A SIMULATION TOOLKIT

Book For Application Developers
Release 11.2

Geant4 Collaboration

Rev8.0 - December 8th, 2023

1 Introduction

1.1

2.1

22

2.3

24

2.5

2.6

2.7

How touse thismanual

Getting Started with Geant4 - Running a Simple Example

How to Define the main() Program
2.1.1 ASamplemain () Method
2.1.2 GARUNMANAGET + v v v v v v e e e e e e e e e e
2.1.3 User Initialization and Action Classes
2.1.4 G4UImanager and Ul CommandSubmission
2.1.5 Gdcout,GdcerrandGd4debug
How to Define a Detector Geometry
221 BasicConcepts vt e e
22.2 CreateaSimple Volume
223 ChooseaSolid,
224 Create aLogical Volume
225 PlaceaVolume
2.2.6 Create a Physical Volume
2.2.7 Coordinate Systems and Rotations
How to Specify Materials in the Detector
2.3.1 General Considerations,
2.3.2 Define a Simple Material
233 DefineaMolecule.
234 Define a Mixture by Fractional Mass
2.3.5 Define a Material from the GEANT4 Material Database

2.3.6 Define a Material from the Base Material
2.3.7 Print Material Information 0. ..
2.3.8 Access to GEANT4 material database
How to Specify Particles L.
24.1 Particle Definition Lo
242 RangeCuts i
How to Specify Physics Processes
2.5.1 PhysicsProcesses o e
2.5.2 Managing Processes oL 0oL
2.5.3 Specifying Physics Processes
How to Generate a Primary Event
2.6.1 Generating Primary Events
2.6.2 G4VPrimaryGenerator i e
GEANT4 General Particle Source
27.1 Introduction
2.7.2 Configuration e

CONTENTS

W W

O O 00 3 O L Lt n

.............. 12

.............. 19

2.7.3 MacroCommands e e e e e e e 28

274 Example Macro File e e 33
2.8 How to Make an Executable Program e 34
2.8.1 Using CMake to Build Applications 34
2.8.2 Useof Geant4Config.cmake with find_packageinCMake 42
2.9 How to Set Up an Interactive Session it 44
29.1 Introduction o e e e e e e e e e e e e 44
2.9.2 A Short Description of Available Interfaces 44
2.9.3 How to Select Interface in Your Applications 46
2.10 Howto Execute aProgram L e 47
2.10.1 Introduction o i e e e e e e e 47
2.10.2 ‘Hard-coded’ BatchMode 48
2.103 BatchModewithMacroFile 48
2.10.4 Interactive Mode Driven by Command Lines 49
2.10.5 General Case L. e e e e e e e 51
2.11 How to Visualize the Detectorand Events, 53
2.11.1 Introduction 53
2.11.2 Visualization Drivers L e e e 53
2.11.3 How to Incorporate Visualization Drivers into an Executable 53
2.11.4 Writing the main () Method to Include Visualization. 54
2.11.5 Sample Visualization Sessionso o i e 55
2.11.6 For More Information on GEANT4 Visualization. 55
Toolkit Fundamentals 57
3.1 Class Categories and Domains e 57
3.1.1 Whatisaclass category? i e e e e e e e e e 57
3.1.2 Class categories in GEANT4 0 i i i i e e e e e e e e e e e 57
3.2 Global Usage Classes v v v v v i it e e e e e e e e e e e e e e e e e e 59
3.2.1 Signature of GEANT4A Classes o e 59
3.2.2 The HEPRandom modulein CLHEP 60
3.2.3 The HEPNumericsmodule e 63
3.2.4 General management Classes it e e e e e e e e e e e e e 63
3.3 Systemof units e e e e e e e e e e e e e e e 65
33,1 BasiCunits e e e e e e 65
332 Inputyourdata e 65
333 Outputyourdata L. e e e e 66
334 Introduce new units e 66
3.3.5 Printthelistofunits e 67
34 RUN . . oL e 67
34.1 Basicconceptof Rum o e e 67
342 GEANT4asastatemachine 69
343 User'shook forstatechange 70
3.4.4 Customizing the Run Manager i e 70
345 Managing workerthread L e 72
35 Event e 73
3.5.1 Representationof anevent e 73
3.5.2 Structure of anevent L. Lo e e e e e e e e 73
3.5.3 Mandates of GAEVENtManager v v v v v it e e e e e e e e e e e e e e e 73
3.5.4 Stacking mechanism e e e e 73
3.6 Event Generator Interface 74
3.6.1 Structure of a primary event oL e e e e e e e e 74
3.6.2 Interface to a primary generator e e e e e e e e 75
3.6.3 Eventoverlap using multiple generators o0 77
3.7 Event Biasing Techniques e e e e e e 77

3.7.1 Scoring, Geometrical Importance Sampling and Weight Roulette 77

3.7.2 Physics Based Biasing e e e 85

373 Adjoint/Reverse Monte Carlo e 88

374 GenericBiasing L e 93

4 Detector Definition and Response 101
41 GEOMELTY . . . v v vt e 101
4.1.1 Introduction oL e e e e e e e e 101

4.1.2 Solids e 101

4.1.3 Logical Volumes e e e e 125

4.1.4 Physical Volumes o o e e e e e e e e e e e 127

4.1.5 Touchables: Uniquely Identifyinga Volume 139

4.1.6 Creating an Assembly of Volumes L .. 140

4.1.7 Reflecting Hierarchies of Volumes 143

4.1.8 The Geometry Navigator ot v ittt e e e e e 146

4.1.9 Converting Geometries from Geant3.21, 152
4.1.10 Detecting Overlapping Volumes i i ittt 153
4.1.11 Dynamic Geometry SEtups it e e e e e e 157
4.1.12 Importing XML Models Using GDML, 158
4.1.13 Importing ASCII Text Models i 159
4.1.14 Saving geometry tree objects in binary formato Lo 159

42 Material L e e e e e 159
4.2.1 General considerations oo e e e e 159

422 Introductiontothe Classes o o i i i i i e e 159

4.2.3 Recipes for Building Elements and Materials 161

424 TheTables. o o o e e e 164

4.3 Electromagnetic Field e e e e 164
43.1 AnOverview of PropagationinaField 164

432 Practical ASPECES e e e e e e e e e e 167

433 SpinTracking e e 179

4.3.4 Alternative Integration Methods L oL 180

4.3.5 Quantum State Simulation L. e e e e e e e e e 180

43.6 Bulirsch-Stoer L e e 180

4.3.77 Symplectic Integration L e 181

4.4 HItS . . . L e e e 182
4401 Hit. .. oo e 182

442 Sensitive detector e e e e e e e 186

443 GASDMaANager v v it e e e e e e e e e e e e e e e e e 187

444 G4MultiFunctionalDetector and G4VPrimitiveScorer 187

445 Concrete classes of GAVPrimitiveScorerot 191

446 G4VSDFilteranditsderivedclasses 192

4.4.7 Multiple sensitive detectors associated to a single logical-volume 193

448 ULNLES o e e e e e 193

45 Digitization e e e e e e e e e e e e e e e e e 194
451 Digl . .o e e e 194

45.2 Digitizermodule 0oL e 195

4.6 BirksQuenching L 196
477 ObjJect PersiStency v v v v o i e 197
47.1 Persistency in GEANT4A o o o i i e e e e e e e e e e 197

4.7.2 Using Root-1/0O for persistency of GEANT4 objects 197

4.8 Parallel GEOmMELries o e e e e e e e e e e e e e 198
48.1 Awparallelworld e 198

4.8.2 Definingaparallel world 198

483 Layered mass GEOMEITY v v v v v v vt e e e e e e e e e e e e e e e e 200

49 Command-based SCOTING v v i it e e e e e e e e e e e e e e e e e 201
49.1 Introduction e e e e e e 201

4.9.2 Defining a scoring volume in the trackingworld 0oL 201

49.3 Definingascoringmesh e 202

49.4 Definingascoring probe L. e e e e e e 202

4.9.5 Defining primitive scorers to ascoringvolume 203

49.6 Drawingscores forascoringmesh L L e 204

497 Writingscorestoafile L e e 204

49.8 Filling I-D histogram L. e 204

4.9.9 List of available primitive SCOTers oo 205

5 Tracking and Physics 209
5.1 Trackingo e 209
5.1 BasicConcepts 209

5.1.2 Access to Track and Step Information L L 210

5.1.3 Handling of Secondary Particles e 212

5.4 User Actions 212

5.1.5 Verbose Outputs o o e e e e e e e e e e e 212

5.1.6 Trajectory and Trajectory Point oo 213

5.2 PhysicS Processes e e e 214
521 OVEIVIEW . . . v oo e e e 214

5.2.2 Electromagnetic Interactions e e e e e 217

5.2.3 Hadronic Interactions L e 233

5.2.4 Particle Decay Process e 244

5.2.5 Note on the time threshold for radioactive decay ofions 246

5.2.6 Gamma-nuclear and Lepto-nuclear Processes 247

5.277 Optical Photon Processes o o o i i i e e e e e e e e e e e 247

5.2.8 Parameterisation 273

5.2.9 Transportation Process L e 280

5.3 Particles e e e 281
53.1 BasiCCONCEPLS . . v v v v i i i e e e e e e e e e e e e e e e e e e 281

5.3.2 Definitionof aparticle e e e e 281

5.33 Dynamicparticle e e e e e e e e e 284

5.4 Production Threshold versus Tracking Cut 285
5.4.1 General considerations oL e e e e e e e e e e 285

5.4.2 Set production threshold (SetCut methods) 286

543 Applycut . ..o e e e e e e e 286

5.4.4 Why produce secondaries below threshold in some processes? 286

5.4.5 Cutsin stopping range or in €nergy? oo it e e e 287

546 Summary . o.o.o.o. ..o e e e e 287

5.4.7 Special tracking cuts L. 287

55 CutsperRegion e e 288
5.5.1 General Concepts v v v v v e e e e e e e e e e e e e e e e e 288

5.52 Default Region e e e e e e 289

5.5.3 Assigning Production CutstoaRegion oo 289

5.6 PhysicsTable e 289
561 General Concepts i i e e e 289

5.6.2 Material-Cuts Couple o o e e e e e e e e e e 290

5.6.3 Filel/O forthe Physics Table e 290

5.6.4 Building the Physics Table L 290

5.7 UserLimits o o o o e e e e e e e e e 291
57.1 General COnCepts o v v vttt e e e e e e e e 291

5.7.2 Processes co-working with G4UserLimits 291

5.8 Track Error Propagation e e e e e e e 292

5.8.1 PhySIiCS . . v v e e e e e e e e e e e e e e
5.82 TraJectory State v v v v i e
5.8.3 Trajectory State €ITOT . . . v v v v v v v e
5.84 Targets e e
5.8.5 Managing the track propagation oL
5.8.6 Limitingthestep e
5.9 Exotic PhysiCS o o e e e e e e e e
5.9.1 PhySICS . o o v e e e e e e e e
59.2 Material e
593 Geometry e
User Actions
6.1 User ACtions e e e
6.2 Mandatory User Actions and Initializations
6.2.1 G4VUserDetectorConsStruction v v v v v v i i it
6.2.2 Physics LiSts o o e e e e e e e e e e e e e
6.2.3 User Action Initialization e
6.3 Optional User ACHONSo ittt e e e e e e
6.3.1 Usage of User ACLIONS o o i i i i it e e e e e e e
6.3.2 Killing Tracks in User Actions and Energy Conservation
6.4 User Information Classes 0 i it e e e
6.4.1 G4VUserEventInformation e
6.4.2 G4VUserTrackInformation L e
6.43 G4VUserPrimaryVertexInformation and G4V UserPrimaryTrackInformation
6.44 G4VUserRegionInformation L
6.5 Multiple User ACHONS . . . v v v v v e
6.5.1 EXCEPHONS o i e e e e e e e e e e e e e
Control
7.1 Built-in Commands e e e
7.2 User Interface - Defining New Commands 0 it e e
7.2.1 GAUIMESSENZET . . .« o v v v v e e et e e e e e e e e e e e
7.2.2 G4Ulcommand and its derived classes oL o o
7.2.3 Anexample MESSENZETro L e e e e e e e e e e e e e e e e
7.2.4 How to control the output of Gdcout/Gdcerr o v i vt
Visualization
8.1 Introduction to Visualizationo
8.1.1 WhatCanbe Visualized e
8.1.2 You have a Choice of Visualization Drivers
8.1.3 Choose the Driver that Meets Your Needs,
8.1.4 Controlling Visualization e
8.1.5 Visualization Details L
8.2 Adding Visualization to Your Executable Lo
8.2.1 Installing Visualization Drivers L
8.2.2 How to Realize Visualization Drivers in an Executable
8.2.3 If you do wish to write your own subclass... 0oL
824 Bydefault... e e
8.2.5 Optionally... e e
8.2.6 Visualization Manager i e e e e e e e
827 HowtoWritethemain () Function
8.3 The Visualization Drivers e
8.3.1 Availability of drivers on the supported systems
83.2 OpenGL e e

299
299
299
299
300
303
304
305
308
308
308
309
309
309
310
311

313
313
313
313
314
318
321

323
323
323
324
325
326
326
327
327
327
327
328
328
328
328
329
330
330

8.4

8.5

8.6

833 Qt . 331
834 OpenInventor i i e e e e e e e e e e e e e 332
8.3.5 Open Inventor Extended Viewer 332
83.6 Openlnventor Qt Viewer e 332
83.7 Q3D .. e 334
83.8 TooIsSG 334
8.3.9 VTK (Visualisation toolKit) i i e e e e e 337
8.3.10 HepRepFile e e e e e 341
83.11 DAWN . . o 342
83.12 VRML e 342
83.13 RayTracer e e e e 343
8314 gMOCIeNn L e e e e e e e 343
8.3.15 Visualization of detector eOmetry tree v v v v vt e e e e e e e e 344
Controlling Visualization from Commands 345
8.4.1 Scene, scene handler, and viewer L e 346
8.4.2 Choosing a graphics viewer: /vis/opencommand 346
8.4.3 Create an empty scene: /vis/scene/createcommand 347
8.4.4 Visualization of a physical volume: /vis/drawVolume command. 348
8.4.5 Visualization of a parameterised volume 348
8.4.6 Visualization of a logical volume: /vis/drawLogicalVolume command 348
8.4.7 Visualization of trajectories: /vis/scene/add/trajectories command 349
8.4.8 Visualization of hits: /vis/scene/add/hitscommand 350
8.4.9 Visualization of fields: /vis/scene/add/magneticFieldcommand 350
8.4.10 Visualization of Scored Data e 351
8.4.11 Additional attributes for Hits L o 351
8.4.12 Visualization of histograms (plotting) L. 351
8.4.13 Basic camera workings: /vis/viewer/commands 355
8.4.14 Declare the end of visualization for flushing: /vis/viewer/flush command 357
8.4.15 End of Event Action and End of Run Action: /vis/scene/endOfEventAction and
/vis/scene/endOfRunActioncommands 357
8.4.16 HepRep Attributes for Trajectories o 358
8417 HOWtOSAVE @ VIEW. . .+« . v v v v it e e b e e e e e e e e e e e e 358
8.4.18 Howtosaveaviewtoanimagefile 358
8.4.19 Culling o o e e 360
8420 Cutview L e 360
8.4.21 Multithreading commands oL e 361
Controlling Visualization from CompiledCode 361
85.1 GAVVISManager o oot i e e e e e e 362
8.5.2 Visualization of detector components v v vttt e e e 362
8.5.3 Visualization of trajectorieso e e e e e e e e e e 363
8.5.4 Enhanced trajectory drawing L. oL e 363
8.5.5 HepRep Attributes for Trajectories e 363
8.5.6 Visualizationof hits 364
8.5.7 HepRep Attributes for Hits 366
8.5.8 Visualization of teXt e e e e 366
8.5.9 Visualization of polylines and tracking steps Lo 366
8.5.10 Visualization User ACtIONS v v i v it et e e e e e e e e e e 367
8.5.11 Standalone Visualization e e 368
8.5.12 Drawingasolidasacloudofpoints oo ... 369
Visualization Attributes e e e e 370
8.6.1 Visibility L e 370
8.6.2 Colour. e e 371
8.6.3 Forcingattributes e 373
8.6.4 Otherattributes L e e e 374

vi

9

8.6.5 Constructors of G4VisAttributes
8.6.6 How to assign G4VisAttributes to a logical volume
8.6.7 Additional User-Defined Attributes
8.7 Enhanced Trajectory Drawing e
8.7.1 Default Configuration e
8.7.2 Trajectory Drawing Models e
8.7.3 Controlling from Commands o v it e e e e
8.7.4 Controlling from CompiledCode e
8.7.5 Drawingbytime e
8.8 Trajectory Filtering L e e e
8.8.1 Controlling from Commands
8.8.2 Examplecommands. e e e e e e e e
8.8.3 Hitand Digi Filtering e e e e
8.9 Polylines, Markers and Text L e
89.1 Polylines e
8.9.2 Markerso e e e e
893 Text
8.10 MakingaMovie o o i e e e e e e e e e e e e e e
8.10.1 Using /vis/viewer/interpolate
8.10.2 Withamacroloop e
8.10.3 Processing picture files with mpeg2encode
8.10.4 Qt . o
8.10.5 DAWNFILE e e e
8.10.6 RayTracerX o o i e e e e e e e e
8.11 Debugging geometry with viso oL e
8.11.1 Usingadvanced vistools L o e e
8.12 External Boolean processingot e e e e e e e e
Analysis
9.1 Introduction e e e e e e e e e
9.2 Analysis Manager Classes it i it e e e e
9.2.1 AnalysisManager e e e e e e e e e e e e e e
9.2.2 Fileshandling e e e e e
0.2.3 HiStOrams i i e e e e e e e e e e e
9.2.4 Profiles e e e
9.25 Ntuples e
9.2.6 Analysisobjectshandling e e
9.2.7 PIOttNG o . e e e e e e e e e e e e
9.2.8 Parallel Processing L e
9.2.9 Supported Features and Limitations
9.3 AnalysisReader Classes o o i i i i i e e e
9.3.1 AnalysisReader
9.3.2 Filehandling e e e e
9.3.3 Histogramsand Profiles e
934 Ntuples e e e
9.4 Accumulables e e
9.4.1 G4Accumulable<T> L
942 Userdefinedaccumulables o
0.5 gOOIS . . . L e e e e e
9.5.1 gdtoolspackage e e e e e e
952 User APL e e

