap> x := Bitranslation(H, l, r);;
gap> IsBitranslation(x);
true
gap> IsSemigroupTranslation(x);
false

18.1.3 IsXTranslationCollection

▷ IsSemigroupTranslationCollection(obj) (filter)

▷ IsLeftTranslationCollection(obj) (filter)

▷ IsRightTranslationCollection(obj) (filter)

▷ IsBitranslationCollection(obj) (filter)

Returns: true or false
Every collection of left-, right-, or bi-translations belongs to the respective category

IsXTranslationCollection (18.1.3).

18.1.4 XPartOfBitranslation

▷ LeftPartOfBitranslation(h) (function)

▷ RightPartOfBitranslation(arg) (function)

Returns: a left or right translation
For a Bitranslation h consisting of a linked pair (l,r), of left and right

translations, LeftPartOfBitranslation(b) returns the left translation l, and
RightPartOfBitranslation(b) returns the right translation r.

18.1.5 XTranslation

▷ LeftTranslation(T, x[, y]) (operation)

▷ RightTranslation(arg1, arg2) (operation)

Returns: a left or right translation
For the semigroup T of left or right translations of a semigroup S and x one of:

• a mapping on the underlying semigroup; note that in this case only the values of the mapping
on the UnderlyingRepresentatives of T are checked and used, so mappings which do not
define translations can be used to create translations if they are valid on that subset of S;

• a list of indices representing the images of the UnderlyingRepresentatives of T , where the
ordering is that of PositionCanonical (11.1.2) on S ;

• (for LeftTranslation) a list of length Length(Rows(S)) containing elements of
UnderlyingSemigroup(S); in this case S must be a normalised Rees matrix semigroup and y
must be a Transformation of Rows(S);

• (for RightTranslation) a list of length Length(Columns(S)) containing elements of
UnderlyingSemigroup(S); in this case S must be a normalised Rees matrix semigroup and y
must be a Transformation of Columns(S);

Semigroups 305

LeftTranslation and RightTranslation return the corresponding translations.
Example

gap> S := RectangularBand(3, 4);;
gap> L := LeftTranslations(S);;
gap> s := AsList(S)[1];;
gap> map := MappingByFunction(S, S, x -> s * x);;
gap> l := LeftTranslation(L, map);
<left translation on <regular transformation semigroup of size 12,
degree 8 with 4 generators>>

gap> s ^ l;
Transformation([1, 2, 1, 1, 5, 5, 5, 5])

18.1.6 Bitranslation (for IsBitranslationsSemigroup, IsLeftTranslation, IsRightTrans-
lation)

▷ Bitranslation(H, l, r) (operation)

Returns: a bitranslation
If H is a translational hull over a semigroup S, and l and r are linked left and right translations

respectively over S, then this function returns the bitranslation (l ,r). If l and r are not linked, then
an error is produced.

Example
gap> G := Group((1, 2), (3, 4));;
gap> A := AsList(G);;
gap> mat := [[A[1], 0],
> [A[2], A[2]]];;
gap> S := ReesZeroMatrixSemigroup(G, mat);;
gap> L := LeftTranslations(S);;
gap> R := RightTranslations(S);;
gap> l := LeftTranslation(L, MappingByFunction(S, S, s -> S.1 * s));;
gap> r := RightTranslation(R, MappingByFunction(S, S, s -> s * S.1));;
gap> H := TranslationalHull(S);;
gap> x := Bitranslation(H, l, r);
<bitranslation on <regular semigroup of size 17, with 4 generators>>

18.1.7 UnderlyingSemigroup

▷ UnderlyingSemigroup(S) (attribute)

▷ UnderlyingSemigroup(arg) (attribute)

Returns: a semigroup
Given a semigroup of translations or bitranslations, returns the semigroup on which these transla-

tions act.

18.1.8 XTranslationsSemigroupOfFamily

▷ LeftTranslationsSemigroupOfFamily(fam) (attribute)

▷ RightTranslationsSemigroupOfFamily(arg) (attribute)

▷ TranslationalHullOfFamily(arg) (attribute)

Returns: the semigroup of left or right translations, or the translational hull
Given a family fam of left-, right- or bi-translations, returns the translations semigroup or trans-

lational hull to which they belong.

Semigroups 306

Example
gap> S := RectangularBand(3, 3);;
gap> L := LeftTranslations(S);;
gap> l := Representative(L);;
gap> LeftTranslationsSemigroupOfFamily(FamilyObj(l)) = L;
true
gap> H := TranslationalHull(S);;
gap> h := Representative(H);;
gap> TranslationalHullOfFamily(FamilyObj(h)) = H;
true

18.1.9 TypeXTranslationSemigroupElements

▷ TypeLeftTranslationsSemigroupElements(arg) (attribute)

▷ TypeRightTranslationsSemigroupElements(arg) (attribute)

▷ TypeBitranslations(arg) (attribute)

Returns: a type
Given a (bi)translations semigroup, returns the type of the elements that it contains.

18.1.10 XTranslations

▷ LeftTranslations(S) (attribute)

▷ RightTranslations(arg) (attribute)

Returns: the semigroup of left or right translations
Given a finite semigroup S satisfying CanUseFroidurePin (6.1.4), returns the semigroup of all

left or right translations of S .
Example

gap> S := Semigroup([Transformation([1, 4, 3, 3, 6, 5]),
> Transformation([3, 4, 1, 1, 4, 2])]);;
gap> L := LeftTranslations(S);
<the semigroup of left translations of <transformation semigroup of
degree 6 with 2 generators>>

gap> Size(L);
361

18.1.11 TranslationalHull (for IsSemigroup and CanUseFroidurePin and IsFinite)

▷ TranslationalHull(S) (attribute)

Returns: the translational hull
Given a finite semigroup S satisfying CanUseFroidurePin (6.1.4), returns the translational hull

of S .
Example

gap> S := Semigroup([Transformation([1, 4, 3, 3, 6, 5]),
> Transformation([3, 4, 1, 1, 4, 2])]);;
gap> H := TranslationalHull(S);
<translational hull over <transformation semigroup of degree 6 with 2
generators>>

gap> Size(H);
38

Semigroups 307

18.1.12 NrXTranslations

▷ NrLeftTranslations(S) (attribute)

▷ NrRightTranslations(arg) (attribute)

▷ NrBitranslations(arg) (attribute)

Returns: the number of left-, right-, or bi-translations
Given a finite semigroup S satisfying CanUseFroidurePin (6.1.4), returns the num-

ber of left-, right-, or bi-translations of S . This is typically more efficient than calling
Size(LeftTranslations(S)), as the [bi]translations may not be produced.

Example
gap> S := Semigroup([Transformation([1, 4, 3, 3, 6, 5, 2]),
> Transformation([3, 4, 1, 1, 4, 2])]);;
gap> NrLeftTranslations(S);
1444
gap> NrRightTranslations(S);
398
gap> NrBitranslations(S);
69

18.1.13 InnerXTranslations

▷ InnerLeftTranslations(S) (attribute)

▷ InnerRightTranslations(arg) (attribute)

Returns: the monoid of inner left or right translations
For a finite semigroup S satisfying CanUseFroidurePin (6.1.4), InnerLeftTranslations(S)

returns the inner left translations of S (i.e. the translations defined by left multiplication by a fixed
element of S), and InnerRightTranslations(S) returns the inner right translations of S (i.e. the
translations defined by right multiplication by a fixed element of S).

Example
gap> S := Semigroup([Transformation([1, 4, 3, 3, 6, 5]),
> Transformation([3, 4, 1, 1, 4, 2])]);;
gap> I := InnerLeftTranslations(S);
<left translations semigroup over <transformation semigroup
of size 22, degree 6 with 2 generators>>

gap> Size(I) <= Size(S);
true

18.1.14 InnerTranslationalHull (for IsSemigroup and CanUseFroidurePin and IsFi-
nite)

▷ InnerTranslationalHull(S) (attribute)

Returns: the inner translational hull
Given a finite semigroup S satisfying CanUseFroidurePin (6.1.4), returns the inner translational

hull of S , i.e. the bitranslations whose left and right translation components are inner translations
defined by left and right multiplication by the same fixed element of S .

Example
gap> S := Semigroup([Transformation([1, 4, 3, 3, 6, 5]),
> Transformation([3, 4, 1, 1, 4, 2])]);;
gap> I := InnerTranslationalHull(S);

Semigroups 308

<semigroup of bitranslations over <transformation semigroup
of size 22, degree 6 with 2 generators>>

gap> L := LeftTranslations(S);;
gap> R := RightTranslations(S);;
gap> H := TranslationalHull(S);;
gap> inners := [];;
gap> for s in S do
> l := LeftTranslation(L, MappingByFunction(S, S, x -> s * x));
> r := RightTranslation(R, MappingByFunction(S, S, x -> x * s));
> AddSet(inners, Bitranslation(H, l, r));
> od;
gap> Set(I) = inners;
true

18.1.15 UnderlyingRepresentatives (for IsTranslationsSemigroup)

▷ UnderlyingRepresentatives(T) (attribute)

Returns: a set of representatives
For efficiency, we typically store translations on a semigroup S as their actions on a small

subset of S. For left translations, this is a set of representatives of the maximal R-classes of
S; dually for right translations we use representatives of the maximal L -classes. You can use
UnderlyingRepresentatives to access these representatives.

Example
gap> G := Range(IsomorphismPermGroup(SmallGroup(12, 1)));;
gap> mat := [[G.1, G.2], [G.1, G.1],
> [G.2, G.3], [G.1 * G.2, G.1 * G.3]];;
gap> S := ReesMatrixSemigroup(G, mat);;
gap> L := LeftTranslations(S);;
gap> R := RightTranslations(S);;
gap> UnderlyingRepresentatives(L);
[(1,(),1), (2,(),2)]
gap> UnderlyingRepresentatives(R);
[(1,(),1), (2,(),2), (1,(),3), (1,(),4)]

18.1.16 ImageSetOfTranslation (for IsSemigroupTranslation)

▷ ImageSetOfTranslation(t) (operation)

Returns: a set of elements
Given a left or right translation t on a semigroup S, returns the set of elements of S lying in the

image of t .
Example

gap> S := Semigroup([Transformation([1, 3, 3, 4]),
> Transformation([3, 4, 1, 2])]);;
gap> t := Set(LeftTranslations(S))[4];
<left translation on <transformation semigroup of size 8, degree 4
with 2 generators>>

gap> ImageSetOfTranslation(t);
[Transformation([1, 2, 3, 1]), Transformation([1, 3, 3, 1]),

Transformation([3, 1, 1, 3]), Transformation([3, 4, 1, 3])]

References

[ABMS15] J. Araújo, W. Bentz, J. D. Mitchell, and C. Schneider. The rank of the semigroup of
transformations stabilising a partition of a finite set. Math. Proc. Camb. Phil. Soc.,
159:339 - 353, 2015. 95

[AMM23] M. Anagnostopoulou-Merkouri, Z. Mesyan, and J. D. Mitchell. Properties of con-
gruence lattices of graph inverse semigroups. International Journal of Algebra and
Computation, 2023. 253, 254

[Aui12] K. Auinger. Krohn–Rhodes complexity of Brauer type semigroups. Portugaliae
Mathematica, 69(4):341–360, 2012. 15

[BDF15] A. E. Brouwer, J. Draisma, and B. J. Frenk. Lossy gossip and composition of metrics.
Discrete & Computational Geometry, 53(4):890–913, 2015. 109

[BFCGOGJ92] Q. J. P. Baccelli F. Cohen G. Olsder G. J. Synchronisation and Linearity: An Algebra
for Discrete Event Systems. Wiley, 1992. 71, 73

[Bur16] S. A. Burrell. The Order Problem for Natural and Tropical Matrix Semigroups.
MMath project, University of St Andrews, United Kingdom, 2016. 73

[CP77] A. H. Clifford and M. Petrich. Some classes of completely regular semigroups. Jour-
nal of Algebra, 46(2):462--480, 1977. 303

[DMW18] C. Donoven, J. D. Mitchell, and W. A. Wilson. Computing maximal subsemigroups
of a finite semigroup. Journal of Algebra, 505:559-596, July 2018. 187, 188

[Eas19] J. East. Presentations for rook partition monoids and algebras and their singular ide-
als. J. Pure and Applied Algebra, 223:1097-1122, March 2019. 100

[EEMP19] J. East, A. Egri-Nagy, J. D. Mitchell, and Y. Péresse. Computing finite semigroups.
J. Symbolic Computation, 92:110 - 155, 2019. 74, 75, 160

[Far09] K. G. Farlow. Max-Plus Algebra. Master’s thesis, Virginia Polytechnic Institute and
State University, United States, 2009. 70, 73

[FL98] D. G. Fitzgerald and J. Leech. Dual symmetric inverse monoids and representation
theory. J. Austral. Math. Soc. A, 64:345-67, 1998. 21

[FP97] V. Froidure and J.-E. Pin. Algorithms for computing finite semigroups. In Founda-
tions of computational mathematics (Rio de Janeiro, 1997), page 112–126. Springer,
Berlin, 1997. 48, 75, 76

309

Semigroups 310

[Gau96] S. Gaubert. On the Burnside problem for Semigroups of Matrices over the (max, +)
Algebra. Semigroup Forum, 5:271-292, 1996. 72, 73

[GGR68] N. Graham, R. Graham, and J. Rhodes. Maximal subsemigroups of finite semigroups.
J. Combinatorial Theory, 4:203–209, 1968. 186, 187, 188