10 Examples

10.1 Introduction e e e e e e e e e e

395
395
395
396
397
399
404
407
409
411
412
413
413
414
414
415
415
416
416
418
419
419
420

423
423

vii

10.2 Basic Examples e e e e e e e e e e 423

10.2.1 Basic Examples Summary e e e e 423
10.2.2 Basic Examples Macros L e 426

10.2.3 Multi-threading e 427
10.2.4 Example Bl 0. L 428

10.2.5 Example B2 oo 428
10.2.6 Example B3 L e e e e e e e 429

10.2.7 Example B4 o e e e e e e 430

10.2.8 Example BS e 432

10.3 Extended Examples 433
1031 Analysis o v o e 434
1032 BIasing v o o e 434

1033 Common L. e e e e e e e e e 434

10.3.4 Electromagnetic it e e e e e e e e e e e e 434
10.3.5 Error Propagation L e 435
10.3.6 Event Generator i e e e e e e e e e 435
10.3.7 Exotic Physics e 436
10.3.8 Fields o o e e 436

1039 Geant3toGeantd e e e e e 436
103.10 GeOmetry o o it e e e e e e e 436
10.3.11 Hadronic o oo e e 436
10.3.12 Medical Applications o o it e e e e 437
10.3.13 Optical Photons o o i e e e e e e e e e e e e e e 438
10.3.14 Parallel Computing v v v i i et e e e e e e e e e e e e e e e 438
10.3.15 Parameterisations oL e e e e e 439
10.3.16 Persistency e e e 446
10.3.17 Physics lists o o o e e 446
10.3.18 Polarisation o oot e e e e e e e e e 446
10.3.19 Radioactive Decay o i i i e e e e e e e e e e 447
10320 Run & Event L 447
10.3.21 Visualization oL e e e e e e e e e e e 447

10.4 Advanced Examples 447
10.5 Novice Examples 0 o o e e e e e e e e e e e e 449
11 Appendix 451
11.1 GEANT4 Material Database i e 451
11.1.1 Simple Materials (Elements) 0 . i i it et e e e e 451

11.1.2 NISTCompounds o v v it e e e e e e e e e e e e e e e e e e 453

11.1.3 HEPand Nuclear Materials i 465
11.1.4 Space (ISS) Materials o e e e 466
11.1.5 Bio-Chemical Materials e 466

11.2 Transportation in Magnetic Field - Further Details 468
11.2.1 The challenge of integrating all tracks 468
11.2.2 Using preset thresholds for killing loopers 469

11.2.3 Finer-grain control of the parameters for killing looping particles 470
11.2.4 Full control of the parameters for killing looping particles 470
11.2.5 Using a helper object to forward parameter changes 473
11.2.6 How to replace the Transportation Process of a particletype 473

11.2.7 Avoiding loopers or reducing the incidence of looping particles 474
Bibliography 477

viii

Book For Application Developers, Release 11.2

Scope of this manual

The User’s Guide for Application Developers is the first manual the reader should consult when learning about
GEANT4 or developing a GEANT4 -based detector simulation program. This manual is designed to:

* introduce the first-time user to the GEANT4 object-oriented detector simulation toolkit,

* provide a description of the available tools and how to use them, and

* supply the practical information required to develop and run simulation applications which may be used in real
experiments.

This manual is intended to be an overview of the toolkit, rather than an exhaustive treatment of it. Related physics
discussions are not included unless required for the description of a particular tool. Detailed discussions of the physics
included in GEANT4 can be found in the Physics Reference Manual. Details of the design and functionality of the
GEANT4 classes can be found in the User’s Guide for Toolkit Developers.

GEANT4 is a detector simulation toolkit written in the C++ language. The reader is assumed to have a basic knowl-
edge of object-oriented programming using C++. Although GEANT4 is a fairly complicated software system, only a
relatively small part of it needs to be understood in order to begin developing detector simulation applications. An
understanding of radiation physics and associated processes is beneficial.

CONTENTS 1

https://geant4-userdoc.web.cern.ch/UsersGuides/PhysicsReferenceManual/html/index.html
https://geant4-userdoc.web.cern.ch/UsersGuides/ForToolkitDeveloper/html/index.html

Book For Application Developers, Release 11.2

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

1.1 How to use this manual

A very basic introduction to GEANT4 is presented in Section Getting Started with Geant4 - Running a Simple Example.
It is a recipe for writing and running a simple GEANT4 application program. New users of GEANT4 should read this
chapter first. It is strongly recommended that this chapter be read in conjunction with a GEANT4 system installed and
running on your computer. It is helpful to run the provided examples as they are discussed in the manual. To install
the GEANT4 system on your computer, please refer to the Installation Guide for Setting up Geant4 in Your Computing
Environment.

Section Toolkit Fundamentals discusses general GEANT4 issues such as class categories and the physical units system.
It goes on to discuss runs and events, which are the basic units of a simulation.

Section Detector Definition and Response describes how to construct a detector from customized materials and geo-
metric shapes, and embed it in electromagnetic fields. It also describes how to make the detector sensitive to particles
passing through it and how to store this information.

How particles are propagated through a material is treated in Section Tracking and Physics. The GEANT4 “philosophy”
of particle tracking is presented along with summaries of the physics processes provided by the toolkit. The definition
and implementation of GEANT4 particles is discussed and a list of particle properties is provided.

Section User Actions is a description of the “user hooks” by which the simulation code may be customized to perform
special tasks.

Section Control provides a summary of the commands available to the user to control the execution of the simulation.
After Chapter 2, Chapters 6 and 7 are of foremost importance to the new application developer.

The display of detector geometry, tracks and events may be incorporated into a simulation application by using the
tools described in Section Visualization.

Section Examples provides a set of basic, novice, extended and advanced simulation codes which may be compiled
and run “as is” from the GEANT4 source code. These examples may be used as educational tools or as base code from
which more complex applications are developed.

https://geant4-userdoc.web.cern.ch/UsersGuides/InstallationGuide/html/index.html
https://geant4-userdoc.web.cern.ch/UsersGuides/InstallationGuide/html/index.html

Book For Application Developers, Release 11.2

4 Chapter 1. Introduction

CHAPTER
TWO

GETTING STARTED WITH GEANT4 - RUNNING A SIMPLE EXAMPLE

2.1 How to Define the main() Program

2.1.1 A Sample main () Method

The contents of main () will vary according to the needs of a given simulation application and therefore must be
supplied by the user. The GEANT4 toolkit does not provide a main () method, but a sample is provided here as a
guide to the beginning user. Listing 2.1 is the simplest example of main () required to build a simulation program.

Listing 2.1: Simplest example of main()

#include "DetectorConstruction.hh"
#include "PhysicsList.hh"
#include "ActionInitializationOl.hh"

#include "G4RunManagerFactory.hh"
#include "G4UImanager.hh"

int main ()
{
// construct the default run manager
auto runManager = G4RunManagerFactory::CreateRunManager () ;

// set mandatory initialization classes
runManager—>SetUserInitialization (new DetectorConstruction) ;
runManager—>SetUserInitialization (new PhysicsList);
runManager—>SetUserInitialization (new ActionInitialization);

// initialize G4 kernel
runManager—->Initialize();

// get the pointer to the UI manager and set verbosities
G4UImanager UI = G4UImanager::GetUIpointer();
UI->ApplyCommand ("/run/verbose 1");

UI->ApplyCommand ("/event/verbose 1");
UI->ApplyCommand (" /tracking/verbose 1");

// start a run
int numberOfEvent = 3;
runManager—>BeamOn (numberOfEvent) ;

// job termination
delete runManager;
return 0;

The main () method is implemented by two toolkit classes, G4RunManager and G4UImanager, and three classes,
DetectorConstruction, PhysicsList and ActionInitialization, which are derived from toolkit

Book For Application Developers, Release 11.2

classes. Each of these are explained in the following sections.

2.1.2 G4RunManager

The first thing main () must do is create an instance of the G4RunManager class. This is the only manager class in
the GEANT4 kernel which should be explicitly constructed in the user’s main (). It controls the flow of the program
and manages the event loop(s) within a run. GARunManagerFactory: :CreateRunManager () instantiates a
G4RunManager object whose concrete type is:

* G4AMTRunManager if Geant4 library was built with multithreading support
* G4RunManager otherwise

The concrete type chosen may be overridden at application runtime without recompilation by setting the environment
variable GARUN_MANAGER_TYPE, whose value can be set to either Serial, MT, Tasking or TBB. For Geant4
version 10.7, options Tasking and TBB are provided as beta-release. The traditional style of direct instantiation of
G4RunManager (sequential mode) or GAMTRunMabager (multithreaded mode) is also available.

When G4RunManager is created, the other major manager classes are also created. They are deleted automatically
when G4RunManager is deleted. The run manager is also responsible for managing initialization procedures, in-
cluding methods in the user initialization classes. Through these the run manager must be given all the information
necessary to build and run the simulation, including

1. how the detector should be constructed,

2. all the particles and all the physics processes to be simulated,

3. how the primary particle(s) in an event should be produced, and
4. any additional requirements of the simulation.

In the sample main () the lines
runManager->SetUserInitialization (new DetectorConstruction);

runManager—>SetUserInitialization (new PhysicsList);
runManager->SetUserInitialization (new ActionInitialization);

create objects which specify the detector geometry, physics processes and primary particle, respectively, and pass their
pointers to the run manager. DetectorConstruction is an example of a user initialization class which is derived
from G4VUserDetectorConstruction. This is where the user describes the entire detector setup, including

* its geometry,

* the materials used in its construction,

* adefinition of its sensitive regions and

¢ the readout schemes of the sensitive regions.

Similarly PhysicsList is derived from G4VUserPhysicsList and requires the user to define

* the particles to be used in the simulation,
« all the physics processes to be simulated.

User can also override the default implementation for
* the range cuts for these particles and

Also ActionInitialization is derived from G4VUserActionInitialization and requires the user to
define

* so-called user action classes (see next section) that are invoked during the simulation,
* which includes one mandatory user action to define the primary particles.

The next instruction

runManager->Initialize();

6 Chapter 2. Getting Started with Geant4 - Running a Simple Example

Book For Application Developers, Release 11.2

performs the detector construction, creates the physics processes, calculates cross sections and otherwise sets up the
run. The final run manager method in main ()

int numberOfEvent = 3;
runManager—>beamOn (numberOfEvent) ;

begins a run of three sequentially processed events. The beamOn () method may be invoked any number of times
within main () with each invocation representing a separate run. Once a run has begun neither the detector setup nor
the physics processes may be changed. They may be changed between runs, however, as described in Customizing the
Run Manager. More information on G4RunManager in general is found in Run.

As mentioned above, other manager classes are created when the run manager is created. One of these is the user
interface manager, G4UImanager. Inmain () a pointer to the interface manager must be obtained

G4UImanager* UI = G4UImanager::getUIpointer();

in order for the user to issue commands to the program. In the present example the applyCommand () method is
called three times to direct the program to print out information at the run, event and tracking levels of simulation.
A wide range of commands is available which allows the user detailed control of the simulation. A list of these
commands can be found in Built-in Commands.

2.1.3 User Initialization and Action Classes

User Classes

There are two kinds of user classes, user initialization classes and user action classes. User initialization classes are
used during the initialization phase, while user action classes are used during the run. User initialization classes should
be directly set to G4ARunManager through SetUserInitialization () method, while user action classes
should be defined in G4VUserActionInitialization class.

User Initialization Classes

All three user initialization classes are mandatory. They must be derived from the abstract base classes provided by
GEANT4:

* G4VUserDetectorConstruction
* G4VUserPhysicsList
e G4VUserActionInitialization

GEANT4 does not provide default behavior for these classes. G4RunManager checks for the existence of these
mandatory classes when the Initialize () and BeamOn () methods are invoked.

As mentioned in the previous section, G4VUserDetectorConstruction requires the user to define the de-
tector and G4VUserPhysicsList requires the user to define the physics. Detector definition will be discussed
in Sections How to Define a Detector Geometry and How to Specify Materials in the Detector. Physics def-
inition will be discussed in How to Specify Particles and How to Specify Physics Processes. The user action
G4VUserPrimaryGeneratorAction requires that the initial event state be defined. Primary event generation
will be discussed in How to Make an Executable Program.

G4VUserActionInitialization should include at least one mandatory wuser action class
G4VUserPrimaryGeneratorAction. All user action classes are described in the next section.

2.1. How to Define the main() Program 7

Book For Application Developers, Release 11.2

Listing 2.2: Simplest example of Actionlnitialization

#include "ActionInitialization.hh"
#include "PrimaryGeneratorAction.hh"

void ActionInitialization::Build() const

{

SetUserAction (new PrimaryGeneratorAction) ;

}

User Action Classes

G4VUserPrimaryGeneratorAction is a mandatory class the user has to provide. It creates an instance of a
primary particle generator. PrimaryGeneratorAction is an example of a user action class which is derived from
G4VUserPrimaryGeneratorAction. In this class the user must describe the initial state of the primary event.
This class has a public virtual method named GeneratePrimaries () which will be invoked at the beginning of
each event. Details will be given in How to Generate a Primary Event. Note that GEANT4 does not provide any default
behavior for generating a primary event.

GEANT4 provides additional five user hook classes:

* G4UserRunAction

* G4UserEventAction

* G4UserStackingAction
* G4UserTrackingAction
* G4UserSteppingAction

These optional user action classes have several virtual methods which allow the specification of additional procedures
at all levels of the simulation application. Details of the user initialization and action classes are provided in User
Actions.

2.1.4 G4UImanager and Ul CommandSubmission

GEANT4 provides a category named intercoms. G4UImanager is the manager class of this category. Using the
functionalities of this category, you can invoke set methods of class objects of which you do not know the pointer. In
Listing 2.3, the verbosities of various GEANT4 manager classes are set. Detailed mechanism description and usage of
intercoms will be given in the next chapter, with a list of available commands. Command submission can be done all
through the application.

Listing 2.3: An example of main() using interactive terminal.

#include "DetectorConstruction.hh"
#include "PhysicsList.hh"
#include "PrimaryGeneratorAction.hh"

#include "G4RunManager.hh"
#include "G4UImanager.hh"

#include "G4UIExecutive.hh"

int main (int argc,charxx argv)

{
// construct the default run manager
G4RunManager* runManager = new G4RunManager;

// set mandatory initialization classes
runManager—->SetUserInitialization (new DetectorConstruction);
runManager—>SetUserInitialization (new PhysicsList);

(continues on next page)

8 Chapter 2. Getting Started with Geant4 - Running a Simple Example

Book For Application Developers, Release 11.2

(continued from previous page)

// set mandatory user action class
runManager—->SetUserAction (new PrimaryGeneratorAction);

// initialize G4 kernel
runManager->Initialize();

// Get the pointer to the User Interface manager
G4UImanager* UImanager = G4UImanager::GetUIpointer();

if (argc == 1) {
// interactive mode : define UI session
G4UIExecutivex ui = new G4UIExecutive (argc, argv);
UImanager->ApplyCommand ("/control/execute init.mac");
ui->SessionStart () ;
delete ui;

}

else {
// batch mode
G4String command = "/control/execute ";
G4String fileName = argv[l];
UImanager—>ApplyCommand (command+fileName) ;

}

// job termination
delete runManager;
return 0;

2.1.5 G4cout, G4cerr and G4debug

Although not yet included in the above examples, output streams will be needed. G4cout and G4cerr are iostream
objects defined by GEANT4. The usage of these objects is exactly the same as the ordinary cout and cerr, except that
the output streams will be handled by G4UImanager. Thus, output strings may be displayed on another window or
stored in a file. Manipulation of these output streams will be described in How to control the output of G4cout/G4cerr.
These objects should be used instead of the ordinary cout and cerr.

Similarly, G4debug may be used for your debug statements. In the Qt GUI lines are highlighted to help you pick out
your debug information.

2.2 How to Define a Detector Geometry

2.2.1 Basic Concepts

A detector geometry in GEANT4 is made of a number of volumes. The largest volume is called the World volume. It
must contain, with some margin, all other volumes in the detector geometry. The other volumes are created and placed
inside previous volumes, included in the World volume. The most simple (and efficient) shape to describe the World
is a box.

Each volume is created by describing its shape and its physical characteristics, and then placing it inside a containing
volume.

When a volume is placed within another volume, we call the former volume the daughter volume and the latter the
mother volume. The coordinate system used to specify where the daughter volume is placed, is the coordinate system
of the mother volume.

2.2. How to Define a Detector Geometry 9

Book For Application Developers, Release 11.2

[] Output
Threads: All | a g W
GAWTR >
GAWT@ > * G4Track Information: Particle = pi+, Track ID = 6, Parent ID = 1
GAWTR >
GAWTR >
GAWT® > Step# X Y z KineE dEStep SteplLeng TrakLeng Volume Process
GAWTO > @ 2.672mm 1.177 cm 1.413 cm 116.2 MeV @ eV @ fm @ fm Envelope initStep
GAWTO > 1 -512.7 um 1.891 cm 4 cm 1@9.9 MeV 6.236 MeV 2.703 ¢cm 2.783 cm Envelope Transportation
GAWTO > 2 -776.5 um 1.952 cm 4.223 cm 188.5 MeV 1.842 MeV 2.322 mm 2.935 cm Shape2 hIoni
GAWTR >

i———— List of secondaries ——————-—-
GAWTO > e-: energy = 427 keV time = 744 ps
G4WTO >
|G4WT8 > Deposited in scorer: 1.84163 MeV
GAWTO > 3 -5.445 mm 2.949 cm 7.72 cm 93.64 MeV 14.84 MeV 3.669 c¢cm 6.004 cm Shape2 hIoni
|GawTe > Deposited in scorer: 14,8355 MeV
G4WTR > 4 -6.27 mm 3.104 cm 8.217 cm 90.46 MeV 2.02 MeV 5.272 mm 7.131 cm Shape2 hIoni
G4WTR >
i——— List of secondaries ———-—--
G4WTO > e-: energy = 1.159 MeV time = 913.9 ps
G4WTO >
|G4WT9 > Deposited in scorer: 2.02035 MeV
GAWTE > 5 -9.099 mm 3.686 cm 10 cm 82.83 MeV 8.431 MeV 1.897 cm 9.028 cm Shape2 Transportation
|G4WTB > Deposited in scorer: 8.43107 MeV
GAWTO = 6 -1.117 em 4.011 cm 11.23 em 77.68 MeV 3.295 MeV 1.286 cm 10.31 cm Envelope hIoni
GAWTO =

i————— List of secondaries —————-——-—-

Session :

To describe a volume’s shape, we use the concept of a solid. A solid is a geometrical object that has a shape and
specific values for each of that shape’s dimensions. A cube with a side of 10 centimeters and a cylinder of radius 30
cm and length 75 cm are examples of solids.

To describe a volume’s full properties, we use a logical volume. It includes the geometrical properties of the solid,
and adds physical characteristics: the material of the volume; whether it contains any sensitive detector elements; the
magnetic field; etc.

We have yet to describe how to position the volume. To do this you create a physical volume, which places a copy of
the logical volume inside a larger, containing, volume.

2.2.2 Create a Simple Volume

What do you need to do to create a volume?

¢ Create a solid.
* Create a logical volume, using this solid, and adding other attributes.

Each of the volume types (solid, logical, and physical) has an associated registry (VolumeStore) which contains a list
of all the objects of that type constructed so far. The registries will automatically delete those objects when requested;
users should not deleted geometry objects manually.

10 Chapter 2. Getting Started with Geant4 - Running a Simple Example

Book For Application Developers, Release 11.2

2.2.3 Choose a Solid

To create a simple box, you only need to define its name and its extent along each of the Cartesian axes.

Listing 2.4: Creating a box.

G4double world_hx = 3.0*m;
G4double world_hy = 1.0xm;
G4double world_hz = 1.0+m;

G4Box* worldBox
= new G4Box ("World", world_hx, world_hy, world_hz);

This creates a box named “World” with the extent from -3.0 meters to +3.0 meters along the X axis, from -1.0 to 1.0
meters in Y, and from -1.0 to 1.0 meters in Z. Note that the G4Box constructor takes as arguments the halves of the
total box size.

It is also very simple to create a cylinder. To do this, you can use the G4Tubs class.

Listing 2.5: Creating a cylinder.

G4double innerRadius 0.xcm;
G4double outerRadius = 60.+*cm;
G4double hz = 25.xcm;

G4double startAngle = 0.xdeg;
G4double spanningAngle = 360.xdeg;

G4Tubs+* trackerTube
= new G4Tubs ("Tracker",
innerRadius,
outerRadius,
Nz,
startAngle,
spanningAngle) ;

This creates a full cylinder, named “Tracker”, of radius 60 centimeters and length 50 cm (the hz parameter represents
the half length in Z).

2.2.4 Create a Logical Volume

To create a logical volume, you must start with a solid and a material. So, using the box created above, you can create
a simple logical volume filled with argon gas (see How fo Specify Materials in the Detector) by entering:

G4LogicalVolume* worldLog
= new G4LogicalVolume (worldBox, Ar, "World");

This logical volume is named “World”.
Similarly we create a logical volume with the cylindrical solid filled with aluminium

G4LogicalVolume* trackerLog
= new G4LogicalVolume (trackerTube, Al, "Tracker");

and named “Tracker”.

2.2. How to Define a Detector Geometry 11

Book For Application Developers, Release 11.2

2.2.5 Place a Volume

How do you place a volume? You start with a logical volume, and then you decide the already existing volume inside
of which to place it. Then you decide where to place its center within that volume, and how to rotate it. Once you have
made these decisions, you can create a physical volume, which is the placed instance of the volume, and embodies all
of these attributes.

2.2.6 Create a Physical Volume

You create a physical volume starting with your logical volume. A physical volume is simply a placed instance of the
logical volume. This instance must be placed inside a mother logical volume. For simplicity it is unrotated:

Listing 2.6: A simple physical volume.

G4double pos_x = —1.0+meter;
G4double pos_y = 0.0xmeter;
G4double pos_z = 0.0xmeter;
G4VPhysicalVolumex trackerPhys
= new G4PVPlacement (0, // no rotation
G4ThreeVector (pos_x, pos_y, pos_z),
// translation position

trackerLog, // its logical volume
"Tracker", // its name

worldLog, // its mother (logical) volume
false, // no boolean operations

0); // its copy number

This places the logical volume t rackerLog at the origin of the mother volume worldLog, shifted by one meter
along X and unrotated. The resulting physical volume is named “Tracker” and has a copy number of 0.

An exception exists to the rule that a physical volume must be placed inside a mother volume. That exception is for
the World volume, which is the largest volume created, and which contains all other volumes. This volume obviously
cannot be contained in any other. Instead, it must be created as a G4PVPlacement with a null mother pointer. It
also must be unrotated, and it must be placed at the origin of the global coordinate system.

Generally, it is best to choose a simple solid as the World volume, the G4Box solid type is used in all basic examples.

2.2.7 Coordinate Systems and Rotations
In GEANT4, the rotation matrix associated to a placed physical volume represents the rotation of the reference system
of this volume with respect to its mother.

A rotation matrix is normally constructed as in CLHEP, by instantiating the identity matrix and then applying a rotation
to it. This is also demonstrated in Example B3.

2.3 How to Specify Materials in the Detector

2.3.1 General Considerations

In nature, general materials (chemical compounds, mixtures) are made of elements, and elements are made of isotopes.
Therefore, these are the three main classes designed in GEANT4. Each of these classes has a table as a static data
member, which is for keeping track of the instances created of the respective classes. All three objects automatically
register themselves into the corresponding table on construction, and should never be deleted in user code.

12 Chapter 2. Getting Started with Geant4 - Running a Simple Example

Book For Application Developers, Release 11.2

The G4Element class describes the properties of the atoms:

e atomic number,

e number of nucleons,

e atomic mass,

* shell energy,

* as well as quantities such as cross sections per atom, etc.

The G4Material class describes the macroscopic properties of matter:

* density,

* state,

* temperature,

* pressure,

* as well as macroscopic quantities like radiation length, mean free path, dE/dx, etc.

The G4Material classis the one which is visible to the rest of the toolkit, and is used by the tracking, the geometry,
and the physics. It contains all the information relative to the eventual elements and isotopes of which it is made, at
the same time hiding the implementation details.

2.3.2 Define a Simple Material
In the example below, liquid argon is created, by specifying its name, density, mass per mole, and atomic number.

Listing 2.7: Creating liquid argon.
G4double z, a, density;
density = 1.390+g/cm3;
a = 39.95xg/mole;

G4Material+ 1lAr = new G4Material (name="liquidArgon", z=18., a, density);

The pointer to the material, /Ar, will be used to specify the matter of which a given logical volume is made:

G4LogicalVolume* myLbox = new G4LogicalVolume (aBox, l1Ar, "Lbox",0,0,0);

2.3.3 Define a Molecule
In the example below, the water, H20, is built from its components, by specifying the number of atoms in the molecule.

Listing 2.8: Creating water by defining its molecular components.

G4double z, a, density;
G4String name, symbol;
G4int ncomponents, natoms;

a = 1.01l+xg/mole;
G4Element* elH = new G4Element (name="Hydrogen", symbol="H" , z= 1., a);

a = 16.00xg/mole;
G4Element+ elO = new G4Element (name="Oxygen" ,symbol="0" , z= 8., a);

density = 1.000+g/cm3;

G4Material+ H20 = new G4Material (name="Water",density,ncomponents=2);
H20->AddElement (elH, natoms=2) ;

H20->AddElement (€10, natoms=1) ;

2.3. How to Specify Materials in the Detector 13

Book For Application Developers, Release 11.2

2.3.4 Define a Mixture by Fractional Mass
In the example below, air is built from nitrogen and oxygen, by giving the fractional mass of each component.

Listing 2.9: Creating air by defining the fractional mass of its compo-
nents.

G4double z, a, fractionmass, density;
G4String name, symbol;
G4int ncomponents;

a = 14.01xg/mole;
G4Element+ elN = new G4Element (name="Nitrogen",symbol="N" , z= 7., a);

a = 16.00xg/mole;
G4Element* elO = new G4Element (name="Oxygen" ,symbol="0" , z= 8., a);

density = 1.290xmg/cm3;
G4Material+ Air = new G4Material (name="Air ",density,ncomponents=2);

Air->AddElement (elN, fractionmass=70+perCent) ;
Air->AddElement (elO, fractionmass=30+perCent) ;

2.3.5 Define a Material from the GEANT4 Material Database
In the example below, air and water are accessed via the GEANT4 material database.

Listing 2.10: Defining air and water from the internal GEANT4 database.

G4NistManagerx man = G4NistManager::Instance();

G4Material+ H20 = man->FindOrBuildMaterial ("G4 WATER");
G4Material+ Air = man->FindOrBuildMaterial ("G4_ATIR");

2.3.6 Define a Material from the Base Material

It is possible to build new material on base of an existing “base” material. This feature is useful for electromagnetic
physics allowing to peak up for the derived material all correction data and precomputed tables of stopping powers
and cross sections of the base material. In the example below, two methods how to create water with unusual density
are shown.

14 Chapter 2. Getting Started with Geant4 - Running a Simple Example

Book For Application Developers, Release 11.2

Listing 2.11: Defining water with user defined density on base of
G4_WATER.

G4double density;

density = 1.05+mg/cm3;
G4Material+ waterl = new G4Material ("Water 1.05",density, "G4 _WATER");

density = 1.03+mg/cm3;
G4NistManagerx man = G4NistManager::Instance();
G4Material+ water2 = man->BuildMaterialWithNewDensity ("Water 1.03","G4 WATER",density);

2.3.7 Print Material Information

Listing 2.12: Printing information about materials.

G4cout << H20; \\ print a given material
Gdcout << =* (G4Material::GetMaterialTable()); \\ print the list of materials

In GEANT4 examples you all possible ways to build a material.

2.3.8 Access to GEANT4 material database

Listing 2.13: GEANT4 material database may be accessed via Ul com-

mands.
/material/nist/printElement Fe \\ print element by name
/material/nist/printElementZ 13 \\ print element by atomic number
/material/nist/listMaterials type \\ print materials type = [simple | compound | hep | all]
/material/g4/printElement elmName \\ print instantiated element by name

/material/g4/printMaterial matName \\ print instantiated material by name

In GEANT4 examples you with find all possible ways to build a material.

2.4 How to Specify Particles

G4VUserPhysicsList is one of the mandatory user base classes described in How to Define the main() Program.
Within this class all particles and physics processes to be used in your simulation must be defined. The range cut-off
parameter should also be defined in this class.

The user must create a class derived from G4VuserPhysicsList and implement the following pure virtual meth-
ods:

ConstructParticle(); // construction of particles
ConstructProcess() ; // construct processes and register them to particles

The user may also want to override the default implementation of the following virtual method:

SetCuts () ; // setting a range cut value for all particles

This section provides some simple examples of the ConstructParticle () and SetCuts () methods. For
information on ConstructProcess () methods, please see How to Specify Physics Processes.

2.4. How to Specify Particles 15

Book For Application Developers, Release 11.2

2.4.1 Particle Definition

GEANT4 provides various types of particles for use in simulations:

* ordinary particles, such as electrons, protons, and gammas

* resonant particles with very short lifetimes, such as vector mesons and delta baryons
* nuclei, such as deuteron, alpha, and heavy ions (including hyper-nuclei)

e quarks, di-quarks, and gluon

Each particle is represented by its own class, which is derived from G4ParticleDefinition. (Exception: G4lons
represents all heavy nuclei. Please see Particles.) Particles are organized into six major categories:

* lepton,

¢ meson,

* baryon,

¢ boson,

e shortlived and
e jon,

each of which is defined in a corresponding sub-directory under geant4/source/particles. There is also a
corresponding granular library for each particle category.

The G4ParticleDefinition Class

G4ParticleDefinition has properties which characterize individual particles, such as, name, mass,
charge, spin, and so on. Most of these properties are “read-only” and can not be changed directly.
G4ParticlePropertyTable is used to retrieve (load) particle property of G4ParticleDefinition into
(from) G4ParticlePropertyData.

How to Access a Particle

Each particle class type represents an individual particle type, and each class has a single object. This object can be
accessed by using the static method of each class. There are some exceptions to this rule; please see Particles for
details.

For example, the class G4Electron represents the electron and the member G4Electron: :theInstance
points its only object. The pointer to this object is available through the static methods
G4Electron::ElectronDefinition (). G4Electron::Definition().

More than 100 types of particles are provided by default, to be used in various physics processes. In normal applica-
tions, users will not need to define their own particles.

The unique object for each particle class is created when its static method to get the pointer is called at the first time.
Because particles are dynamic objects and should be instantiated before initialization of physics processes, you must
explicitly invoke static methods of all particle classes required by your program at the initialization step. (NOTE: The
particle object was static and created automatically before 8.0 release)

16 Chapter 2. Getting Started with Geant4 - Running a Simple Example

Book For Application Developers, Release 11.2

Dictionary of Particles

The G4ParticleTable class is provided as a dictionary of particles. Various utility methods are provided, such as:

FindParticle (G4String name) ; // find the particle by name
FindParticle (G4int PDGencoding) // find the particle by PDG encoding .
G4ParticleTable is defined as a singleton object, and the static method

G4ParticleTable: :GetParticleTable () provides its pointer.

As for heavy ions (including hyper-nuclei), objects are created dynamically by requests from users and processes. The
G4AParticleTable class provides methods to create ions, such as:

G4ParticleDefinition* GetIon(G4int atomicNumber,
G4int atomicMass,
G4double excitationEnergy) ;

Particles are registered automatically during construction. The user has no control over particle registration.

Constructing Particles

ConstructParticle () is a pure virtual method, in which the static member functions for all the particles you
require should be called. This ensures that objects of these particles are created.

Warning: You must define “ALL PARTICLE TYPES” which are used in your application, except for heavy ions.
“ALL PARTICLE TYPES” means not only primary particles, but also all other particles which may appear as
secondaries generated by physics processes you use. Beginning with GEANT4 version 8.0, you should keep this
rule strictly because all particle definitions are revised to “non-static” objects.

For example, suppose you need a proton and a geantino, which is a virtual particle used for simulation and which does
not interact with materials. The ConstructParticle () method is implemented as below:

Listing 2.14: Construct a proton and a geantino.

void MyPhysicsList::ConstructParticle ()
{
G4Proton: :ProtonDefinition () ;
G4Geantino: :GeantinoDefinition () ;

}

Due to the large number of pre-defined particles in GEANT4, it is cumbersome to list all the particles by this method.
If you want all the particles in a GEANT4 particle category, there are six utility classes, corresponding to each of the
particle categories, which perform this function:

* G4BosonConstructor

* G4LeptonConstructor

* G4MesonConstructor

* G4BaryonConstructor

* G4IonConstructor

* G4ShortlivedConstructor.

An example of this is shown in ExNO5PhysicsList, listed below.

2.4. How to Specify Particles 17

Book For Application Developers, Release 11.2

Listing 2.15: Construct all leptons.

void ExNO5PhysicsList::ConstructLeptons ()

{
// Construct all leptons
G4LeptonConstructor pConstructor;
pConstructor.ConstructParticle();

}

2.4.2 Range Cuts

To avoid infrared divergence, some electromagnetic processes require a threshold below which no secondary will
be generated. Because of this requirement, gammas, electrons and positrons require production threshold. This
threshold should be defined as a distance, or range cut-off, which is internally converted to an energy for individ-
ual materials. The range threshold should be defined in the initialization phase using the SetCuts () method of
G4VUserPhysicsList. Cuts per Region discusses threshold and tracking cuts in detail.

Setting the cuts

Production threshold values should be defined in SetCuts() which is a virtual method of the
G4VUserPhysicsList. Construction of particles, materials, and processes should precede the invocation of
SetCuts (). GARunManager takes care of this sequence in usual applications.

This range cut value is converted threshold energies for each material and for each particle type (i.e. electron, positron
and gamma) so that the particle with threshold energy stops (or is absorbed) after traveling the range cut distance.
In addition, from the 9.3 release ,this range cut value is applied to the proton as production thresholds of nuclei for
hadron elastic processes. In this case, the range cut value does not means the distance of traveling. Threshold energies
are calculated by a simple formula from the cut in range.

Note that the upper limit of the threshold energy is defined as 10 GeV. If you want to set higher threshold energy, you
can change the limit by using “/cuts/setMaxCutEnergy” command before setting the range cut.

The idea of a “unique cut value in range” is one of the important features of GEANT4 and is used to handle cut values
in a coherent manner. For most applications, users need to determine only one cut value in range, and apply this value
to gammas, electrons and positrons alike. (and proton too)

The default implementation of SetCuts () method provides a defaultCutValue member as the unique range
cut-off value for all particle types. The defaultCutValue is set to 1.0 mm by default. User can change this
value by SetDefaultCutValue () The “/run/setCut” command may be used to change the default cut value
interactively.

Warning: DO NOT change cut values inside the event loop. Cut values may however be changed between runs.

Itis possible to set different range cut values for gammas, electrons and positrons by using Set CutValue () methods
(or using “/run/setCutForAGivenParticle” command). However, user must be careful with physics outputs because
GEANT4 processes (especially energy loss) are designed to conform to the “unique cut value in range” scheme.

Beginning with GEANT4 version 5.1, it is now possible to set production thresholds for each geometrical region. This
new functionality is described in Cuts per Region.

18 Chapter 2. Getting Started with Geant4 - Running a Simple Example

Book For Application Developers, Release 11.2

2.5 How to Specify Physics Processes

2.5.1 Physics Processes

Physics processes describe how particles interact with materials. GEANT4 provides seven major categories of pro-
cesses:

* electromagnetic,

* hadronic,

e transportation,

* decay,

* optical,

¢ photolepton_hadron, and
* parameterisation.

All physics processes are derived from the G4VProcess base class. Its virtual methods

¢ AtRestDolt,
e AlongStepDoIt, and
e PostStepDolIt

and the corresponding methods

* AtRestGetPhysicallInteractionLength,
* AlongStepGetPhysicallInteractionLength, and
* PostStepGetPhysicallInteractionLength

describe the behavior of a physics process when they are implemented in a derived class. The details of these methods
are described in Physics Processes.

The following are specialized base classes to be used for simple processes:

G4VAtRestProcess Processes with only AtRestDoIt
G4VContinuousProcess Processes with only AlongStepDoIt
G4VDiscreteProcess processes with only Post StepDolt

Another 4 virtual classes, such as G4VCont inuousDiscreteProcess, are provided for complex processes.

2.5.2 Managing Processes

The G4ProcessManager class contains a list of processes that a particle can undertake. It has information on the
order of invocation of the processes, as well as which kind of DoIt method is valid for each process in the list. A
G4ProcessManager object corresponds to each particle and is attached to the G4ParticleDefiniton class.

In order to validate processes, they should be registered with the particle’s G4ProcessManager. Process ordering
information is included by using the AddProcess () and SetProcessOrdering () methods. For registration of
simple processes, the AddAtRestProcess (), AddContinuousProcess () and AddDiscreteProcess ()
methods may be used.