[Gra68] R. Graham. On finite 0-simple semigroups and graph theory. Mathematical systems
theory, 2(4):325–339, 1968. 88

[Gro06] C. Grood. The rook partition algebra. J. Combin. Theory Ser. A, 113(2):325–351,
2006. 100

[How95] J. M. Howie. Fundamentals of semigroup theory, volume 12 of London Mathematical
Society Monographs. New Series. The Clarendon Press Oxford University Press, New
York, 1995. Oxford Science Publications. 117, 125, 132, 135, 207, 220, 245, 246,
249, 250, 251, 252, 268, 269

[HR05] T. Halverson and A. Ram. Partition algebras. European Journal of Combinatorics,
26(6):869–921, 2005. 15, 100

[JK07] T. Junttila and P. Kaski. Engineering an efficient canonical labeling tool for large and
sparse graphs. In D. Applegate, G. S. Brodal, D. Panario, and R. Sedgewick, edi-
tors, Proceedings of the Ninth Workshop on Algorithm Engineering and Experiments
and the Fourth Workshop on Analytic Algorithms and Combinatorics, page 135–149.
SIAM, 2007. 63

[KM11] G. Kudryavtseva and V. Maltcev. Two generalisations of the symmetric inverse semi-
groups. Publ. Math. Debrecen, 78(2):253–282, 2011. 103

[KMU15] G. Kudryavtseva, V. Maltcev, and A. Umar. Presentation for the partial dual symmet-
ric inverse monoid. Comm. Algebra, 43(4):1621–1639, 2015. 103

[MM13] P. Martin and V. Mazorchuk. Partitioned binary relations. Mathematica Scandinavica,
113:30-52, 2013. 36, 75

[MM16] Z. Mesyan and J. D. Mitchell. The structure of a graph inverse semigroup. Semigroup
Forum, 93(1):111–130, March 2016. 121

[Pet70] M. Petrich. The translational hull in semigroups and rings. Semigroup Forum,
1(1):283--360, 1970. 302

[RR10] J. Radoszewski and W. Rytter. Efficient testing of equivalence of words in a free
idempotent semigroup. SOFSEM 2010: Theory and Practice of Computer Science,
page 663--671, 2010. 120

[Sch92] B. M. Schein. The minimal degree of a finite inverse semigroup. Trans. Amer. Math.
Soc., 333(2):877–888, 1992. 200

[Sim78] I. Simon. Limited subsets of a free monoid. In Proceedings of the 19th Annual Sym-
posium on Foundations of Computer Science, SFCS ’78, page 143–150, Washington,
DC, USA, 1978. IEEE Computer Society. 72

Semigroups 311

[Wan19] Z.-P. Wang. Congruences on graph inverse semigroups. Journal of Algebra,
534:51--64, sep 2019. 253, 254

Index

* (for PBRs), 41
* (for Rees (0-)matrix semigroup isomor-

phisms by triples), 272
* (for bipartitions), 22
* (for matrices over a semiring), 57
< (for PBRs), 41
< (for Rees (0-)matrix semigroup isomorphisms

by triples), 272
< (for bipartitions), 22
< (for matrices over a semiring), 57
= (for Rees (0-)matrix semigroup isomor-

phisms by triples), 272
= (for PBRs), 41
= (for bipartitions), 22
= (for matrices over a semiring), 57
\in, 61
\<

for Green’s classes, 157
^ (for Rees (0-)matrix semigroup isomor-

phisms by triples), 272

AnnularJonesMonoid, 102
AntiIsomorphismDualFpMonoid, 90
AntiIsomorphismDualFpSemigroup, 90
AntiIsomorphismDualSemigroup, 132
ApsisMonoid, 105
AsBipartition, 19
AsBlockBijection, 20
AsBooleanMat, 58
AsCongruenceByWangPair, 253
AsInverseSemigroupCongruenceByKernel-

Trace, 250
AsList, 55
AsListCanonical, 166
AsMatrix

for a filter and a matrix, 51
for a filter, matrix, and threshold, 51
for a filter, matrix, threshold, and period, 51

AsMonoid, 86

AsMutableList, 55
AsPartialPerm

for a bipartition, 21
for a PBR, 40

AsPBR, 38
AsPermutation

for a bipartition, 22
for a PBR, 40

AsSemigroup, 85
AsSemigroupCongruenceByGenerating-

Pairs, 248
AsSemigroupHomomorphismByFunction

for a semigroup homomorphism by images,
261

AsSemigroupHomomorphismByImages
for a semigroup homomorphism by function,

260
AsSemigroupIsomorphismByFunction

for a semigroup homomorphism by images,
267

AsTransformation
for a bipartition, 21
for a PBR, 40

AutomorphismGroup
for a semigroup, 265

Bipartition, 16
BipartitionByIntRep, 16
Bitranslation

for IsBitranslationsSemigroup, IsLeftTrans-
lation, IsRightTranslation, 305

BlistNumber, 62
BLOCKS_NC, 31
BooleanMat, 57
BooleanMatNumber, 62
BrandtSemigroup, 116
BrauerMonoid, 100

CanonicalBlocks, 30

312

Semigroups 313

CanonicalBooleanMat, 63
for a perm group and boolean matrix, 63
for a perm group, perm group and boolean

matrix, 63
CanonicalForm

for a free inverse semigroup element, 126
CanonicalMultiplicationTable, 263
CanonicalMultiplicationTablePerm, 263
CanonicalReesMatrixSemigroup, 271
CanonicalReesZeroMatrixSemigroup, 271
CanonicalTransformation, 192
CanUseFroidurePin, 76
CanUseGapFroidurePin, 76
CanUseLibsemigroupsFroidurePin, 76
CatalanMonoid, 94
CayleyDigraphOfCongruences

for a semigroup, 237
for a semigroup and a list or collection, 237

CayleyDigraphOfLeftCongruences
for a semigroup, 237
for a semigroup and a list or collection, 237

CayleyDigraphOfRightCongruences
for a semigroup, 237
for a semigroup and a list or collection, 237

CharacterTableOfInverseSemigroup, 201
ClosureInverseMonoid, 79
ClosureInverseSemigroup, 79
ClosureMonoid, 79
ClosureSemigroup, 79
CodomainOfBipartition, 27
ComponentRepsOfPartialPermSemigroup,

193
ComponentRepsOfTransformation-

Semigroup, 189
ComponentsOfPartialPermSemigroup, 194
ComponentsOfTransformationSemigroup,

189
CompositionMapping2

for IsRMSIsoByTriple, 270
for IsRZMSIsoByTriple, 270

CongruenceByWangPair, 253
CongruencesOfPoset, 239
CongruencesOfSemigroup

for a semigroup, 233
for a semigroup and a multiplicative element

collection, 233

ContentOfFreeBandElement, 119
ContentOfFreeBandElementCollection, 119
CrossedApsisMonoid, 105
CyclesOfPartialPerm, 194
CyclesOfPartialPermSemigroup, 194
CyclesOfTransformationSemigroup, 190