G4ProcessManager is able to turn some processes on or off during a run by using the ActivateProcess ()
and InActivateProcess () methods. These methods are valid only after process registration is complete, so they
must not be used in the Prelnit phase.

The G4VUserPhysicsList class creates and attaches G4ProcessManager objects to all particle classes defined
in the ConstructParticle () method.

2.5. How to Specify Physics Processes 19

Book For Application Developers, Release 11.2

2.5.3 Specifying Physics Processes

G4VUserPhysicsList is the base class for a “mandatory user class” (see How to Define the main() Program), in
which all physics processes and all particles required in a simulation must be registered. The user must create a class
derived from G4VUserPhysicsList and implement the pure virtual method ConstructProcess ().

For example, if just the G4Geant ino particle class is required, only the transportation process need be registered.
The ConstructProcess () method would then be implemented as follows:

Listing 2.16: Register processes for a geantino.

void MyPhysicsList::ConstructProcess ()
{
// Define transportation process
AddTransportation();
}

Here, the AddTransportation () method is provided in the G4VUserPhysicsList class to register the
G4Transportation class with all particle classes. The G4ATransportation class (and/or related classes) de-
scribes the particle motion in space and time. It is the mandatory process for tracking particles.

In the ConstructProcess () method, physics processes should be created and registered with each particle’s
instance of G4ProcessManager.

An example of process registration is given in the G4VUserPhysicsList::AddTransportation () method.

Registration in G4ProcessManager is a complex procedure for other processes and particles because the relations
between processes are crucial for some processes. In order to ease registration procedures, G4PhysicsListHelper is
provided. Users do not care about type of processes (i.e. AtRest and/or Discrete and/or Continuous) or ordering
parameters.

An example of electromagnetic process registration for the gamma is shown below

20 Chapter 2. Getting Started with Geant4 - Running a Simple Example

Book For Application Developers, Release 11.2

Listing 2.17: Register processes for a gamma.

void MyPhysicsList::ConstructProcess ()
{
// Define transportation process
AddTransportation();
// electromagnetic processes
ConstructEM() ;
}

void MyPhysicsList::ConstructEM()
{
// Get pointer to G4PhysicsListHelper

G4PhysicsListHelper* ph = G4PhysicsListHelper: :GetPhysicsListHelper () ;

// Get pointer to gamma
G4ParticleDefinition* particle = G4Gamma: :GammaDefinition () ;

// Construct and register processes for gamma
ph->RegisterProcess (new G4PhotoElectricEffect (), particle);
ph->RegisterProcess (new G4ComptonScattering (), particle);
ph->RegisterProcess (new G4GammaConversion(), particle);
ph->RegisterProcess (new G4RayleighScattering(), particle);

2.6 How to Generate a Primary Event

2.6.1 Generating Primary Events

G4VuserPrimaryGeneratorAction is one of the mandatory classes available for deriving your own concrete
class. In your concrete class, you have to specify how a primary event should be generated. Actual generation of
primary particles will be done by concrete classes of G4VPrimaryGenerator, explained in the following sub-
section. Your G4VUserPrimaryGeneratorAction concrete class just arranges the way primary particles are
generated.

Listing 2.18: PrimaryGeneratorAction: An example of a
G4VUserPrimaryGeneratorAction concrete class using G4ParticleGun.
For the usage of G4Particle Gun refer to the next subsection.

VA A A I I A

// PrimaryGeneratorAction.hh

A A A A A I e

#ifndef PrimaryGeneratorAction_h
#define PrimaryGeneratorAction_h 1

#include
#include

#include "globals.hh"

class G4ParticleGun;
class G4Event;

class PrimaryGeneratorAction

{

"G4VUserPrimaryGeneratorAction.hh"
"G4ThreeVector.hh"

public G4VUserPrimaryGeneratorAction

public:
PrimaryGeneratorAction (
const G4String& particleName = "geantino",
G4double energy = 1.xMeV,

(continues on next page)

2.6. How to Generate a Primary Event

21

Book For Application Developers, Release 11.2

(continued from previous page)

Chapter 2. Getting Started with Geant4 - Running a Simple Example

Book For Application Developers, Release 11.2

Selection of the generator

In the constructor of your G4VUserPrimaryGeneratorAction, you should instantiate the primary generator(s).
If necessary, you need to set some initial conditions for the generator(s).

In PrimaryGeneratorAction, G4ParticleGun is constructed to use as the actual primary particle generator. Meth-
ods of G4ParticleGun are described in the following section. Please note that the primary generator object(s) you
construct in your G4VUserPrimaryGeneratorAction concrete class must be deleted in your destructor.

Generation of an event

G4VUserPrimaryGeneratorAction has a pure virtual method named generatePrimaries (). This
method is invoked at the beginning of each event. In this method, you have to invoke the G4VPrimaryGenerator
concrete class you instantiated via the generatePrimaryVertex () method.

You can invoke more than one generator and/or invoke one generator more than once. Mixing up several generators
can produce a more complicated primary event.

2.6.2 G4VPrimaryGenerator

GEANT4 provides three G4VPrimaryGenerator concrete classes. Among these G4ParticleGun and
G4GeneralParticleSource will be discussed here. The third one is G4HEPEvt Interface, which will be
discussed in Event Generator Interface.

G4ParticleGun

G4ParticleGun is a generator provided by GEANT4. This class generates primary particle(s) with a given mo-
mentum and position. It does not provide any sort of randomizing. The constructor of G4ParticleGun takes an
integer which causes the generation of one or more primaries of exactly same kinematics. It is a rather frequent user
requirement to generate a primary with randomized energy, momentum, and/or position. Such randomization can be
achieved by invoking various set methods provided by G4ParticleGun. The invocation of these methods should be
implemented in the generatePrimaries () method of your concrete G4VUserPrimaryGeneratorAction
class before invoking generatePrimaryVertex () of G4ParticleGun. GEANT4 provides various random
number generation methods with various distributions (see Global Usage Classes).

Public methods of G4ParticleGun

The following methods are provided by G4ParticleGun, and all of them can be invoked from the
generatePrimaries () method in your concrete G4VUserPrimaryGeneratorAction class.

e void SetParticleDefinition (G4ParticleDefinitionx*)
e void SetParticleMomentum (G4ParticleMomentum)

* void SetParticleMomentumDirection (G4ThreeVector)
* void SetParticleEnergy (G4double)

* void SetParticleTime (G4double)

* void SetParticlePosition (G4ThreeVector)

e void SetParticlePolarization (G4ThreeVector)

e void SetNumberOfParticles (G4int)

2.6. How to Generate a Primary Event 23

Book For Application Developers, Release 11.2

G4GeneralParticleSource

For many applications G4ParticleGun is a suitable particle generator. However if you want to generate primary
particles in more sophisticated manner, you can utilize G4GeneralParticleSource, the GEANT4 General Par-
ticle Source module (GPS), discussed in the next section (General Particle Source).

2.7 GEANT4 General Particle Source

2.7.1 Introduction

The G4GeneralParticleSource (GPS) is part of the GEANT4 toolkit for Monte-Carlo, high-energy particle
transport. Specifically, it allows the specifications of the spectral, spatial and angular distribution of the primary
source particles. An overview of the GPS class structure is presented here. Configuration covers the configuration of
GPS for a user application, and Macro Commands describes the macro command interface. Example Macro File gives
an example input file to guide the first time user.

G4GeneralParticleSource is used exactly the same way as G4ParticleGun in a GEANT4 application. In
existing applications one can simply change your PrimaryGeneratorAction by globally replacing G4ParticleGun
with G4GeneralParticleSource. GPS may be configured via command line, or macro based, input. The
experienced user may also hard-code distributions using the methods and classes of the GPS that are described in
more detail in a technical note'.

The class diagram of GPS is shown in Fig. 2.1. As of version 10.01, a split-class mechanism was introduced to
reduce memory usage in multithreaded mode. The G4GeneralParticleSourceData class is a thread-safe
singleton which provides access to the source information for the G4GeneralParticleSource class. The
G4GeneralParticleSourceData class can have multiple instantiations of the G4SingleParticleSource
class, each with independent positional, angular and energy distributions as well as incident particle types. To the user,
this change should be transparent.

<<thread-private> > <<singleton> >
GaG IParticleSource | GaG IParticleSourc
[1

¢

<<thread-shared> >
GA4GeneralParticleSource Data

GaSingleParticleSource
G4SPSPosDistribution [G4SPSAngDistribution | [GasPSEneDistribution |

G45PSRandomGenerator

Fig. 2.1: The class diagram of G4GeneralParticleSource.

! General purpose Source Particle Module for GEANT4/SPARSET: Technical Note, UoS-GSPM-Tech, Issue 1.1, C Ferguson, February 2000.

24 Chapter 2. Getting Started with Geant4 - Running a Simple Example

Book For Application Developers, Release 11.2

2.7.2 Configuration

GPS allows the user to control the following characteristics of primary particles:

* Spatial sampling: on simple 2D or 3D surfaces such as discs, spheres, and boxes.

* Angular distribution: unidirectional, isotropic, cosine-law, beam or arbitrary (user defined).
» Spectrum: linear, exponential, power-law, Gaussian, blackbody, or piece-wise fits to data.

* Multiple sources: multiple independent sources can be used in the same run.

As noted above, G4GeneralParticleSource is used exactly the same way as G4ParticleGun in a GEANT4
application, and may be substituted for the latter by “global search and replace” in existing application source code.

Position Distribution

The position distribution can be defined by using several basic shapes to contain the starting positions of the particles.
The easiest source distribution to define is a point source. One could also define planar sources, where the particles
emanate from circles, annuli, ellipses, squares or rectangles. There are also methods for defining 1D or 2D accelerator
beam spots. The five planes are oriented in the x-y plane. To define a circle one gives the radius, for an annulus one
gives the inner and outer radii, and for an ellipse, a square or a rectangle one gives the half-lengths in x and y.

More complicated still, one can define surface or volume sources where the input particles can be confined to ei-
ther the surface of a three dimensional shape or to within its entire volume. The four 3D shapes used within
G4GeneralParticleSource are sphere, ellipsoid, cylinder and parallelepiped. A sphere can be defined simply by spec-
ifying the radius. Ellipsoids are defined by giving their half-lengths in x, y and z. Cylinders are defined such that the
axis is parallel to the z-axis, the user is therefore required to give the radius and the z half-length. Parallelepipeds are
defined by giving x, y and z half-lengths, plus the angles «, 6, and ¢ (Fig. 2.2).

Fig. 2.2: The angles used in the definition of a Parallelepiped.

To allow easy definition of the sources, the planes and shapes are assumed to be orientated in a particular direction
to the coordinate axes, as described above. For more general applications, the user may supply two vectors (x’ and a
vector in the plane x’-y’) to rotate the co-ordinate axes of the shape with respect to the overall co-ordinate system (Fig.
2.3). The rotation matrix is automatically calculated within G4GeneralParticleSource. The starting points of particles
are always distributed homogeneously over the 2D or 3D surfaces, although biasing can change this.

2.7. GEANT4 General Particle Source 25

Book For Application Developers, Release 11.2

T
&

Y‘.ﬂ

25

X!‘

Fig. 2.3: An illustration of the use of rotation matrices. A cylinder is defined with its axis parallel to the z-axis (black
lines), but the definition of 2 vectors can rotate it into the frame given by x’, y’, z’ (red lines).

Angular Distribution

The angular distribution is used to control the directions in which the particles emanate from/incident upon the source
point. In general there are three main choices, isotropic, cosine-law or user-defined. In addition there are options for
specifying parallel beam as well as diverse accelerator beams. The isotropic distribution represents what would be
seen from a uniform 47 flux. The cosine-law represents the distribution seen at a plane from a uniform 27 flux.

It is possible to bias (Biasing) both 8 and ¢ for any of the predefined distributions, including setting lower and upper
limits to 6 and ¢. User-defined distributions cannot be additionally biased (any bias should obviously be incorporated
into the user definition).

Incident with zenith angle § = 0 means the particle is travelling along the -z axis. It is important to bear this in mind
when specifying user-defined co-ordinates for angular distributions. The user must be careful to rotate the co-ordinate
axes of the angular distribution if they have rotated the position distribution (Fig. 2.3).

The user defined distribution requires the user to enter a histogram in either € or ¢ or both. The user-defined distribution
may be specified either with respect to the coordinate axes or with respect to the surface-normal of a shape or volume.
For the surface-normal distribution, 6 should only be defined between 0 and 7 /2, not the usual O to 7 range.

The top-level /gps/direction command uses direction cosines to specify the primary particle direction, as fol-
lows:
P, = —sinf cos ¢
P, = —sinfsin¢ 2.1
P, = —cosf

26 Chapter 2. Getting Started with Geant4 - Running a Simple Example

Book For Application Developers, Release 11.2

Energy Distribution
The energy of the input particles can be set to follow several built-in functions or a user-defined one, as shown in Table

2.1. The user can bias any of the pre-defined energy distributions in order to speed up the simulation (user-defined
distributions are already biased, by construction).

Table 2.1: Energy distribution commands.

Spectrum Abbreviation | Functional Form User Parameters

mono-energetic Mono I x §(E — Ey) Energy Ey

linear Lin ITxly+mxFE Intercept Iy, slope m

exponential Exp I x exp(—E/Ey) Energy scale-height Fy

power-law Pow I o< E® Spectral index «

Gaussian Gauss I = (270) 2 exp|—(E/Ey)%/0?] Mean energy FEy, standard
deviation o

bremsstrahlung Brem I = [2E%*[h*c*(exp(—E/kT) — 1)]~! | Temperature T'

black body Bbody I (kT)2 E exp(—E/kT) Temperature T (see text)

cosmic diffuse | Cdg I < [(E/Ey)® + (E/Ep)®2] 7T Energy range Fpin t0 Enay;

gamma ray energy E, and indices aj
and «y are fixed (see text)

There is also the option for the user to define a histogram in energy (“User”) or energy per nucleon (“Epn”) or to give
an arbitrary point-wise spectrum (“Arb”) that can be fit with various simple functions. The data for histograms or point
spectra must be provided in ascending bin (abscissa) order. The point-wise spectrum may be differential (as with a
binned histogram) or integral (a cumulative distribution function). If integral, the data must satisfy s(el) > s(e2) for
el < e2 when entered; this is not validated by the GPS code. The maximum energy of an integral spectrum is defined
by the last-but-one data point, because GPS converts to a differential spectrum internally.

Unlike the other spectral distributions it has proved difficult to integrate indefinitely the black-body spectrum and this
has lead to an alternative approach. Instead it has been decided to use the black-body formula to create a 10,000 bin
histogram and then to produce random energies from this.

Similarly, the broken power-law for cosmic diffuse gamma rays makes generating an indefinite integral CDF problem-
atic. Instead, the minimum and maximum energies specified by the user are used to construct a definite-integral CDF
from which random energies are selected.

Biasing

The user can bias distributions by entering a histogram. It is the random numbers from which the quantities are picked
that are biased and so one only needs a histogram from 0 to 1. Great care must be taken when using this option, as the
way a quantity is calculated will affect how the biasing works, as discussed below. Bias histograms are entered in the
same way as other user-defined histograms.

When creating biasing histograms it is important to bear in mind the way quantities are generated from those numbers.
For example let us compare the biasing of a 6 distribution with that of a ¢ distribution. Let us divide the # and ¢ ranges
up into 10 bins, and then decide we want to restrict the generated values to the first and last bins. This gives a new ¢
range of 0 to 0.628 and 5.655 to 6.283. Since ¢ is calculated using ¢ = 27 x RNDM, this simple biasing will work
correctly.

If we now look at 6, we expect to select values in the two ranges 0 to 0.314 (for 0 < RNDM < 0.1) and 2.827 to 3.142
(for 0 < RNDM < 0.9). However, the polar angle 6 is calculated from the formula § = arccos(1 — 2 x RNDM).
From this, we see that 0.1 gives a 6 of 0.644 and a RNDM of 0.9 gives a 6 of 2.498. This means that the above
will not bias the distribution as the user had wished. The user must therefore take into account the method used to
generate random quantities when trying to apply a biasing scheme to them. Some quantities such as x, y, z and ¢ will
be relatively easy to bias, but others may require more thought.

2.7. GEANT4 General Particle Source 27

Book For Application Developers, Release 11.2

User-Defined Histograms

The user can define histograms for several reasons: angular distributions in either 8 or ¢; energy distributions; energy
per nucleon distributions; or biasing of X, y, z, 8, ¢, or energy. Even though the reasons may be different the approach
is the same.

To choose a histogram the command /gps/hist/type is used (Macro Commands). If one wanted to enter an
angular distribution one would type “theta” or “phi” as the argument. The histogram is loaded, one bin at a time,
by using the /gps/hist/point command, followed by its two arguments the upper boundary of the bin and the
weight (or area) of the bin. Histograms are therefore differential functions.

Currently histograms are limited to 1024 bins. The first value of each user input data pair is treated as the upper edge
of the histogram bin and the second value is the bin content. The exception is the very first data pair the user input
whose first value is the treated as the lower edge of the first bin of the histogram, and the second value is not used.
This rule applies to all distribution histograms, as well as histograms for biasing.

The user has to be aware of the limitations of histograms. For example, in general ¢ is defined between 0 and 7 and ¢
is defined between 0 and 27, so histograms defined outside of these limits may not give the user what they want (see
also Biasing).

2.7.3 Macro Commands

G4GeneralParticleSource can be configured by typing commands from the /gps command directory tree, or
including the /gps commands in a g4macro file.

G4ParticleGun equivalent commands

Table 2.2: G4ParticleGun equivalent commands.

Command Arguments | Description and restrictions

/gps/List List available incident particles

/gps/particle name Defines the particle type [default geantino], using GEANT4 naming con-
vention.

/gps/direction Px Py Pz Set the momentum direction [default (1,0,0)] of generated particles us-
ing (2.1)

/gps/energy E unit Sets the energy [default 1 MeV] for mono-energetic sources. The units

can be eV, keV, MeV, GeV, TeV or PeV. (NB: it is recommended to use
/gps/ene/mono instead.)

/gps/position XY Zunit | Sets the centre co-ordinates (X,Y,Z) of the source [default (0,0,0) cm].
The units can be micron, mm, cm, m or km. (NB: it is recommended to
use /gps/pos/centre instead.)