DClass, 145
DClasses, 147
DClassNC, 146
DClassOfHClass, 144
DClassOfLClass, 144
DClassOfRClass, 144
DClassReps, 149
DegreeOfBipartition, 24
DegreeOfBipartitionCollection, 24
DegreeOfBipartitionSemigroup, 35
DegreeOfBlocks, 32
DegreeOfPBR, 41
DegreeOfPBRCollection, 41
DegreeOfPBRSemigroup, 47
DigraphOfAction

for a transformation semigroup, list, and ac-
tion, 190

DigraphOfActionOnPoints
for a transformation semigroup, 191
for a transformation semigroup and an inte-

ger, 191
DimensionOfMatrixOverSemiring, 49
DimensionOfMatrixOverSemiring-

Collection, 50
DirectProduct, 129
DirectProductOp, 129
DomainOfBipartition, 27
DotLeftCayleyDigraph, 295
DotRightCayleyDigraph, 295
DotSemilatticeOfIdempotents, 295
DotString, 293

for a Cayley digraph, 294
DualSemigroup, 130
DualSymmetricInverseMonoid, 102
DualSymmetricInverseSemigroup, 102

ElementOfFpMonoid, 276
ElementOfFpSemigroup, 275
ELM_LIST (for Rees (0-)matrix semigroup iso-

morphisms by triples), 272

Semigroups 314

ELM_LIST
for IsRMSIsoByTriple, 270

EmbeddingFpMonoid, 90
EmptyPBR, 37
EndomorphismMonoid

for a digraph, 97
for a digraph and vertex coloring, 97

EndomorphismsPartition, 94
Enumerate, 167
EnumeratorCanonical, 166
EqualInFreeBand, 119
EquivalenceRelationCanonicalLookup

for an equivalence relation over a finite semi-
group, 231

EquivalenceRelationCanonicalPartition,
232

EquivalenceRelationLookup
for an equivalence relation over a finite semi-

group, 230
EUnitaryInverseCover, 202
EvaluateWord, 170
ExtRepOfObj

for a bipartition, 25
for a blocks, 31
for a PBR, 42

FactorisableDualSymmetricInverse-
Monoid, 103

Factorization, 171
FixedPointsOfTransformationSemigroup

for a transformation semigroup, 191
FpTietzeIsomorphism, 291
FreeBand

for a given rank, 117
for a list of names, 117
for various names, 117

FreeInverseSemigroup
for a given rank, 125
for a list of names, 125
for various names, 125

FreeMonoidAndAssignGeneratorVars, 276
FreeSemigroupAndAssignGeneratorVars,

276
FreeSemilattice, 113
FullBooleanMatMonoid, 108
FullMatrixMonoid, 107
FullPBRMonoid, 106

FullTropicalMaxPlusMonoid, 110
FullTropicalMinPlusMonoid, 111

GeneralLinearMonoid, 107
GeneratingCongruencesOfJoin-

Semilattice, 241
GeneratingCongruencesOfLattice, 254
Generators, 174
GeneratorsOfSemigroupIdeal, 141
GeneratorsOfStzPresentation, 278
GeneratorsSmallest

for a semigroup, 178
GLM, 107
GossipMonoid, 109
GraphInverseSemigroup, 121
GraphOfGraphInverseSemigroup, 123
GreensDClasses, 147
GreensDClassOfElement, 145

for a free band and element, 120
GreensDClassOfElementNC, 146
GreensHClasses, 147
GreensHClassOfElement, 145

for a Rees matrix semigroup, 145
GreensHClassOfElementNC, 146
GreensJClasses, 147
GreensLClasses, 147
GreensLClassOfElement, 145
GreensLClassOfElementNC, 146
GreensRClasses, 147
GreensRClassOfElement, 145
GreensRClassOfElementNC, 146
GroupHClass, 158
GroupOfUnits, 182

HallMonoid, 109
HClass, 145

for a Rees matrix semigroup, 145
HClasses, 147
HClassNC, 146
HClassReps, 149
HomomorphismsOfStrongSemilatticeOf-

Semigroups, 135

Ideals
for a semigroup, 141

IdempotentGeneratedSubsemigroup, 185
Idempotents, 183

Semigroups 315

IdentityBipartition, 16
IdentityPBR, 38
ImagesElm

for IsRMSIsoByTriple, 271
ImageSetOfTranslation

for IsSemigroupTranslation, 308
ImagesRepresentative

for IsRMSIsoByTriple, 271
IndecomposableElements, 179
IndexOfVertexOfGraphInverseSemigroup,

124
IndexPeriodOfSemigroupElement, 169
InfoSemigroups, 13
InjectionNormalizedPrincipalFactor, 162
InjectionPrincipalFactor, 162
InnerLeftTranslations

for IsSemigroup and CanUseFroidurePin and
IsFinite, 307

InnerRightTranslations
for IsSemigroup and CanUseFroidurePin and

IsFinite, 307
InnerTranslationalHull

for IsSemigroup and CanUseFroidurePin and
IsFinite, 307

Integers, 54
IntRepOfBipartition, 25
InverseMonoidByGenerators, 77
InverseOp, 70

for an integer matrix, 69
InverseSemigroupByGenerators, 77
InverseSemigroupCongruenceByKernel-

Trace, 250
InverseSubsemigroupByProperty, 81
IrredundantGeneratingSubset, 176
IsActingSemigroup, 75
IsAntiSymmetricBooleanMat, 66
IsAperiodicSemigroup, 213
IsBand, 204
IsBipartition, 15
IsBipartitionCollColl, 15
IsBipartitionCollection, 15
IsBipartitionMonoid, 33
IsBipartitionPBR, 43
IsBipartitionSemigroup, 33
IsBitranslation

for IsAssociativeElement and IsMultiplica-

tiveElementWithOne, 303
IsBitranslationCollection, 304
IsBlockBijection, 29
IsBlockBijectionMonoid, 34
IsBlockBijectionPBR, 43
IsBlockBijectionSemigroup, 34
IsBlockGroup, 205
IsBlocks, 31
IsBooleanMat, 54
IsBooleanMatCollColl, 54
IsBooleanMatCollection, 54
IsBooleanMatMonoid, 72
IsBooleanMatSemigroup, 72
IsBrandtSemigroup, 219
IsCayleyDigraphOfCongruences, 235
IsCliffordSemigroup, 218
IsColTrimBooleanMat, 64
IsCombinatorialSemigroup, 213
IsCommutativeSemigroup, 205
IsCompletelyRegularSemigroup, 206
IsCompletelySimpleSemigroup, 215
IsCongruenceByWangPair, 252
IsCongruenceClass, 229
IsCongruenceFreeSemigroup, 206
IsCongruencePoset, 235
IsConnectedTransformationSemigroup

for a transformation semigroup, 193
IsDTrivial, 213
IsDualSemigroupElement, 131
IsDualSemigroupRep, 131
IsDualTransBipartition, 28
IsDualTransformationPBR, 44
IsEmptyPBR, 42
IsEnumerated, 168
IsEquivalenceBooleanMat, 67
IsEUnitaryInverseSemigroup, 219
IsFactorisableInverseMonoid, 221
IsFinite, 72
IsFInverseMonoid, 221
IsFInverseSemigroup, 220
IsFreeBand

for a given semigroup, 118
IsFreeBandCategory, 118
IsFreeBandElement, 118
IsFreeBandElementCollection, 118
IsFreeBandSubsemigroup, 118