/gps/ion ZAQE After /gps/particle ion, sets the properties (atomic number Z,
atomic mass A, ionic charge Q, excitation energy E in keV) of the ion.
/gpsfionLvl ZAQIvl After /gps/particle ion, sets the properties (atomic number Z,

atomic mass A, ionic charge Q, Number of metastable state excitation
level (0-9) of the ion.

/gps/time t0 unit Sets the primary particle (event) time [default O ns]. The units can be
ps, 1s, us, ms, or s.

/gps/polarization | Px Py Pz Sets the polarization vector of the source, which does not need to be a
unit vector.

/gps/mumber N Sets the number of particles [default 1] to simulate on each event.

/gps/verbose level Control the amount of information printed out by the GPS code. Larger

values produce more detailed output.

28 Chapter 2. Getting Started with Geant4 - Running a Simple Example

Book For Application Developers, Release 11.2

Multiple source specification

Table 2.3: Multiple source specification.

Command Arguments | Description and restrictions

/gps/source/add intensity Add a new particle source with the specified intensity

/gps/source/list List the particle sources defined.

/gps/source/clear Remove all defined particle sources.

/gps/source/show Display the current particle source

/gps/source/set index Select the specified particle source as the current one.

/gps/source/delete index Remove the specified particle source.

/gps/source/ multiplevertex | flag Specify true for simultaneous generation of multiple vertices, one from
each specified source. False [default] generates a single vertex, choos-
ing one source randomly.

/gps/source/ intensity intensity Reset the current source to the specified intensity

/gps/source/ flatsampling flag Set to True to allow biased sampling among the sources. Setting to True

will ignore source intensities. The default is False.

2.7. GEANT4 General Particle Source

29

Book For Application Developers, Release 11.2

Source position and structure

Table 2.4: Source position and structure.

Command Arguments | Description and restrictions

/gps/pos/type dist Sets the source positional distribution type: Point [default], Plane,
Beam, Surface, Volume.

/gps/pos/shape shape Sets the source shape type, after /gps/pos/type has been used. For

a Plane this can be Circle, Annulus, Ellipse, Square, Rectangle. For
both Surface or Volume sources this can be Sphere, Ellipsoid, Cylinder,
Para (parallelepiped).

/gps/pos/centre XY Z unit Sets the centre co-ordinates (X,Y,Z) of the source [default (0,0,0) cm].
The units can only be micron, mm, cm, m or km.
/gps/pos/rotl R1, R1, R1, | Defines the first (x* direction) vector R1 [default (1,0,0)], which does

not need to be a unit vector, and is used together with /gps/pos/
rot2 to create the rotation matrix of the shape defined with /gps/
shape.

/gps/pos/rot2 R2, R2, R2, | Defines the second vector R2 in the xy plane [default (0,1,0)], which
does not need to be a unit vector, and is used together with /gps/
pos/rotl to create the rotation matrix of the shape defined with /

gps/shape.

/gps/pos/halfx len unit Sets the half-length in x [default O cm] of the source. The units can only
be micron, mm, cm, m or km.

/gps/pos/halfy len unit Sets the half-length in y [default O cm] of the source. The units can only
be micron, mm, cm, m or km.

/gps/pos/halfz len unit Sets the half-length in z [default 0 cm] of the source. The units can only
be micron, mm, cm, m or km.

/gps/pos/radius len unit Sets the radius [default O cm] of the source or the outer radius for annuli.
The units can only be micron, mm, cm, m or km.

/gps/pos/inner_radius | len unit Sets the inner radius [default O cm] for annuli. The units can only be
micron, mm, ¢cm, m or km.

/gps/pos/sigma_r sigma unit Sets the transverse (radial) standard deviation [default O cm] of beam
position profile. The units can only be micron, mm, cm, m or km.

/gps/pos/sigma_x sigma unit Sets the standard deviation [default 0 cm] of beam position profile in
x-direction. The units can only be micron, mm, cm, m or km.

/gps/pos/sigma_y sigma unit Sets the standard deviation [default O cm] of beam position profile in
y-direction. The units can only be micron, mm, cm, m or km.

/gps/pos/paralp alpha unit Used with a Parallelepiped. The angle [default O rad] « formed by the

y-axis and the plane joining the centre of the faces parallel to the zx
plane at y and +y. The units can only be deg or rad.

/gps/pos/parthe theta unit Used with a Parallelepiped. Polar angle [default O rad] # of the line
connecting the centre of the face at z to the centre of the face at +z. The
units can only be deg or rad.

/gps/pos/parphi phi unit Used with a Parallelepiped. The azimuth angle [default O rad] ¢ of the
line connecting the centre of the face at z with the centre of the face at
+z. The units can only be deg or rad.

/gps/pos/confine name Allows the user to confine the source to the physical volume name [de-
fault NULL].

30 Chapter 2. Getting Started with Geant4 - Running a Simple Example

Book For Application Developers, Release 11.2

Source direction and angular distribution

Table 2.5: Source direction and angular distribution.

Command Arguments Description and restrictions

/gps/ang/type AngDis Sets the angular distribution type (iso [default], cos, planar, beamld,
beam?2d, focused, user) to either isotropic, cosine-law or user-defined.

/gps/ang/rotl ARI, AR1y AR1, | Defines the first (x’ direction) rotation vector AR1 [default (1,0,0)] for
the angular distribution and is not necessarily a unit vector. Used with
/gps/ang/rot?2 to compute the angular distribution rotation matrix.

/gps/ang/rot2 AR2, AR2, AR2, | Defines the second rotation vector AR2 in the xy plane [default (0,1,0)]
for the angular distribution, which does not necessarily have to be a unit
vector. Used with /gps/ang/rot2 to compute the angular distribu-
tion rotation matrix.

/gps/ang/mintheta MinTheta unit Sets a minimum value [default O rad] for the 6 distribution. Units can
be deg or rad.

/gps/ang/maxtheta | MaxTheta unit Sets a maximum value [default 7 rad] for the 6 distribution. Units can
be deg or rad.

/gps/ang/minphi MinPhi unit Sets a minimum value [default O rad] for the ¢ distribution. Units can
be deg or rad.

/gps/ang/maxphi MaxPhi unit Sets a maximum value [default 27 rad] for the ¢ distribution. Units can

be deg or rad.

/gps/ang/sigma_r sigma unit Sets the standard deviation [default O rad] of beam directional profile in
radial. The units can only be deg or rad.

/gps/ang/sigma_x sigma unit Sets the standard deviation [default O rad] of beam directional profile in
x-direction. The units can only be deg or rad.

/gps/ang/sigma_y sigma unit Sets the standard deviation [default O rad] of beam directional profile in
y-direction. The units can only be deg or rad.

/gps/ang/focuspoint | X Y Z unit Set the focusing point (X,Y,Z) for the beam [default (0,0,0) cm]. The
units can only be micron, mm, cm, m or km.

/gps/ang/user_coor | bool Calculate the angular distribution with respect to the user defined co-
ordinate system (true), or with respect to the global co-ordinate system
(false, default).

/gps/ang/surfnorm bool Allows user to choose whether angular distributions are with respect

to the co-ordinate system (false, default) or surface normals (true) for
user-defined distributions.

2.7. GEANT4 General Particle Source

31

Book For Application Developers, Release 11.2

Energy spectra

Table 2.6: Source energy spectra.

Command Arguments | Description and restrictions

/gps/ene/type EnergyDis Sets the energy distribution type to one of (see Table Table 2.1): Mono
(mono-energetic, default), Lin (linear), Pow (power-law), Exp (ex-
ponential), Gauss (Gaussian), Brem (bremsstrahlung), Bbody (black-
body), Cdg (cosmic diffuse gamma-ray), User (user-defined his-
togram), Arb (point-wise spectrum), Epn (energy-per-nucleon his-
togram)

/gps/ene/min Emin unit Sets the minimum [default 0 keV] for the energy distribution. The units
can be eV, keV, MeV, GeV, TeV or PeV.

/gps/ene/max Emax unit Sets the maximum [default O keV] for the energy distribution. The units
can be eV, keV, MeV, GeV, TeV or PeV.

/gps/ene/mono E unit Sets the energy [default 1 MeV] for mono-energetic sources. The units
can be eV, keV, MeV, GeV, TeV or PeV.

/gps/ene/sigma sigma unit Sets the standard deviation [default 0 keV] in energy for Gaussian or
Mono energy distributions. The units can be eV, keV, MeV, GeV, TeV
or PeV.

/gps/ene/alpha alpha Sets the exponent « [default 0] for a power-law distribution.

/gps/ene/temp T Sets the temperature in kelvins [default O] for black body and
bremsstrahlung spectra.

/gps/ene/ezero EO Sets scale Eq [default 0] for exponential distributions.

/gps/ene/gradient gradient Sets the gradient (slope) [default 0] for linear distributions.

/gps/ene/intercept intercept Sets the Y-intercept [default O] for the linear distributions.

/gps/ene/biasAlpha | alpha Sets the exponent « [default O] for a biased power-law distribution. Bias
weight is determined from the power-law probability distribution.

/gps/ene/calculate Prepares integral PDFs for the internally-binned cosmic diffuse gamma
ray (Cdg) and black body (Bbody) distributions.

/gps/ene/emspec bool Allows user to specify distributions are in momentum (false) or energy
(true, default). Only valid for User and Arb distributions.

/gps/ene/diffspec bool Allows user to specify whether a point-wise spectrum is integral (false)
or differential (true, default). The integral spectrum is only usable for
Arb distributions.

32 Chapter 2. Getting Started with Geant4 - Running a Simple Example

Book For Application Developers, Release 11.2

User-defined histograms and interpolated functions

Table 2.7: User defined histograms and interpolated functions.

Command Arguments | Description and restrictions

/gps/hist/type | type Set the histogram type: predefined biasx [default], biasy, biasz, biast
(angle 0, biasp (angle ¢), biaspt (position 8, biaspp (position ¢), biase;
user-defined histograms theta, phi, energy, arb (point-wise), epn (en-
ergy per nucleon).

/gps/hist/reset | type Re-set the specified histogram: biasx [default], , biasy, biasz, biast, bi-
asp, biaspt, biaspp, biase, theta, phi, energy, arb, epn.

/gps/hist/point | Ey; Weight Specify one entry (with contents Weight) in a histogram (where Ey;
is the bin upper edge) or point-wise distribution (where Ey; is the ab-
scissa). The abscissa Ep; must be in GEANT4 default units (MeV for
energy, rad for angle).

/gps/hist/file HistFile Import an arbitrary energy histogram in an ASCII file. The format
should be one Ey; Weight pair per line of the file, following the detailed
instructions in User-defined histograms and interpolated functions For
histograms, Ey; is the bin upper edge, for point-wise distributions Ey; is
the abscissa. The abscissa E;; must be in GEANT4 default units (MeV
for energy, rad for angle).

/gps/hist/inter | type Sets the interpolation type (Lin linear, Log logarithmic, Exp exponen-
tial, Spline cubic spline) for point-wise spectra. This command must be
issued immediately after the last data point.

2.7.4 Example Macro File

Macro test2.g4mac
/control/verbose 0
/tracking/verbose 0
/event /verbose 0
/gps/verbose 2
/gps/particle gamma
/gps/pos/type Plane
/gps/pos/shape Square
/gps/pos/centre 1 2 1 cm
/gps/pos/halfx 2 cm
/gps/pos/halfy 2 cm
/gps/ang/type cos
/gps/ene/type Lin
/gps/ene/min 2 MeV
/gps/ene/max 10 MeV
/gps/ene/gradient 1
/gps/ene/intercept 1
/run/beamOn 10000

The above macro defines a planar source, square in shape, 4 cm by 4 cm and centred at (1,2,1) cm. By default the
normal of this plane is the z-axis. The angular distribution is to follow the cosine-law. The energy spectrum is linear,
with gradient and intercept equal to 1, and extends from 2 to 10 MeV. 10,000 primaries are to be generated.

The standard GEANT4 output should show that the primary particles start from between 1, 0, 1 and 3, 4, 1 (in cm) and
have energies between 2 and 10 MeV, as shown in Fig. 2.4, in which we plotted the actual energy, position and angular
distributions of the primary particles generated by the above macro file.

2.7. GEANT4 General Particle Source 33

Book For Application Developers, Release 11.2

3000

2000 F

1000

Source Energy Spectrum Source X— distributien
+E 4 E
2 F 2 -
0 o
2 | 2 |
“hEr e PR
-4 -z 0 2 4 -4 -2 0 2 4
Source X—Z distribution Source T—Z distribution

P IR |
200

1 L [EEERNERRRE PR W EVE N e
300 0 100 200 300

—1 |

T
o 100

Source cosltheta)—phi distribution Souree theta,/phi distribution

Fig. 2.4: Energy, position and angular distributions of the primary particles as generated by the macro file shown
above.

2.8 How to Make an Executable Program

The code for the user examples in Geant4 is placed in the subdirectory examples of the main Geant4 source package.
This directory is installed to the share/Geant4-G4VERSION/examples (where G4AVERSION is the Geant4
version number) subdirectory under the installation prefix. In the following section, a quick overview will be given on
how to build a concrete example, “ExampleB1”, which is part of the Geant4 distribution, using CMake.

2.8.1 Using CMake to Build Applications

Geant4 installs a file named Geant4Config.cmake located in

+— CMAKE_INSTALL_PREFIX

+- lib/
+- cmake/
+- Geant4d/

+- Geant4Config.cmake

which is designed for use with the CMake find_package command. Building a Geant4 application using CMake
therefore involves writing a CMakeLists.txt script using this and other CMake commands to locate Geant4 and
describe the build of your client application. Whilst it requires a bit of effort to write the script, CMake provides a
very friendly yet powerful tool, especially if you are working on multiple platforms. It is therefore the method we
recommend for building Geant4 applications.

We’ll use Basic Example B1, which you may find in the Geant4 source directory under examples/basic/B1, to
demonstrate the use of CMake to build a Geant4 application. You’ll find links to the latest CMake documentation for
the commands used throughout, so please follow these for further information. The application sources and scripts are
arranged in the following directory structure:

+- B1/
+- CMakeLists.txt
+- exampleBl.cc

(continues on next page)

34 Chapter 2. Getting Started with Geant4 - Running a Simple Example

Book For Application Developers, Release 11.2

(continued from previous page)

+- include/
| ... headers.hh ...
+- src/

sources.cc ...

Here, exampleBl . cc contains main () for the application, with include/ and src/ containing the implemen-
tation class headers and sources respectively. This arrangement of source files is not mandatory when building with
CMake, apart from the location of the CMakeLists. txt file in the root directory of the application.

The text file CMakeLists.txt is the CMake script containing commands which describe how to build the exam-
pleB1 application

(1)
cmake_minimum_required (VERSION 3.16...3.21)
project (B1)

(2)
option (WITH_GEANT4_UIVIS "Build example with Geant4 UI and Vis drivers" ON)
if (WITH_GEANT4_UIVIS)

find_package (Geant4 REQUIRED ui_all vis_all)

else ()

find_package (Geant4 REQUIRED)
endif ()
(3)
include (${Geant4_USE_FILE})
include_directories (${PROJECT_SOURCE_DIR}/include)
(4)
file (GLOB sources ${PROJECT_SOURCE_DIR}/src/*.cc)
file (GLOB headers ${PROJECT_SOURCE_DIR}/include/x.hh)
(5)
add_executable (exampleBl exampleBl.cc ${sources} ${he: rs})
target_link libraries (exampleBl ${Geant4_ LIBRARIES})
(6)

set (EXAMPLEB1_SCRIPTS
exampleBl.in
exampleBl.out
init_vis.mac
runl.mac
run2.mac
vis.mac

)

foreach (_script ${EXAMPLEB1_SCRIPTS})
configure_file (
${PROJECT_SOURCE_DIR}/${_script}
S{PROJECT_BINARY_DIR}/${_script}
COPYONLY
)

endforeach ()

(7)
install (TARGETS exampleBl DESTINATION bin)

For clarity, the above listing has stripped out the main comments (CMake comments begin with a “#”) you’ll find in
the actual file to highlight each distinct task:

1. Basic Configuration
The cmake_minimum_required command and if block simply ensures we’re using a suitable version of
CMake and that it has been setup appropriately. The project command sets the name of the project and
enables and configures C and C++ compilers.

2.8. How to Make an Executable Program 35

Book For Application Developers, Release 11.2

2. Find and Configure Geant4
The aforementioned find_package command is used to locate and configure Geant4 (we’ll see how to spec-
ify the location later when we run CMake), the REQUIRED argument being supplied so that CMake will fail with
an error if it cannot find Geant4. The opt ion command specifies a boolean variable which defaults to ON, and
which can be set when running CMake via a —D command line argument, or toggled in the CMake GUI inter-
faces. We wrap the calls to find_package in a conditional block on the option value. This allows us to con-
figure the use of Geant4 UI and Visualization drivers by exampleB1 viathe ui_all vis_all “component”
arguments to find_package. An overview of available components is provided Use of Geant4Config.cmake
with find_package in CMake with a full listing at the top of the installed Geant4Config. cmake file.

3. Configure the Project to Use Geant4 and B1 Headers
To automatically configure CMake to use additional CMake modules supplied by the Geant4 examples,
we use the include command to load a script supplied by Geant4. The CMake variable named
Geant4_USE_FILE is set to the path to this module when Geant4 is located by find_package. We use
the include_directories command to add the B1 header directory to the compiler’s header search path.
The CMake variable PROJECT_SOURCE_DIR points to the top level directory of the project and is set by the
earlier call to the pro ject command.

4. List the Sources to Build the Application
Use the globbing functionality of the £i 1e command to prepare lists of the B1 source and header files.
Note however that CMake globbing is only used here as a convenience. The expansion of the glob only
happens when CMake is run, so if you later add or remove files, the generated build scripts will not know a
change has taken place. Kitware strongly recommend listing sources explicitly as CMake automatically
makes the build depend on the CMakeLists.txt file. This means that if you explicitly list the sources in
CMakeLists.txt, any changes you make will be automatically picked up when you rebuild. This is also
useful when you are working on a project with sources under version control and multiple contributors to ensure
traceability and consistent builds.

5. Define and Link the Executable
The add_executable command defines the build of an application, outputting an executable named by its
first argument, with the sources following. Note that we add the headers to the list of sources so that they will
appear in IDEs like Xcode.
After adding the executable, we use the target_link_ libraries command to link it with the Geant4
libraries. The Geant4_LIBRARIES variable is set by £ind_package when Geant4 is located, and is a list
of all the libraries needed to link against to use Geant4.