Semigroups 316

IsFreeInverseSemigroup, 126
IsFreeInverseSemigroupCategory, 126
IsFreeInverseSemigroupElement, 126
IsFreeInverseSemigroupElement-

Collection, 126
IsFullMatrixMonoid, 107
IsGeneralLinearMonoid, 107
IsGraphInverseSemigroup, 122
IsGraphInverseSemigroupElement, 122
IsGraphInverseSemigroupElement-

Collection, 123
IsGraphInverseSubsemigroup, 123
IsGreensClassNC, 158
IsGreensDGreaterThanFunc, 154
IsGroupAsSemigroup, 207
IsHTrivial, 213
IsIdempotentGenerated, 208
IsIdentityPBR, 43
IsIntegerMatrixMonoid, 72
IsIntegerMatrixSemigroup, 72
IsInverseSemigroupCongruenceByKernel-

Trace, 249
IsInverseSemigroupCongruenceClassBy-

KernelTrace, 252
IsIsomorphicSemigroup, 262
IsJoinIrreducible, 221
IsLeftCongruenceClass, 229
IsLeftSemigroupCongruence, 226
IsLeftSimple, 208
IsLeftTranslation

for IsSemigroupTranslation, 303
IsLeftTranslationCollection, 304
IsLeftZeroSemigroup, 209
IsLinkedTriple, 248
IsLTrivial, 213
IsMajorantlyClosed, 222
IsMatrixOverFiniteField, 54
IsMatrixOverFiniteFieldCollColl, 54
IsMatrixOverFiniteFieldCollection, 54
IsMatrixOverFiniteFieldMonoid, 72
IsMatrixOverFiniteFieldSemigroup, 72
IsMatrixOverSemiring, 49
IsMatrixOverSemiringCollColl, 49
IsMatrixOverSemiringCollection, 49
IsMatrixOverSemiringMonoid, 72
IsMatrixOverSemiringSemigroup, 72

IsMaximalSubsemigroup, 188
IsMaxPlusMatrix, 54
IsMaxPlusMatrixCollColl, 54
IsMaxPlusMatrixCollection, 54
IsMaxPlusMatrixMonoid, 72
IsMaxPlusMatrixSemigroup, 72
IsMcAlisterTripleSemigroup, 136
IsMcAlisterTripleSemigroupElement, 138
IsMinPlusMatrix, 54
IsMinPlusMatrixCollColl, 55
IsMinPlusMatrixCollection, 54
IsMinPlusMatrixMonoid, 72
IsMinPlusMatrixSemigroup, 72
IsMonogenicInverseMonoid, 223
IsMonogenicInverseSemigroup, 223
IsMonogenicMonoid, 210
IsMonogenicSemigroup, 210
IsMonoidAsSemigroup, 211
IsMTSE, 138
IsNTPMatrix, 54
IsNTPMatrixCollColl, 55
IsNTPMatrixCollection, 55
IsNTPMatrixMonoid, 72
IsNTPMatrixSemigroup, 72
IsomorphismMonoid, 84
IsomorphismPermGroup, 87
IsomorphismReesMatrixSemigroup

for a D-class, 162
for a semigroup, 89

IsomorphismReesMatrixSemigroupOver-
PermGroup, 89

IsomorphismReesZeroMatrixSemigroup, 89
IsomorphismReesZeroMatrixSemigroup-

OverPermGroup, 89
IsomorphismSemigroup, 83
IsomorphismSemigroups, 264
IsOntoBooleanMat, 66
IsOrthodoxSemigroup, 211
IsPartialOrderBooleanMat, 67
IsPartialPermBipartition, 29
IsPartialPermBipartitionMonoid, 34
IsPartialPermBipartitionSemigroup, 34
IsPartialPermPBR, 45
IsPBR, 36
IsPBRCollColl, 36
IsPBRCollection, 36

Semigroups 317

IsPBRMonoid, 46
IsPBRSemigroup, 46
IsPermBipartition, 29
IsPermBipartitionGroup, 34
IsPermPBR, 45
IsRectangularBand, 212
IsRectangularGroup, 212
IsReesCongruenceClass, 255
IsReflexiveBooleanMat, 65
IsRegularGreensClass, 157
IsRegularSemigroup, 213
IsRightCongruenceClass, 230
IsRightSemigroupCongruence, 227
IsRightSimple, 208
IsRightTranslation

for IsSemigroupTranslation, 303
IsRightTranslationCollection, 304
IsRightZeroSemigroup, 213
IsRMSCongruenceByLinkedTriple, 246
IsRMSCongruenceClassByLinkedTriple, 247
IsRMSIsoByTriple, 268
IsRowTrimBooleanMat, 64
IsRTrivial, 213
IsRZMSCongruenceByLinkedTriple, 246
IsRZMSCongruenceClassByLinkedTriple,

247
IsRZMSIsoByTriple, 268
IsSelfDualSemigroup, 218
IsSemiband, 208
IsSemigroupCongruence, 225
IsSemigroupHomomorphismByFunction, 260
IsSemigroupHomomorphismByImages, 260
IsSemigroupIsomorphismByFunction, 266
IsSemigroupTranslation

for IsAssociativeElement and IsMultiplica-
tiveElementWithOne, 303

IsSemigroupTranslationCollection, 304
IsSemigroupWithAdjoinedZero, 214
IsSemilattice, 214
IsSimpleSemigroup, 215
IsSSSE, 134
IsStrongSemilatticeOfSemigroups, 134
IsStzPresentation, 277
IsSubrelation, 244
IsSubsemigroupOfFpMonoid, 276
IsSuperrelation, 244

IsSurjectiveSemigroup, 207
IsSymmetricBooleanMat, 64
IsSynchronizingSemigroup

for a transformation semigroup, 215
IsTorsion, 73

for an integer matrix, 69
IsTotalBooleanMat, 66
IsTransBipartition, 28
IsTransformationBooleanMat, 67
IsTransformationPBR, 44
IsTransitive

for a transformation semigroup and a pos int,
192

for a transformation semigroup and a set, 192
IsTransitiveBooleanMat, 65
IsTrimBooleanMat, 64
IsTropicalMatrix, 54
IsTropicalMatrixCollection, 55
IsTropicalMatrixMonoid, 72
IsTropicalMatrixSemigroup, 72
IsTropicalMaxPlusMatrix, 54
IsTropicalMaxPlusMatrixCollColl, 55
IsTropicalMaxPlusMatrixCollection, 55
IsTropicalMaxPlusMatrixMonoid, 72
IsTropicalMaxPlusMatrixSemigroup, 72
IsTropicalMinPlusMatrix, 54
IsTropicalMinPlusMatrixCollColl, 55
IsTropicalMinPlusMatrixCollection, 55
IsTropicalMinPlusMatrixMonoid, 72
IsTropicalMinPlusMatrixSemigroup, 72
IsUniformBlockBijection, 30
IsUnitRegularMonoid, 216
IsUniversalPBR, 43
IsUniversalSemigroupCongruence, 256
IsUniversalSemigroupCongruenceClass,

256
IsVertex

for a graph inverse semigroup element, 122
IsZeroGroup, 216
IsZeroRectangularBand, 216
IsZeroSemigroup, 217
IsZeroSimpleSemigroup, 217
IteratorCanonical, 166
IteratorFromGeneratorsFile, 300
IteratorFromMultiplicationTableFile,

301

Semigroups 318

IteratorOfDClasses, 155
IteratorOfDClassReps, 155
IteratorOfHClassReps, 155
IteratorOfLClassReps, 155
IteratorOfLeftCongruences

for a semigroup, 243
for a semigroup, and a positive integer, 243
for a semigroup, positive integer, and list or

collection, 243
IteratorOfRClasses, 155
IteratorOfRightCongruences

for a semigroup, 243
for a semigroup, and a positive integer, 243
for a semigroup, positive integer, and list or

collection, 243

JClasses, 147
JoinIrreducibleDClasses, 196
JoinLeftSemigroupCongruences, 245
JoinRightSemigroupCongruences, 245
JoinSemigroupCongruences, 245
JoinSemilatticeOfCongruences, 240
JonesMonoid, 101

KernelOfSemigroupCongruence, 251
KernelOfSemigroupHomomorphism, 261

LargestElementSemigroup, 192
LatticeOfCongruences

for a semigroup, 236
for a semigroup and a list or collection, 237

LatticeOfLeftCongruences
for a semigroup, 236
for a semigroup and a list or collection, 237

LatticeOfRightCongruences
for a semigroup, 237
for a semigroup and a list or collection, 237

LClass, 145
LClasses, 147
LClassNC, 146
LClassOfHClass, 144
LClassReps, 149
LeftBlocks, 26
LeftCayleyDigraph, 168
LeftCongruencesOfSemigroup

for a semigroup, 233
for a semigroup and a multiplicative element

collection, 233

LeftGreensMultiplier, 164
LeftInverse

for a matrix over finite field, 68
LeftOne

for a bipartition, 17
LeftPartOfBitranslation, 304
LeftProjection, 17
LeftSemigroupCongruence, 228
LeftTranslation

for IsLeftTranslationsSemigroup, IsGen-
eralMapping, 304

LeftTranslations
for IsSemigroup and CanUseFroidurePin and

IsFinite, 306
LeftTranslationsSemigroupOfFamily

for IsFamily, 305
LeftZeroSemigroup, 115
Length, 279
LengthOfLongestDClassChain, 153

MajorantClosure, 196
Matrix

for a filter and a matrix, 50
for a semiring and a matrix, 50

MaximalDClasses, 150
MaximalLClasses, 150
MaximalRClasses, 150
MaximalSubsemigroups

for a finite semigroup, 186
for a finite semigroup and a record, 186

McAlisterTripleSemigroup, 136
McAlisterTripleSemigroupAction, 138
McAlisterTripleSemigroupElement, 138
McAlisterTripleSemigroupGroup, 137
McAlisterTripleSemigroupPartialOrder,

137
McAlisterTripleSemigroupSemilattice,

137
MeetLeftSemigroupCongruences, 244
MeetRightSemigroupCongruences, 244
MeetSemigroupCongruences, 244
MinimalCongruences

for a congruence poset, 241
for a list or collection, 241

MinimalCongruencesOfSemigroup
for a semigroup, 234

Semigroups 319

for a semigroup and a multiplicative element
collection, 234

MinimalDClass, 150
MinimalFactorization, 172
MinimalFaithfulTransformationDegree,

268
MinimalIdeal, 180
MinimalIdealGeneratingSet, 142
MinimalInverseMonoidGeneratingSet, 177
MinimalInverseSemigroupGeneratingSet,

177
MinimalLeftCongruencesOfSemigroup

for a semigroup, 234
for a semigroup and a multiplicative element

collection, 234
MinimalMonoidGeneratingSet, 177
MinimalRightCongruencesOfSemigroup

for a semigroup, 234
for a semigroup and a multiplicative element

collection, 234
MinimalSemigroupGeneratingSet, 177
MinimalWord

for free inverse semigroup element, 127
MinimumGroupCongruence, 252
Minorants, 197
ModularPartitionMonoid, 105
MonogenicSemigroup, 112
MotzkinMonoid, 102
MTSE, 138
MultiplicativeNeutralElement

for an H-class, 161
MultiplicativeZero, 181
MunnSemigroup, 98

NambooripadLeqRegularSemigroup, 202
NambooripadPartialOrder, 203
NaturalLeqBlockBijection, 23
NaturalLeqInverseSemigroup, 196
NaturalLeqPartialPermBipartition, 23
NonTrivialEquivalenceClasses, 230
NonTrivialFactorization, 173
NormalizedPrincipalFactor, 163
NormalizeSemigroup, 73
NrBitranslations

for IsSemigroup and CanUseFroidurePin and
IsFinite, 307

NrBlocks

for a bipartition, 27
for blocks, 27

NrDClasses, 151
NrHClasses, 151
NrIdempotents, 184
NrLClasses, 151
NrLeftBlocks, 26
NrLeftTranslations

for IsSemigroup and CanUseFroidurePin and
IsFinite, 307

NrMaximalSubsemigroups, 188
NrRClasses, 151
NrRegularDClasses, 151
NrRightBlocks, 26
NrRightTranslations

for IsSemigroup and CanUseFroidurePin and
IsFinite, 307

NrTransverseBlocks
for a bipartition, 24
for blocks, 31

NumberBlist, 62
NumberBooleanMat, 62
NumberOfLeftCongruences

for a semigroup, 242
for a semigroup, and a positive integer, 242
for a semigroup, positive integer, and list or

collection, 242
NumberOfRightCongruences

for a semigroup, 242
for a semigroup, and a positive integer, 242
for a semigroup, positive integer, and list or