6. Copy any Runtime Scripts to the Build Directory
Because we want to support out of source builds so that we won’t mix CMake generated files with our actual
sources, we copy any scripts used by the B1 application to the build directory. We use foreach to loop over
the list of scripts we constructed, and configure_file to perform the actual copy.
Here, the CMake variable PROJECT_BINARY_DIR is set by the earlier call to the project command and
points to the directory where we run CMake to configure the build.

7. If Required, Install the Executable
Use the install command to create an install target that will install the executable to a bin directory under
CMAKE_INSTALL_PREFIX.
If you don’t intend your application to be installable, i.e. you only want to use it locally when built, you can
leave this out.

This sequence of commands is the most basic needed to compile and link an application with Geant4, and is easily
extendable to more involved use cases such as platform specific configuration or using other third party packages (via
find_package).

With the CMake script in place, using it to build an application is a two step process. First CMake is run to generate
buildscripts to describe the build. By default, these will be Makefiles on Unix platforms, and Visual Studio solutions
on Windows, but you can generate scripts for other tools like Xcode and Eclipse if you wish. Second, the buildscripts
are run by the chosen build tool to compile and link the application.

A key concept with CMake is that we generate the buildscripts and run the build in a separate directory, the so-called
build directory, from the directory in which the sources reside, the so-called source directory. This is the exact same

36 Chapter 2. Getting Started with Geant4 - Running a Simple Example

https://cmake.org/cmake/help/v3.16/command/if.html
https://cmake.org/cmake/help/v3.16/manual/cmake-generators.7.html

Book For Application Developers, Release 11.2

technique we used when building Geant4 itself. Whilst this may seem awkward to begin with, it is a very useful
technique to employ. It prevents mixing of CMake generated files with those of your application, and allows you to
have multiple builds against a single source without having to clean up, reconfigure and rebuild.

We’ll illustrate this configure and build process on Linux/macOS using Makefiles, and on Windows using Visual
Studio. The example script and Geant4’s Geant 4Config.cmake script are vanilla CMake, so you should be able
to use other Generators (such as Xcode and Eclipse) without issue.

Building ExampleB1 with CMake on Unix with Makefiles

We’ll assume, for illustration only, that you’ve copied the exampleB1 sources into a directory under your home area
so that we have:

+- /home/you/Bl/
+- CMakeLists.txt
+- exampleBl.cc
+- include/
+- src/

Here, our source directory is /home/you/B1, in other words the directory holding the CMakeLists. txt file.

Let’s also assume that you have already installed Geant4 in your home area under, for illustration only, /home /you/
geant4-install.

Our first step is to create a build directory in which build the example. We will create this alongside our B1 source
directory as follows:

$ cd SHOME
$ mkdir Bl-build

We now change to this build directory and run CMake to generate the Makefiles needed to build the B1 application.
We pass CMake two arguments

$ cd SHOME/Bl-build
$ cmake —-DCMAKE_PREFIX_PATH=/home/you/geant4-install $HOME/B1

Here, the first argument points CMake to the install prefix of Geant4. CMAKE_INSTALL_PREFIX may be extended
with additional paths to search for packages, and also set in the environment. See the CMake documentation on
CMAKE_PREFIX_PATH and find_package for more details.

For an exact search, you may also use the Geant4_DIR variable, e.g:

$ cd SHOME/Bl-build
$ cmake -DGeant4_DIR=/home/you/geant4d-install/lib/cmake/Geant4d SHOME/BL

This variable should set to the directory holding the Geant 4Config. cmake file for the install of Geant4 you want
to use.

The second argument to CMake is the path to the source directory of the application we want to build. Here it’s just
the B1 directory as discussed earlier. You should of course adapt the value of that variable to where you copied the B1
source directory.

CMake will now run to configure the build and generate Makefiles and you will see output similar to

$ cmake -DCMAKE_PREFIX_PATH=/home/you/geant4-install S$HOME/B1
— The C compiler identification is GNU 9.3.0

—— The CXX compiler identification is GNU 9.3.0

—— Check for working C compiler: /usr/bin/gcc—-9

—— Check for working C compiler: /usr/bin/gcc-9 —-- works

(continues on next page)

2.8. How to Make an Executable Program 37

https://cmake.org/cmake/help/v3.16/variable/CMAKE_PREFIX_PATH.html
https://cmake.org/cmake/help/v3.16/variable/CMAKE_PREFIX_PATH.html#variable:CMAKE_PREFIX_PATH
https://cmake.org/cmake/help/v3.16/command/find_package.html#search-procedure

Book For Application Developers, Release 11.2

(continued from previous page)

—— Detecting C compiler ABI info

—— Detecting C compiler ABI info - done

—— Detecting C compile features

—— Detecting C compile features - done

—— Check for working CXX compiler: /usr/bin/g++-9

-— Check for working CXX compiler: /usr/bin/g++-9 —-- works

—— Detecting CXX compiler ABI info

—— Detecting CXX compiler ABI info - done

—— Detecting CXX compile features

—— Detecting CXX compile features - done

—— Configuring done

—— Generating done

—— Build files have been written to: /home/you/Bl-build

The exact output will depend on the UNIX variant, compiler, and CMake version but the last three lines should be
identical to within the exact path used.

If you now list the contents of you build directory, you can see the files generated:

$ 1s

CMakeCache.txt exampleBl.in Makefile vis.mac
CMakeFiles exampleBl.out runl.mac
cmake_install.cmake init_vis.mac run2.mac

Note the Makefile and that all the scripts for running the exampleB1 application we’re about to build have been
copied across. With the Makefile available, we can now build by simply running make:

$ make —-jN

CMake generated Makefiles support parallel builds, so N can be set to the number of cores on your machine (e.g. on a
dual core processor, you could set N to 2). When make runs, you should see the output:

$ make

Scanning dependencies of target exampleBl

[12%] Building CXX object Bl/CMakeFiles/exampleBl.dir/exampleBl.cc.o

25%] Building CXX object Bl/CMakeFiles/exampleBl.dir/src/ActionInitialization.cc.o
Building CXX object Bl/CMakeFiles/exampleBl.dir/src/DetectorConstruction.cc.o
50%] Building CXX object Bl/CMakeFiles/exampleBl.dir/src/EventAction.cc.o

Building CXX object Bl/CMakeFiles/exampleBl.dir/src/PrimaryGeneratorAction.cc.o
75%] Building CXX object Bl/CMakeFiles/exampleBl.dir/src/RunAction.cc.o

Building CXX object Bl/CMakeFiles/exampleBl.dir/src/SteppingAction.cc.o

100%] Linking CXX executable exampleBl

Built target exampleBl

CMake Unix Makefiles are quite terse, but you can make them more verbose by adding the VERBOSE argument to
make:

$ make =1

If you now list the contents of your build directory you will see the exampleB 1 application executable has been created:

$ 1s
CMakeCache.txt exampleBl init_vis.mac run2.mac
CMakeFiles exampleBl.in Makefile vis.mac

cmake_install.cmake exampleBl.out runl.mac

You can now run the application in place:

$./exampleBl
Available UI session types: [GAG, tcsh, csh |

(continues on next page)

38 Chapter 2. Getting Started with Geant4 - Running a Simple Example

Book For Application Developers, Release 11.2

(continued from previous page)

R R kR I I I I ki kI I
Geant4 version Name: geant4-11-02 [MT] (8-December-2023)
<< in Multi-threaded mode >>
Copyright : Geant4 Collaboration
References : NIM A 506 (2003), 250-303
: IEEE-TNS 53 (2006), 270-278
: NIM A 835 (2016), 186-225
WWW : http://geantd.org/

R e e S e

<<< Reference Physics List QOBBC

Visualization Manager instantiating with verbosity "warnings (3)"...
Visualization Manager initialising...

Registering graphics systems...

Note that the exact output shown will depend on how both Geant4 and your application were configured. Further output
and behaviour beyond the Registering graphics systems. .. line will depend on what UI and Visualiza-
tion drivers your Geant4 install supports. If you recall the use of the ui_all vis_all in the find_package
command, this results in all available UI and Visualization drivers being activated in your application. If you didn’t
want any Ul or Visualization, you could rerun CMake in your build directory with arguments:

$ cmake -DWITH_GEANT4_UIVIS=OFF .

This would switch the opt ion we set up to false, and result in find_package not activating any Ul or Visualiza-
tion for the application. You can easily adapt this pattern to provide options for your application such as additional
components or features.

Once the build is configured, you can edit code for the application in its source directory. You only need to rerun
make in the corresponding build directory to pick up and compile the changes. However, note that due to the use of
CMake globbing to create the source file list, if you add or remove files, you must remember to rerun CMake to pick
up the changes. This is another reason why Kitware recommend listing the sources explicitly.

Building ExampleB1 with CMake on Windows with Visual Studio

As with building Geant4 itself, the simplest system to use for building applications on Windows is a Visual Studio
Developer Command Prompt, which can be started from Start — Visual Studio 2017 — Developer Command Prompt
Sfor V§2017 (similarly for VS2015)

We’ll assume, for illustration only, that you’ve copied the exampleB1 sources into a directory C:\Users\
YourUsername\B1 so that we have:

+— C:\Users\YourUsername\B1l
+- CMakeLists.txt
+- exampleBl.cc
+- include\
+- src\

Here, our source directory is C:\Users\YourUsername\B1, in other words the directory holding the
CMakeLists.txt file.

Let’s also assume that you have already installed Geant4 in your home area under, for illustration only, C : \Users\
YourUsername\Geant4-install.

Our first step is to create a build directory in which build the example. We will create this alongside our B1 source
directory as follows, working from the Visual Studio Developer Command Prompt:

> cd $HOMEPATHS%
> mkdir Bl-build

2.8. How to Make an Executable Program 39

Book For Application Developers, Release 11.2

We now change to this build directory and run CMake to generate the Visual Studio solution needed to build the B1
application. We pass CMake two arguments

> cd %$HOMEPATH%\Geant4\Bl-build
> cmake —-DCMAKE_PREFIX PATH="%$HOMEPATH%\Geant4-install" "$HOMEPATH%\B1"

Here, the first argument points CMake to the install prefix of Geant4. CMAKE_INSTALL_PREFIX may be extended
with additional paths to search for packages, and also set in the environment. See the CMake documentation on
CMAKE_PREFIX_PATH and find_package for more details. As with the examples above, you can also use the
Geant4_DIR variable. The second argument is the path to the source directory of the application we want to build.
Here it’s just the B1 directory as discussed earlier. You should of course adapt it to where you copied the B1 source
directory. In both cases the arguments are quoted in case of the paths containing spaces.

CMake will now run to configure the build and generate Visual Studio solutions and you will see output similar to

—— Building for: Visual Studio 15 2017

—— The C compiler identification is MSVC 19.11.25547.0

—— The CXX compiler identification is MSVC 19.11.25547.0

—— Check for working C compiler: C:/Program Files (x86)/Microsoft Visual Studio/2017/Community/
—VC/Tools/MSVC/14.11.25503/bin/Hostx86/x86/cl.exe

—— Check for working C compiler: C:/Program Files (x86)/Microsoft Visual Studio/2017/Community/
—VC/Tools/MSVC/14.11.25503/bin/Hostx86/x86/cl.exe —— works

—— Detecting C compiler ABI info

—— Detecting C compiler ABI info - done

—— Check for working CXX compiler: C:/Program Files (x86)/Microsoft Visual Studio/2017/Community/
—VC/Tools/MSVC/14.11.25503/bin/Hostx86/x86/cl.exe

—— Check for working CXX compiler: C:/Program Files (x86)/Microsoft Visual Studio/2017/Community/
—VC/Tools/MSVC/14.11.25503/bin/Hostx86/x86/cl.exe —— works

—— Detecting CXX compiler ABI info

—— Detecting CXX compiler ABI info - done

—— Detecting CXX compile features

—— Detecting CXX compile features - done

—— Configuring done

~— Generating done

—— Build files have been written to: C:/Users/YourUsername/Bl-build

If you now list the contents of you build directory, you can see the files generated:

> dir /B
ALL_BUILD.VCXprosj
ALL_BUILD.vcxproj.filters
Bl.sln

Bl.vcxproj
Bl.vcxproj.filters
CMakeCache.txt

CMakeFiles
cmake_install.cmake
exampleBl.in
exampleBl.out
exampleBl.vcxproj
exampleBl.vcxproj.filters
init_vis.mac
INSTALL.VCXpProj
INSTALL.vcxproj.filters
runl.mac

run2.mac

vis.mac
ZERO_CHECK.vcxproj
ZERO_CHECK.vcxproj.filters

Note the B1 . s1n solution file and that all the scripts for running the exampleB1 application we’re about to build have
been copied across. With the solution available, we can now build by running cmake to drive MSBuild:

> cmake --build . --config Release

40 Chapter 2. Getting Started with Geant4 - Running a Simple Example

https://cmake.org/cmake/help/v3.16/variable/CMAKE_PREFIX_PATH.html
https://cmake.org/cmake/help/v3.16/variable/CMAKE_PREFIX_PATH.html#variable:CMAKE_PREFIX_PATH
https://cmake.org/cmake/help/v3.16/command/find_package.html#search-procedure

Book For Application Developers, Release 11.2

Solution based builds are quite verbose, but you should not see any errors at the end. In the above, we have built the
B1 program in Release mode, meaning that it is optimized and has no debugging symbols. As with building Geant4
itself, this is chosen to provide optimum performance. If you require debugging information for your application,
simply change the argument to RelWithDebInfo. Note that in both cases you must match the configuration of
your application with that of the Geant4 install, i.e. if you are building the application in Re 1ease mode, then ensure
it uses a Release build of Geant4. Link and/or runtime errors may result if mixed configurations are used.

After running the build, if we list the contents of the build directory again we see:

> dir /B
ALL_BUILD.vCXpProj
ALL_BUILD.vcxproj.filters
Bl.sln

Bl.vcxproj
Bl.vcxproj.filters
CMakeCache.txt

CMakeFiles
cmake_install.cmake
exampleBl.dir
exampleBl.in
exampleBl.out
exampleBl.vcxproj
exampleBl.vcxproj.filters
init_vis.mac
INSTALL.vVCXpProj
INSTALL.vcxproj.filters
Release

runl.mac

run2.mac

vis.mac

Win32

ZERO_CHECK.vcxXproj
ZERO_CHECK.vcxproj.filters

> dir /B Release
exampleBl.exe

Here, the Release subdirectory contains the executable, and the main build directory contains all the .mac scripts
for running the program. If you build in different modes, the executable for that mode will be in a directory named for
that mode, e.g. RelWithDebInfo/exampleBl.exe. You can now run the application in place:

> .\Release\exampleBl.exe

KhkhkhkhkhkhkhkhkhhkhkhkhkhkhA A A A A A A A Ak hkhkhkhkhkhkhkhkhkhkhk kA kA A A A A A Ak ko kkkkk
Geant4 version Name: geant4-11-02 [MT] (8-December-2023)
<< in Multi-threaded mode >>
Copyright : Geant4 Collaboration
References : NIM A 506 (2003), 250-303
: IEEE-TNS 53 (2006), 270-278
: NIM A 835 (2016), 186-225
WWW : http://geant4.org/

R R o T o L S e R e

<<< Reference Physics List QBBC

Visualization Manager instantiating with verbosity "warnings (3)"...
Visualization Manager initialising...

Registering graphics systems...

Note that the exact output shown will depend on how both Geant4 and your application were configured. Further
output and behaviour beyond the Registering graphics systems. .. line will depend on what UI and Vi-
sualization drivers your Geant4 install supports.

Whilst the Visual Studio Developer Command prompt provides the simplest way to build an application, the generated
Visual Studio Solution file (B1 . s1n in the above example) may also be opened directly in the Visual Studio IDE. This

2.8. How to Make an Executable Program 41

Book For Application Developers, Release 11.2

provides a more comprehensive development and debugging environment, and you should consult its documentation
if you wish to use this.

One key CMake related item to note goes back to our listing of the headers for the application in the call to
add_executable. Whilst CMake will naturally ignore these for configuring compilation of the application, it
will add them to the Visual Studio Solution. If you do not list them, they will not be editable in the Solution in the
Visual Studio IDE.

2.8.2 Use of Geant4Config.cmake With £ind_package in CMake

The Geant4Config.cmake file installed by Geant4 is designed to be used with CMake’s find_package command.
CMake will search for the file using a standard set of paths used by find_package, or via the Geant4_DIR.
When found, it sets several CMake variables and provides a mechanism for checking and activating optional features
of Geant4 if your application requires these. The simplest possible usage of find_package and these variables to
configure an application or library requiring Geant4 is:

find_package (Geant4 REQUIRED) # Find Geant4
add_executable (myg4app myg4app.cc) # Compile application
target_link_libraries (mygdapp ${Geant4_ LIBRARIES}) # Link it to Geant4

The Geant4_LIBRARIES variable holds the list of CMake Imported Targets for the Geant4 libraries. These set and
propagate all Usage Requirements of Geant4 to the consuming target(s) (the myg4app executable in the above).

The minimal example just requires that a Geant4 install be found. A version number may be supplied to search for an
install greater than or equal to the supplied version, e.g.

find_package (Geant4 10.0 REQUIRED)

makes CMake search for a Geant4 install whose version number is greater than or equal to 10.0. An exact version
number may also be specified:

find_package (Geant4 10.4.0 EXACT REQUIRED)

In both cases, CMake will fail with an error if a Geant4 install meeting these version requirements is not found.

Geant4 can be installed with many optional components, and the presence of these can also be required and activated
by passing extra “component” arguments. For example, to require that Geant4 is found and that it has support for
gdml and Qt:

find_package (Geant4 REQUIRED gdml qgt)

which will fail if the found install was not built with these options. If you want to activate components only if they
exist, you can use the pattern

find_package (Geant4 REQUIRED)
find_package (Geant4 QUIET OPTIONAL_COMPONENTS qt)

which will require CMake to locate a core install of Geant4, and then check for and activate Qt support if the install
provides it, continuing without error otherwise. A key thing to note here is that you can call find_package multiple
times to append configuration of components. If you use this pattern and need to check if a component was found, you
can use the Geant4_ <COMPONENTNAME>_FOUND variables which are set after the call to find_package.

Some components are “passive” in that they just indicate support is available, others are “active” in that they indicate
support for and activate use of the component in the application linking to the targets in Geant4_LIBRARIES. A
partial list of the most useful components and their behaviour is given below, but for a full list, please see the listing in
the installed Geant4Config. cmake file.

42 Chapter 2. Getting Started with Geant4 - Running a Simple Example

https://cmake.org/cmake/help/v3.16/command/find_package.html
https://cmake.org/cmake/help/v3.16/command/find_package.html
https://cmake.org/cmake/help/v3.16/manual/cmake-buildsystem.7.html#imported-targets
https://cmake.org/cmake/help/v3.16/manual/cmake-buildsystem.7.html#build-specification-and-usage-requirements

Book For Application Developers, Release 11.2

* multithreaded
Geant4_multithreaded_FOUND is TRUE if the install of Geant4 was built with multithreading support.
Note that this is a passive option and only indicates availability of multithreading support! Multithreading
in your application code requires creation and usage of the appropriate C++ objects and interfaces as
described in this guide.

e gdml
Geant4_gdml_FOUND is TRUE if the install of Geant4 was built with GDML support.
Note that this is a passive option, and indicates support for GDML is availble in the found install.

e ui_all
Activates all available Ul drivers. Does not set any variables, and never causes CMake to fail. It is recommended
to use this over specific Ul drivers unless your application has strong requirements.

e vis_all
Activates all available Visualization drivers. Does not set any variables, and never causes CMake to fail. It is
recommended to use this over specific Vis drivers unless your application has strong requirements.

* ui_tcsh
Geant4_ui_tcsh_FOUND is TRUE if the install of Geant4 provides the TCsh command line User Interface.
Using this component activates and allows use of the TCsh command line interface in the linked application.

* ui_win32
Geant4_ui_win32_FOUND is TRUE if the install of Geant4 provides the Win32 command line User In-
terface. Using this component activates and allows use of the Win32 command line interface in the linked
application.

e motif
Geant4_motif_FOUND is TRUE if the install of Geant4 provides the Motif(Xm) User Interface and Visu-
alization driver. Using this component activates and allows use of the Motif User Interface and Visualization
Driver in the linked application.

L] qt
Geant4_qgt_FOUND is TRUE if the install of Geant4 provides the Qt User Interface and Visualization driver.
Using this component activates and allows use of the Qt User Interface and Visualization Driver in the linked
application.

* vis_raytracer_x11
Geant4_vis_raytracer_x11_FOUND is TRUE if the install of Geant4 provides the X11 interface to the
RayTracer Visualization driver. Using this component activates and allows use of the RayTracer X11 Visualiza-
tion Driver in the linked application.

* vis_opengl_x11
Geant4_vis_opengl_x11_FOUND is TRUE if the install of Geant4 provides the X11 interface to the
OpenGL Visualization driver. Using this component activates and allows use of the X11 OpenGL Visualization
Driver in the linked application.

* vis_opengl_win32
Geant4_vis_opengl_win32_FOUND is TRUE if the install of Geant4 provides the Win32 interface to the
OpenGL Visualization driver. Using this component activates and allows use of the Win32 OpenGL Visualiza-
tion Driver in the linked application.

* vis_openinventor
Geant4_vis_openinventor_FOUND is TRUE if the install of Geant4 provides the Openlnventor Visual-
ization driver. Using this component activates and allows use of the Openlnventor Visualization Driver in the
linked application.

e vis_toolssg_x11_gles
Geant4_vis_toolssg_x11_gles_FOUND is TRUE if the install of Geant4 provides the ToolsSG visual-
ization driver with X11 backend. Using this component allows use of the ToolsSG Visualization Driver in the
linked application.

* vis_toolssg_xt_gles
Geant4_vis_toolssg_xt_gles_FOUND is TRUE if the install of Geant4 provides the ToolsSG visual-
ization driver with Motif backend. Using this component allows use of the ToolsSG Visualization Driver in the
linked application.

e vis_toolssg_qgt_gles

2.8. How to Make an Executable Program 43

Book For Application Developers, Release 11.2

Geant4_vis_toolssg_gt_gles_FOUND is TRUE if the install of Geant4 provides the ToolsSG visual-
ization driver with Qt5 backend. Using this component allows use of the ToolsSG Visualization Driver in the
linked application.

* vis_toolssg_windows_gles
Geant4_vis_toolssg_windows_gles_FOUND is TRUE if the install of Geant4 provides the ToolsSG
visualization driver with Windows backend. Using this component allows use of the ToolsSG Visualization
Driver in the linked application.

e vis_Vtk
Geant4_vis_Vtk_FOUND is TRUE if the install of Geant4 provides the Vtk visualization driver. Using this
component allows use of the Vtk Visualization Driver in the linked application.

2.9 How to Set Up an Interactive Session

2.9.1 Introduction

Roles of the “intercoms” category

The “intercoms” category provides an expandable command interpreter. It is the key mechanism of GEANT4 to
realize secure user interactions across categories without being annoyed by dependencies among categories. GEANT4
commands can be used in an interactive session, a batch mode with a macro file, or a direct C++ call.

User Interfaces to drive the simulation

GEANT4 can be controlled by a series of GEANT4 Ul commands. The “intercoms” category provides the abstract class
G4UIsession that processes interactive commands. The concrete implementations of (graphical) user interface are
provided in the “interfaces” category. The strategy realize to adopt various user interface tools, and allows GEANT4 to
utilize the state-of-the-art GUI tools such as Motif, Qt, and Java etc. The following interfaces is currently available;

1. Command-line terminal (dumb terminal and tcsh-like terminal)
2. Xm, Qt, Win32, variations of the above terminal by using a Motif, Qt, Windows widgets
3. GAG, a fully graphical user interface and its network extension GainServer of the client/server type.

Implementation of the user sessions (1 and 2) is included in the source/interfaces/basic directory. As for
GAG, the front-end class is included in the source/interfaces/GAG directory, while its partner GUI package
MOMO jar is available under the environments/MOMO directory. MOMO jar, Java archive file, contains not only
GAGQG, but also GGE and other helper packages.

2.9.2 A Short Description of Available Interfaces

G4UIterminal

This interface opens a session on a command-line terminal. G4UIterminal runs on all supported platforms. There
are two kinds of shells, G4UIcsh and G4UItcsh. G4UItcsh supports tesh-like readline features (cursor and
command completion) and works on Linux on Mac, while G4UIcsh is a plain standard input (cin) shell that works
on all platforms. The following built-in commands are available in G4UIterminal;

cd, pwd change, display the current command directory.

Is, lc list commands and subdirectories in the current directory.
history show previous commands.

thistoryID reissue previous command.

?command show current parameter values of the command.
help command show command help.

44 Chapter 2. Getting Started with Geant4 - Running a Simple Example

Book For Application Developers, Release 11.2

exit terminate the session.

G4Ultcsh supports user-friendly key bindings a-la-tcsh. G4UItcsh runs on Linux and Mac. The following keybind-
ings are supported;

AA move cursor to the top

AB backward cursor ([LEFT] cursor)

AC (except Windows terminal) abort a run (soft abort) during event processing. A program will be terminated
while accepting a user command.

AD delete/exit/show matched list

AE move cursor to the end

AF forward cursor ([RIGHT] cursor)

AK clear after the cursor

AN next command ([DOWN] cursor)

AP previous command ([UP] cursor)

TAB command completion

DEL backspace

BS backspace

The example below shows how to set a user’s prompt.

G4UItcsh* tcsh = new G4UItcsh();
tcsh—> SetPrompt ("%s>");

The following strings are supported as substitutions in a prompt string.

%s current application status
%/ current working directory
%h history number

Command history in a user’s session is saved in a file $ (HOME) /.g4_hist that is automatically read at the next
session, so that command history is available across sessions.

G4UIXm, GAUIQt and G4UIWin32 classes

These interfaces are versions of GAUIterminal implemented over libraries Motif, Qt and WIN32 respectively.
G4UIXm uses the Motif XmCommand widget, G4UIOQt the Qt dialog widget, and G4UIWin32 the Windows “edit”
component to do the command capturing. These interfaces are useful if working in conjunction with visualization
drivers that use the Xt library, Qt library or the WIN32 one.

A command box is at disposal for entering or recalling GEANT4 commands. Command completion by typing “TAB”
key is available in the command box. The shell commands “exit, cont, help, Is, cd. ..” are also supported. A menu bar
can be customized through the AddMenu and AddButton method. Ex:

/gui/addMenu test Test

/gui/addButton test Init /run/initialize

/gui/addButton test “Set gun” “/control/execute gun.g4m”
/gui/addButton test “Run one event” “/run/beamOn 1”

G4UIXm runs on Unix/Linux with Motif. G4UIQt run everywhere with Qt. G4AUIWin32 runs on Windows.

2.9. How to Set Up an Interactive Session 45

Book For Application Developers, Release 11.2

G4UIGAG and G4UIGainServer classes

They are front-end classes of GEANT4 which make connections with their respective graphical user interfaces, GAG
(GEANT4 Adaptive GUI) via pipe, and Gain (GEANT4 adaptive interface for network) via sockets. While GAG must
run on the same system (Windows or Unixen) as a GEANT4 application, Gain can run on a remote system (Windows,
Linux, etc.) in which JRE (Java Runtime Environment) is installed. A GEANT4 application is invoked on a Unix
(Linux) system and behaves as a network server. It opens a port, waiting the connection from the Gain. Gain has
capability to connect to multiple GEANT4 “servers” on Unixen systems at different hosts.

Client GUIs, GAG and Gain have almost similar look-and-feel. So, GAG’s functionalities are briefly explained here.
Please refer to the URL previously mentioned for details.

Using GAG, user can select a command, set its parameters and execute it. It is adaptive, in the sense that it reflects
the internal states of GEANT4 that is a state machine. So, GAG always provides users with the GEANT4 commands
which may be added, deleted, enabled or disabled during a session. GAG does nothing by itself but to play an
intermediate between user and an executable simulation program via pipes. GEANT4‘s front-end class GAUIGAG
must be instantiated to communicate with GAG. GAG runs on Linux and Windows. MOMO . jar is supplied in the
GEANT4 source distribution and can be run by a command:

%java —jar /path/to/geant4.10.00/environments/MOMO/MOMO. jar

GAG has following functions.

GAG Menu: The menus are to choose and run a GEANT4 executable file, to kill or exit a GEANT4 process and to exit
GAG. Upon the normal exit or an unexpected death of the GEANT4 process, GAG window are automatically
reset to run another GEANT4 executable.

GEANT4 Command tree: Upon the establishment of the pipe connection with the GEANT4 process, GAG displays
the command menu, using expandable tree browser whose look and feel is similar to a file browser. Disabled
commands are shown in opaque. GAG doesn’t display commands that are just below the root of the command
hierarchy. Direct type-in field is available for such input. Guidance of command categories and commands
are displayed upon focusing. GAG has a command history function. User can re-execute a command with old
parameters, edit the history, or save the history to create a macro file.

Command Parameter panel: GAG’s parameter panel is the user-friendliest part. It displays parameter name, its
guidance, its type(s) (integer, double, Boolean or string), omittable, default value(s), expression(s) of its range
and candidate list(s) (for example, of units). Range check is done by intercoms and the error message from it is
shown in the pop-up dialog box. When a parameter component has a candidate list, a list box is automatically
displayed . When a file is requested by a command, the file chooser is available.

Logging: Log can be redirected to the terminal (xterm or cygwin window) from which GAG is invoked. It can be
interrupted as will, in the middle of a long session of execution. Log can be saved to a file independent of the
above redirection . GAG displays warning or error messages from GEANT4 in a pop-up warning widget.

2.9.3 How to Select Interface in Your Applications

To choose an interface (G4UIxxx where xxx = terminal,Xm, Win32, Qt, GAG, GainServer)inyour
programs, there are two ways.

* Calling G4UIxxx directly:
#include "G4Uixxx.hh"

G4UIsession* session = new G4UIxxx;
session—-> SessionStart ();

delete session;

Note: For using a tcsh session, G4UIterminal is instantiated like:

46 Chapter 2. Getting Started with Geant4 - Running a Simple Example

Book For Application Developers, Release 11.2

G4UIsession* session = new G4UIterminal (new G4UItcsh);

If the user wants to deactivate the default signal handler (soft abort) raised by “Ctr-C”, the false flag can be set
in the second argument of the G4UIterminal constructor like

G4UIsession* session = new G4UIterminal (new G4UItcsh, false).

» Using G4UIExecutive This is more convenient way for choosing a session type, that can select a session at
run-time according to a rule described below.

#include "G4UIExecutive.hh"

G4UIExecutivex ui = new G4UIExecutive (argc, argv);
ui->SessionStart () ;

delete ui;

G4UIExecutive has several ways to choose a session type. A session is selected in the following rule. Note that

session types are identified by a case-insensitive characters (“qt”, “xm”, “win32”, “gag”, “tcsh”, “csh”).

1. Check the argument of the constructor of G4UIExecutive. = You can specify a session like new
G4UIExecutive (argc, argv, "gt");

2. Check environment variables, G4UI_USE_XX (XX= QT, XM, WIN32, GAG, TCSH). Select a session
if the corresponding environment variable is defined. Variables are checked in the order of QT, XM, WIN32,
GAG, TCSH if multiple variables are set.

3. Check ~/.g4session . You can specify the default session type and a session type by each application in
that file. The below shows a sample of .g4session.

tcsh # default session
exampleNO3 Qt # (application name / session type)
myapp tcsh
hoge csh
4. Guess the best session type according to build session libraries. The order of the selection is Qt, tcsh, Xm.

In any cases, G4UIExecutive checks if a specified session is build or not. If not, it goes the next step. A terminal
session with csh is the fallback session. If none of specified session is available, then it will be selected.

2.10 How to Execute a Program

2.10.1 Introduction

A GEANT4 application can be run either in

* ‘purely hard-coded’ batch mode

¢ batch mode, but reading a macro of commands
* interactive mode, driven by command lines

* interactive mode via a Graphical User Interface

The last mode will be covered in How fo Set Up an Interactive Session. The first three modes are explained here.

2.10. How to Execute a Program 47

Book For Application Developers, Release 11.2

2.10.2 ‘Hard-coded’ Batch Mode
Below is a modified main program of the basic example B1 to represent an application which will run in batch mode.

Listing 2.19: An example of the main () routine for an application
which will run in batch mode.

using namespace Bl;

int main ()

{
// Construct the default run manager
auto runManager = G4RunManagerFactory::CreateRunManager () ;

// Set mandatory initialization classes
runManager—>SetUserInitialization (new DetectorConstruction);
runManager—>SetUserInitialization (new QGSP_BIC_EMY) ;
runManager—>SetUserInitialization (new ActionInitialization);

// Initialize G4 kernel
runManager—>Initialize();

// start a run
int numberOfEvent = 1000;
runManager—>BeamOn (numberOfEvent) ;

// job termination
delete runManager;
return 0;

Even the number of events in the run is ‘frozen’. To change this number you must at least recompile main ().

2.10.3 Batch Mode with Macro File

Below is a modified main program of the basic example B1 to represent an application which will run in batch mode,
but reading a file of commands.

Listing 2.20: An example of the main () routine for an application
which will run in batch mode, but reading a file of commands.

using namespace Bl;

int main(int argc,charxx argv)
{
// Construct the default run manager
auto runManager = G4RunManagerFactory::CreateRunManager () ;

// Set mandatory initialization classes
runManager—>SetUserInitialization (new DetectorConstruction);
runManager—>SetUserInitialization (new QGSP_BIC_EMY) ;
runManager—>SetUserInitialization (new ActionInitialization);

// Initialize G4 kernel
runManager—>Initialize();

//read a macro file of commands

G4UImanager* UI = G4UImanager: :GetUIpointer();
G4String command = "/control/execute ";
G4String fileName = argv[l];

UI->ApplyCommand (command+fileName) ;

(continues on next page)

48 Chapter 2. Getting Started with Geant4 - Running a Simple Example

Book For Application Developers, Release 11.2

(continued from previous page)

// job termination
delete runManager;
return 0;

}

This example will be executed with the command:

> exampleBl runl.mac

where exampleB1 is the name of the executable and runl.mac is a macro of commands located in the current
directory, which could look like:

Listing 2.21: A typical command macro.

#

Macro file for myProgram

#

set verbose level for this run

#

/run/verbose 2

/event /verbose 0

/tracking/verbose 1

#

Set the initial kinematic and run 100 events
electron 1 GeV to the direction (1.,0.,0.)
#

/gun/particle e-

/gun/energy 1 GeV

/run/beamOn 100

Indeed, you can re-execute your program with different run conditions without recompiling anything.

Note: many G4 category of classes have a verbose flag which controls the level of ‘verbosity’.
Usually verbose=0 means silent. For instance

e /run/verbose is for the RunManager

e /event/verbose is for the EventManager

e /tracking/verbose is for the TrackingManager
e ...etc...

2.10.4 Interactive Mode Driven by Command Lines

Below is an example of the main program for an application which will run interactively, waiting for command lines
entered from the keyboard.

Listing 2.22: An example of the main () routine for an application
which will run interactively, waiting for commands from the keyboard.

using namespace Bl;

int main (int argc,charxx argv)

{
// Construct the default run manager
G4RunManager* runManager = new G4RunManager;

// Set mandatory initialization classes
(continues on next page)

2.10. How to Execute a Program 49

Book For Application Developers, Release 11.2

(continued from previous page)

runManager—>SetUserInitialization (new DetectorConstruction);
runManager—>SetUserInitialization (new QGSP_BIC_EMY) ;
runManager—>SetUserInitialization (new ActionInitialization);

// Initialize G4 kernel
runManager->Initialize();

// Define UI terminal for interactive mode
G4UIsession * session = new G4UIterminal;
session->SessionStart () ;

delete session;

// job termination

delete runManager;
return O;

This example will be executed with the command:

> exampleBl

where exampleB1 is the name of the executable.
The G4 kernel will prompt:

Idle>

and you can start your session. An example session could be:
Run 5 events:

Idle> /run/beamOn 5

Switch on tracking/verbose and run one more event:

Idle> /tracking/verbose 1
Idle> /run/beamOn 1

Change primary particle type an run more events:

Idle> /gun/particle mu+
Idle> /gun/energy 10 GeV
Idle> /run/beamOn 1

Idle> /gun/particle proton
Idle> /gun/energy 100 MeV
Idle> /run/beamOn 3

Idle> exit

For the meaning of the machine state Id1le, see as a state machine.

This mode is useful for running a few events in debug mode and visualizing them. How to include visualization will
be shown in the next, general case, example.

50 Chapter 2. Getting Started with Geant4 - Running a Simple Example

Book For Application Developers, Release 11.2

2.10.5 General Case

All basic examples in the examples/basic subdirectory of the GEANT4 source distribution have the following
main () structure. The application can be run either in batch or interactive mode.

Listing 2.23: The typical main () routine from the examples directory.