collection, 242
NumberPBR, 42

OnBlist, 61
OneInverseOfSemigroupElement, 170
OnLeftBlocks, 33
OnLeftCongruenceClasses, 232
OnMultiplicationTable, 264
OnRightBlocks, 32
OnRightCongruenceClasses, 233
Order, 69
OrderAntiEndomorphisms, 95
OrderEndomorphisms

monoid of order preserving transformations,
95

Semigroups 320

ParseRelations, 275
PartialBrauerMonoid, 100
PartialDualSymmetricInverseMonoid, 102
PartialJonesMonoid, 101
PartialOrderAntiEndomorphisms, 95
PartialOrderEndomorphisms, 95
PartialOrderOfDClasses, 152
PartialOrderOfLClasses, 152
PartialOrderOfRClasses, 152
PartialPermLeqBipartition, 23
PartialTransformationMonoid, 95
PartialUniformBlockBijectionMonoid, 103
PartitionMonoid, 99
PBR, 37
PBRNumber, 42
PeriodNTPMatrix, 56
PermLeftQuoBipartition, 23
PlanarModularPartitionMonoid, 105
PlanarPartitionMonoid, 104
PlanarUniformBlockBijectionMonoid, 103
PODI

monoid of order preserving or reversing par-
tial perms, 98

POI
monoid of order preserving partial perms, 98

POPI
monoid of orientation preserving partial

perms, 98
PORI

monoid of orientation preserving or reversing
partial perms, 98

PosetOfCongruences, 240
PosetOfPrincipalCongruences

for a semigroup, 238
for a semigroup and a multiplicative element

collection, 238
PosetOfPrincipalLeftCongruences

for a semigroup, 238
for a semigroup and a multiplicative element

collection, 238
PosetOfPrincipalRightCongruences

for a semigroup, 238
for a semigroup and a multiplicative element

collection, 238
PositionCanonical, 167
PrimitiveIdempotents, 198

PrincipalCongruencesOfSemigroup
for a semigroup, 234
for a semigroup and a multiplicative element

collection, 235
PrincipalFactor, 163
PrincipalLeftCongruencesOfSemigroup

for a semigroup, 234
for a semigroup and a multiplicative element

collection, 235
PrincipalRightCongruencesOfSemigroup

for a semigroup, 235
for a semigroup and a multiplicative element

collection, 235
ProjectionFromBlocks, 32

RadialEigenvector, 70
Random

for a semigroup, 168
RandomBipartition, 18
RandomBlockBijection, 18
RandomInverseMonoid, 91
RandomInverseSemigroup, 91
RandomMatrix

for a filter and a matrix, 53
for a semiring and a matrix, 53

RandomMonoid, 91
RandomPBR, 37
RandomSemigroup, 91
RandomWord

for two integers, 273
Range

for a graph inverse semigroup element, 122
RankOfBipartition, 24
RankOfBlocks, 31
RClass, 145
RClasses, 147
RClassNC, 146
RClassOfHClass, 144
RClassReps, 149
ReadGenerators, 299
ReadMultiplicationTable, 300
RectangularBand, 112
ReflexiveBooleanMatMonoid, 109
RegularBooleanMatMonoid, 108
RegularDClasses, 151
RelationsOfStzPresentation, 278
RepresentativeOfMinimalDClass, 180

Semigroups 321

RepresentativeOfMinimalIdeal, 180
RightBlocks, 25
RightCayleyDigraph, 168
RightCongruencesOfSemigroup

for a semigroup, 233
for a semigroup and a multiplicative element

collection, 233
RightCosetsOfInverseSemigroup, 198
RightGreensMultiplier, 164
RightInverse

for a matrix over finite field, 68
RightOne

for a bipartition, 17
RightPartOfBitranslation, 304
RightProjection, 17
RightSemigroupCongruence, 228
RightTranslation

for IsRightTranslationsSemigroup, IsGen-
eralMapping, 304

RightTranslations
for IsSemigroup and CanUseFroidurePin and

IsFinite, 306
RightTranslationsSemigroupOfFamily

for IsFamily, 305
RightZeroSemigroup, 115
RMSCongruenceByLinkedTriple, 246
RMSCongruenceClassByLinkedTriple, 248
RMSIsoByTriple, 269
RMSNormalization, 89
RookMonoid, 98
RookPartitionMonoid, 99
RowSpaceBasis

for a matrix over finite field, 68
RowSpaceTransformation

for a matrix over finite field, 68
RowSpaceTransformationInv

for a matrix over finite field, 68
RZMSCongruenceByLinkedTriple, 246
RZMSCongruenceClassByLinkedTriple, 248
RZMSConnectedComponents, 195
RZMSDigraph, 195
RZMSIsoByTriple, 269
RZMSNormalization, 87

SameMinorantsSubgroup, 199
SchutzenbergerGroup, 159
SemigroupCongruence, 227

SemigroupHomomorphismByFunction, 258
SemigroupHomomorphismByFunctionNC, 258
SemigroupHomomorphismByImages

for a semigroup and two lists, 258
for two semigroups, 258
for two semigroups and a list, 258
for two semigroups and two lists, 258

SemigroupIdeal, 140
SemigroupIdealOfReesCongruence, 255
SemigroupIsomorphismByFunction, 266
SemigroupIsomorphismByFunctionNC, 266
SemigroupIsomorphismByImages

for a semigroup and two list, 265
for two semigroups, 265
for two semigroups and a list, 265
for two semigroups and two lists, 265

Semigroups package overview, 8
SEMIGROUPS.DefaultOptionsRec, 79
SemigroupsOfStrongSemilatticeOf-

Semigroups, 134
SemigroupsTestAll, 12
SemigroupsTestExtreme, 12
SemigroupsTestInstall, 12
SemigroupsTestStandard, 12
SemilatticeOfStrongSemilatticeOf-

Semigroups, 134
SimplifiedFpSemigroup, 290
SimplifyFpSemigroup, 289
SingularApsisMonoid, 105
SingularBrauerMonoid, 100
SingularCrossedApsisMonoid, 105
SingularDualSymmetricInverseMonoid, 102
SingularFactorisableDualSymmetric-

InverseMonoid, 103
SingularJonesMonoid, 101
SingularModularPartitionMonoid, 105
SingularOrderEndomorphisms, 95
SingularPartitionMonoid, 100
SingularPlanarModularPartitionMonoid,

105
SingularPlanarPartitionMonoid, 104
SingularPlanarUniformBlockBijection-

Monoid, 103
SingularTransformationMonoid, 95
SingularTransformationSemigroup, 95
SingularUniformBlockBijectionMonoid,

Semigroups 322

103
SLM, 107
SmallerDegreePartialPerm-

Representation, 199
SmallerDegreeTransformation-

Representation, 267
SmallestElementSemigroup, 192
SmallestIdempotentPower, 169
SmallestMultiplicationTable, 262
SmallGeneratingSet, 175
SmallInverseMonoidGeneratingSet, 175
SmallInverseSemigroupGeneratingSet, 175
SmallMonoidGeneratingSet, 175
SmallSemigroupGeneratingSet, 175
Source

for a graph inverse semigroup element, 122
SpecialLinearMonoid, 107
SpectralRadius, 71
SSSE, 133
StandardiseWord, 274
StandardizeWord, 274
Star

for a bipartition, 18
for a PBR, 41

StarOp
for a bipartition, 18
for a PBR, 41

StringToWord
for a string, 274

StrongSemilatticeOfSemigroups, 133
StructureDescription

for an H-class, 162
StructureDescriptionMaximalSubgroups,

161
StructureDescriptionSchutzenberger-

Groups, 160
StzAddGenerator, 284
StzAddRelation, 283
StzIsomorphism, 287
StzPresentation, 277
StzPrintGenerators, 281
StzPrintPresentation, 281
StzPrintRelation, 280
StzPrintRelations, 280
StzRemoveGenerator, 284
StzRemoveRelation, 283

StzSimplifyOnce, 288
StzSimplifyPresentation, 288
StzSubstituteRelation, 285
SubsemigroupByProperty

for a semigroup and function, 81
for a semigroup, function, and limit on the

size of the subsemigroup, 81
Successors, 61
SupersemigroupOfIdeal, 142

TemperleyLiebMonoid, 101
TexString, 296
ThresholdNTPMatrix, 56
ThresholdTropicalMatrix, 55
TietzeBackwardMap, 286
TietzeForwardMap, 286
TikzLeftCayleyDigraph, 298
TikzRightCayleyDigraph, 298
TikzString, 296
TraceOfSemigroupCongruence, 251
TranslationalHull

for IsSemigroup and CanUseFroidurePin and
IsFinite, 306

TranslationalHullOfFamily
for IsFamily, 305

TriangularBooleanMatMonoid, 110
TrivialCongruence, 257
TrivialSemigroup, 111
TypeBitranslations

for IsBitranslationsSemigroup, 306
TypeLeftTranslationsSemigroupElements

for IsLeftTranslationsSemigroup, 306
TypeRightTranslationsSemigroupElements

for IsRightTranslationsSemigroup, 306

UnderlyingRepresentatives
for IsTranslationsSemigroup, 308

UnderlyingSemigroup
for IsBitranslationsSemigroup, 305
for IsTranslationsSemigroup, 305

UnderlyingSemigroupOfCongruencePoset,
239

UnderlyingSemigroupOfSemigroupWith-
AdjoinedZero, 181

UniformBlockBijectionMonoid, 103
UnitriangularBooleanMatMonoid, 110
UniversalPBR, 38

Semigroups 323

UniversalSemigroupCongruence, 256
UnreducedFpSemigroup

for a presentation, 279
for a semigroup, 291

UnweightedPrecedenceDigraph, 71

VagnerPrestonRepresentation, 200
VerticesOfGraphInverseSemigroup, 124

WordToString
for a string and a list, 273

WreathProduct, 130
WriteGenerators, 299
WriteMultiplicationTable, 301

ZeroSemigroup, 114

	 The Semigroups package
	 Introduction
	 Overview

	Installing Semigroups
	For those in a hurry
	Compiling the kernel module
	Rebuilding the documentation
	Testing your installation
	More information during a computation

	 Bipartitions and blocks
	The family and categories of bipartitions
	Creating bipartitions
	Changing the representation of a bipartition
	Operators for bipartitions
	Attributes for bipartitons
	Creating blocks and their attributes
	Actions on blocks
	 Semigroups of bipartitions

	 Partitioned binary relations (PBRs)
	The family and categories of PBRs
	Creating PBRs
	Changing the representation of a PBR
	Operators for PBRs
	Attributes for PBRs
	 Semigroups of PBRs

	 Matrices over semirings
	Creating matrices over semirings
	Operators for matrices over semirings
	 Boolean matrices
	 Matrices over finite fields
	 Matrices over the integers
	 Max45plus and min45plus matrices
	 Matrix semigroups

	 Semigroups and monoids defined by generating sets
	Underlying algorithms
	Semigroups represented by generators
	Options when creating semigroups
	Subsemigroups and supersemigroups
	Changing the representation of a semigroup
	Random semigroups

	 Standard examples
	 Transformation semigroups
	 Semigroups of partial permutations
	 Semigroups of bipartitions
	 Standard PBR semigroups
	 Semigroups of matrices over a finite field
	 Semigroups of boolean matrices
	 Semigroups of matrices over a semiring
	 Examples in various representations
	 Free bands
	 Graph inverse semigroups
	 Free inverse semigroups

	 Standard constructions
	 Products of semigroups
	 Dual semigroups
	 Strong semilattices of semigroups
	 McAlister triple semigroups

	 Ideals
	 Creating ideals
	 Attributes of ideals

	 Green's relations
	 Creating Green's classes and representatives
	 Iterators and enumerators of classes and representatives
	 Properties of Green's classes
	 Attributes of Green's classes
	 Operations for Green's relations and classes

	 Attributes and operations for semigroups
	 Accessing the elements of a semigroup
	 Cayley graphs
	 Random elements of a semigroup
	 Properties of elements in a semigroup
	 Operations for elements in a semigroup
	 Expressing semigroup elements as words in generators
	 Generating sets
	 Minimal ideals and multiplicative zeros
	 Group of units and identity elements
	 Idempotents
	 Maximal subsemigroups
	 Attributes of transformations and transformation semigroups
	 Attributes of partial perm semigroups
	 Attributes of Rees (045)matrix semigroups
	 Attributes of inverse semigroups
	 Nambooripad partial order

	 Properties of semigroups
	 Arbitrary semigroups
	 Inverse semigroups

	Congruences
	Semigroup congruence objects
	 Creating congruences
	 Congruence classes
	 Finding the congruences of a semigroup
	 Comparing congruences
	Congruences on Rees matrix semigroups
	 Congruences on inverse semigroups
	 Congruences on graph inverse semigroups
	Rees congruences
	Universal and trivial congruences

	 Semigroup homomorphisms
	 Homomorphisms of arbitrary semigroups
	 Isomorphisms of arbitrary semigroups
	 Isomorphisms of Rees (045)matrix semigroups

	 Finitely presented semigroups and Tietze transformations
	 Changing representation for words and strings
	 Helper functions
	 Creating Tietze transformation objects
	 Printing Tietze transformation objects
	 Changing Tietze transformation objects
	 Converting a Tietze transformation object into a fp semigroup
	 Automatically simplifying a Tietze transformation object
	 Automatically simplifying an fp semigroup

	 Visualising semigroups and elements
	 dot pictures
	 tex output
	 tikz pictures

	 IO
	Reading and writing elements to a file
	Reading and writing multiplication tables to a file

	Translations
	Methods for translations

	References
	Index