2.10. How to Execute a Program

Book For Application Developers, Release 11.2

Listing 2.24: The init .mac macro

The init_vis.mac macro has just added a line with a call to vis.mac:

The vis.mac macro defines a minimal setting for drawing volumes and trajectories accumulated for all events of a
given run:

Also, this example demonstrates that you can read and execute a macro from another macro or interactively:

52 Chapter 2. Getting Started with Geant4 - Running a Simple Example

Book For Application Developers, Release 11.2

2.11 How to Visualize the Detector and Events

2.11.1 Introduction

This section briefly explains how to perform GEANT4 Visualization. The description here is based on the sample
program examples/basic/B1l. More details are given in Visualization.

2.11.2 Visualization Drivers

The GEANT4 visualization system was developed in response to a diverse set of requirements:

Quick response to study geometries, trajectories and hits
High-quality output for publications

Flexible camera control to debug complex geometries

Tools to show volume overlap errors in detector geometries
Interactive picking to get more information on visualized objects

Nk L=

No one graphics system is ideal for all of these requirements, and many of the large software frameworks into which
GEANT4 has been incorporated already have their own visualization systems, so GEANT4 visualization was designed
around an abstract interface that supports a diverse family of graphics systems. Some of these graphics systems use
a graphics library compiled with GEANT4, such as OpenGL, Qt or Openlnventor, while others involve a separate
application, such as HepRApp or DAWN.

You need not use all visualization drivers. You can select those suitable to your purposes. In the following, for
simplicity, we assume that the GEANT4 libraries are built with the Qt driver.

If you build GEANT4 using the standard CMake procedure, you include Qt by setting GEANT4_USE_QT to ON.

In order to use the the Qt driver, you need the OpenGL library, which is installed in many platforms by default and
CMake will find it. (If you wish to “do-it-yourself”, see Installing Visualization Drivers.) The makefiles then set
appropriate C-pre-processor flags to select appropriate code at compilation time.

If you are using multithreaded mode, from GEANT4 version 10.2 event drawing is performed by a separate thread and
you may need to optimise this with special /vis/multithreading commands - see Multithreading commands.

2.11.3 How to Incorporate Visualization Drivers into an Executable

Most GEANT4 examples already incorporate visualization drivers. If you want to include visualization in your own
GEANT4 application, you need to instantiate and initialize a subclass of G4VisManager that implements the pure
virtual function RegisterGraphicsSystems ().

The provided class G4VisExecutive can handle all of this work for you. G4VisExecutive is sensitive to the
G4VIS_. .. variables (that you either set by hand or that are set for you by GNUMake or CMake configuration):

auto visManager = new G4VisExecutive (argc, argv);

See below for how to use in your main program. Basic example B1 is a good place to look..

If you really want to write your own subclass, rather than use G4VisExecutive, you may do so. You will see how
to do this by looking at G4VisExecutive. icc. This subclass must be compiled in the user’s domain to force the
loading of appropriate libraries in the right order. A typical extract is:

RegisterGraphicsSystem (new G4DAWNFILE) ;

#ifdef G4VIS_USE_OPENGLX
(continues on next page)

2.11. How to Visualize the Detector and Events 53

Book For Application Developers, Release 11.2

(continued from previous page)

RegisterGraphicsSystem (new G40penGLImmediateX) ;
RegisterGraphicsSystem (new G40OpenGLStoredX) ;
#endif

The G4VisExecutive takes ownership of all registered graphics systems, and will delete them when it is deleted
at the end of the user’s job (see below).

If you wish to use G4VisExecutive but register an additional graphics system, XXX say, you may do so either
before or after initializing:

visManager->RegisterGraphicsSytem (new XXX) ;
visManager->Initialize();

An example of a typical main () function is given below.

2.11.4 Writing the main () Method to Include Visualization

Now we explain how to write a visualization manager and the main () function for GEANT4 visualization. In order
that your GEANT4 executable is able to perform visualization, you must instantiate and initialize your Visualization
Manager in the main () function. The typical main () function available for visualization is written in the following
style:

Listing 2.25: The typical main () routine available for visualization.

#include "G4VisExecutive.hh"
int main (int argc,charxx argv) {
// Initialize visualization with the default graphics system
auto visManager = new G4VisExecutive (argc, argv);
// Constructors can also take optional arguments:
// — a graphics system of choice, eg. "OGL"

// — and a verbosity argument - see /vis/verbose guidance.
// auto visManager = new G4VisExecutive (argc, argv, "OGL", "Quiet");
// auto visManager = new G4VisExecutive ("Quiet");

visManager->Initialize();

// Job termination
delete visManager;

return 0;

We recommend you choose the graphics driver at run time - see Controlling Visualization from Commands. This gives
you flexibility to switch drivers easily.

Note that we are here recommending that all jobs instantiate a Visualization Manager. Even in batch mode you
may generate an image using one of the file-writing drivers - TSG_OFFSCREEN, VTK_OFFSCREEN, DAWNFILE,
VRML2FILE, HepRepFile, RayTracer.

Note also that it is your responsibility to delete the Visualization Manager. A good example of amain () function is
examples/basic/Bl/exampleBl.cc.

54 Chapter 2. Getting Started with Geant4 - Running a Simple Example

Book For Application Developers, Release 11.2

2.11.5 Sample Visualization Sessions

Most GEANT4 examples include a vis .mac. Run that macro to see a typical visualization. Read the comments in the
macro to learn a little bit about some visualization commands. The vis.mac also includes commented-out optional
visualization commands. By uncommenting some of these you can see additional visualization features.

2.11.6 For More Information on GEANT4 Visualization

See the Visualization part of this user guide.

2.11. How to Visualize the Detector and Events 55

Book For Application Developers, Release 11.2

56

Chapter 2. Getting Started with Geant4 - Running a Simple Example

CHAPTER
THREE

TOOLKIT FUNDAMENTALS

3.1 Class Categories and Domains

3.1.1 What is a class category?

In the design of a large software system such as GEANT4, it is essential to partition it into smaller logical units. This
makes the design well organized and easier to develop. Once the logical units are defined independent to each other
as much as possible, they can be developed in parallel without serious interference.

In object-oriented analysis and design methodology by Grady Booch [Booch1994], class categories are used to create
logical units. They are defined as “clusters of classes that are themselves cohesive, but are loosely coupled relative
to other clusters.” This means that a class category contains classes which have a close relationship (for example, the
“has-a” relation). However, relationships between classes which belong to different class categories are weak, i.e.,
only limited classes of these have “uses” relations. The class categories and their relations are presented by a class
category diagram. The class category diagram designed for GEANT4 is shown in the figure below (Fig. 3.1). Each box
in the figure represents a class category, and a “uses” relation by a straight line. The circle at an end of a straight line
means the class category which has this circle uses the other category.

The file organization of the GEANT4 codes follows basically the structure of this class category. This User’s Manual
is also organized according to class categories.

In the development and maintenance of GEANT4, one software team will be assigned to a class category. This team
will have a responsibility to develop and maintain all classes belonging to the class category.

3.1.2 Class categories in GEANT4

The following is a brief summary of the role of each class category in GEANT4.

1. Run and Event
These are categories related to the generation of events, interfaces to event generators, and any secondary parti-
cles produced. Their roles are principally to provide particles to be tracked to the Tracking Management.

2. Tracking and Track
These are categories related to propagating a particle by analyzing the factors limiting the step and applying the
relevant physics processes. The important aspect of the design was that a generalized GEANT4 physics process
(or interaction) could perform actions, along a tracking step, either localized in space, or in time, or distributed
in space and time (and all the possible combinations that could be built from these cases).

3. Geometry and Magnetic Field
These categories manage the geometrical definition of a detector (solid modeling) and the computation of dis-
tances to solids (also in a magnetic field). The GEANT4 geometry solid modeler is based on the ISO STEP
standard and it is fully compliant with it. A key feature of the GEANT4 geometry is that the volume definitions
are independent of the solid representation. By this abstract interface for the G4 solids, the tracking compo-
nent works identically for various representations. The treatment of the propagation in the presence of fields

57

Book For Application Developers, Release 11.2

N
al
T

DA s
N

Fig. 3.1: Class categories in GEANT4.

has been provided within specified accuracy. An OO design allows to exchange different numerical algorithms
and/or different fields (not only B-field), without affecting any other component of the toolkit.

. Particle Definition and Matter

These two categories manage the the definition of materials and particles.

. Physics

This category manages all physics processes participating in the interactions of particles in matter. The abstract
interface of physics processes allows multiple implementations of physics models per interaction or per channel.
Models can be selected by energy range, particle type, material, etc. Data encapsulation and polymorphism make
it possible to give transparent access to the cross sections (independently of the choice of reading from an ascii
file, or of interpolating from a tabulated set, or of computing analytically from a formula). Electromagnetic and
hadronic physics were handled in a uniform way in such a design, opening up the physics to the users.

. Hits and Digitization

These two categories manage the creation of hits and their use for the digitization phase. The basic design and
implementation of the Hits and Digi had been realized, and also several prototypes, test cases and scenarios
had been developed before the alpha-release. Volumes (not necessarily the ones used by the tracking) are
aggregated in sensitive detectors, while hits collections represent the logical read out of the detector. Different
ways of creating and managing hits collections had been delivered and tested, notably for both single hits and
calorimetry hits types. In all cases, hits collections had been successfully stored into and retrieved from an
Object Data Base Management System.

. Visualization

This manages the visualization of solids, trajectories and hits, and interacts with underlying graphical libraries
(the Visualization class category). The basic and most frequently used graphics functionality had been imple-
mented already by the alpha-release. The OO design of the visualization component allowed us to develop
several drivers independently, such as for OpenGL, Qt and Openlnventor (for X11 and Windows), DAWN,
Postscript (via DAWN) and VRML.

58

Chapter 3. Toolkit Fundamentals

Book For Application Developers, Release 11.2

8. Interfaces
This category handles the production of the graphical user interface (GUI) and the interactions with external
software (OODBMS, reconstruction etc.).

3.2 Global Usage Classes

The “global” category in GEANT4 collects all classes, types, structures and constants which are considered of general
use within the GEANT4 toolkit. This category also defines the interface with third-party software libraries (CLHEP,
STL, etc.) and system-related types, by defining, where appropriate, typedefs according to the GEANT4 code
conventions.

3.2.1 Signature of GEANT4 classes

In order to keep an homogeneous naming style, and according to the GEANT4 coding style conventions, each class
part of the GEANT4 kernel has its name beginning with the prefix G4, e.g., G4VHit, G4GeometryManager,
GAProcessVector, etc. Instead of the raw C types, G4 types are used within the GEANT4 code. For the basic
numeric types (int, float, double, etc.), different compilers and different platforms provide different value
ranges. In order to assure portability, the use of G4int, G4float, G4double, G4bool, globally defined, is
preferable. G4 types implement the right generic type for a given architecture.

Basic types

The basic types in GEANT4 are considered to be the following:

e G4int,

* G4long,

e G4float,

* G4double,
* G4bool,

* G4complex,
* G4String.

which currently consist of simple typedefs to respective types defined in the CLHEP, STL or system libraries.
Most definitions of these basic types come with the inclusion of a single header file, globals.hh. This file also
provides inclusion of required system headers, as well as some global utility functions needed and used within the
GEANT4 kernel.

Typedefs to CLHEP classes and their usage

The following classes are typedefs to the corresponding classes of the CLHEP (Computing Library for High
Energy Physics) distribution. For more detailed documentation please refer to the CLHEP documentation.

e G4ThreeVector, G4RotationMatrix, G4LorentzVector and G4LorentzRotation:
Vector classes: defining 3-component (x,y,z) vector entities, rotation of such objects as 3x3 matrices, 4-
component (X,y,z,t) vector entities and their rotation as 4x4 matrices.

e G4Plane3D, G4Transform3D, G4Normal3D, G4Point3D, G4Scale3D,and G4Vector3D:
Geometrical classes: defining geometrical entities and transformations in 3D space.

3.2. Global Usage Classes 59

https://proj-clhep.web.cern.ch/proj-clhep/index.html#docu

Book For Application Developers, Release 11.2

3.2.2 The HEPRandom module in CLHEP

The HEPRandom module, originally part of the GEANT4 kernel, and now distributed as a module of CLHEP, has
been designed and developed starting from the Random class of MC++, the original CLHEP’s HepRandom module
and the Rogue Wave approach in the Math.h++ package. For detailed documentation on the HEPRandom classes see
the CLHEP documentation.

Information written in this manual is extracted from the original manifesto distributed with the HEPRandom package.

The HEPRandom module consists of classes implementing different random engines and different random
distributions. A distribution associated to an engine constitutes a random generator. A distribution class
can collect different algorithms and different calling sequences for each method to define distribution parameters or
range-intervals. An engine implements the basic algorithm for pseudo-random numbers generation.

There are 3 different ways of shooting random values:

1. Using the static generator defined in the HepRandom class: random values are shot using static methods
shoot () defined for each distribution class. The static generator will use, as default engine, a MixMaxRng
object, and the user can set its properties or change it with a new instantiated engine object by using the static
methods defined in the HepRandom class.

2. Skipping the static generator and specifying an engine object: random values are shot using static methods
shoot (*HepRandomEngine) defined for each distribution class. The user must instantiate an engine object
and give it as argument to the shoot method. The generator mechanism will then be by-passed by using the basic
flat () method of the specified engine. The user must take care of the engine objects he/she instantiates.

3. Skipping the static generator and instantiating a distribution object: random values are shot using fire ()
methods (NOT static) defined for each distribution class. The user must instantiate a distribution object giving
as argument to the constructor an engine by pointer or by reference. By doing so, the engine will be associated
to the distribution object and the generator mechanism will be by-passed by using the basic £1at () method of
that engine.

In this guide, we’ll only focus on the static generator (point 1.), since the static interface of HEPRandom is the only
one used within the GEANT4 toolkit.

HEPRandom engines

The class HepRandomEngine is the abstract class defining the interface for each random engine. It implements the
getSeed () and getSeeds () methods which return the initial seed value and the initial array of seeds (if
any) respectively. Many concrete random engines can be defined and added to the structure, simply making them
inheriting from HepRandomEngine. Several different engines are currently implemented in HepRandom, we describe
here five of them:

* HepJamesRandom
It implements the algorithm described in F.James, Comp. Phys. Comm. 60 (1990) 329 for pseudo-random
number generation.

* DRand48Engine
Random engine using the drand48 () and srand48 () system functions from C standard library to imple-
ment the £1lat () basic distribution and for setting seeds respectively. DRand48Engine uses the seed48 ()
function from C standard library to retrieve the current internal status of the generator, which is represented by
3 short values. DRand48Engine is the only engine defined in HEPRandom which intrinsically works in 32 bits
precision. Copies of an object of this kind are not allowed.

* MixMaxRng
Random number engine implementing the MixMax Matrix Generator of Pseudorandom Numbers generator
proposed by N.Z.Akopov, G.K.Saviddy and N.G.Ter-Arutyunian, J.Compt.Phy. 97, (1991) 573 and G.Savvidy
and N.Savvidy, J.Comput.Phys. 97 (1991) 566. This is the default random engine for the static generator; it will
be invoked by each distribution class unless the user sets a different one.

60 Chapter 3. Toolkit Fundamentals

https://proj-clhep.web.cern.ch/proj-clhep/index.html#docu

Book For Application Developers, Release 11.2

* RanluxEngine
The algorithm for RanluxEngine has been taken from the original implementation in FORTRAN77 by Fred
James, part of the MATHLIB HEP library. The initialisation is carried out using a Multiplicative Congruential
generator using formula constants of L’Ecuyer as described in F.James, Comp. Phys. Comm. 60 (1990) 329-
344. The engine provides five different luxury levels for quality of random generation. When instantiating a
RanluxEngine, the user can specify the luxury level to the constructor (if not, the default value 3 is taken). For
example:

RanluxEngine theRanluxEngine (seed, 4);

// instantiates an engine with ‘seed' and the best luxury-level
coo OF

RanluxEngine theRanluxEngine;

// instantiates an engine with default seed value and luxury-level

The class provides a get Luxury () method to get the engine luxury level.
The SetSeed () and SetSeeds () methods to set the initial seeds for the engine, can be invoked specifying
the luxury level. For example:

// static interface
HepRandom: : setTheSeed (seed, 4); // sets the seed to ‘seed' and luxury to 4
HepRandom: : setTheSeed (seed) ; // sets the seed to ‘seed' keeping

// the current luxury level

RanecuEngine

The algorithm for RanecuEngine is taken from the one originally written in FORTRAN77 as part of the MATH-
LIB HEP library. The initialisation is carried out using a Multiplicative Congruential generator using formula
constants of L’Ecuyer as described in F.James, Comp. Phys. Comm. 60 (1990) 329-344. Handling of seeds for
this engine is slightly different than the other engines in HEPRandom. Seeds are taken from a seed table given
an index, the get Seed () method returns the current index of seed table. The set Seeds () method will set
seeds in the local SeedTable at a given position index (if the index number specified exceeds the table’s size,
[index%size] is taken). For example:

// static interface

const G4longx table_entry;
table_entry = HepRandom: :getTheSeeds () ;

// it returns a pointer “table_entry' to the local SeedTable

// at the current ‘index' position. The couple of seeds

// accessed represents the current ‘status' of the engine itself !

G4int index=n;

G4long seeds[2];

HepRandom: : set TheSeeds (seeds, index) ;

// sets the new “index' for seeds and modify the values inside

// the local SeedTable at the ‘index' position. If the index

// 1s not specified, the current index in the table is considered.

The setSeed () method resets the current " status’ of the engine to the original seeds stored in the static table
of seeds in HepRandom, at the specified index.

Except for the RanecuEngine, for which the internal status is represented by just a couple of longs, all the other engines
have a much more complex representation of their internal status, which currently can be obtained only through the
methods saveStatus (), restoreStatus () and showStatus (), which can also be statically called from
HepRandom. The status of the generator is needed for example to be able to reproduce a run or an event in a run at a
given stage of the simulation.

RanecuEngine is probably the most suitable engine for this kind of operation, since its internal status can be
fetched/reset by simply using getSeeds ()/setSeeds () (getTheSeeds ()/setTheSeeds () for the static
interface in HepRandom).

3.2. Global Usage Classes 61

Book For Application Developers, Release 11.2

The static interface in the HepRandom class

HepRandom a singleton class and using a MixMaxRng engine as default algorithm for pseudo-random number gener-
ation. HepRandom defines a static private data member, theGenerator, and a set of static methods to manipulate
it. By means of theGenerator, the user can change the underlying engine algorithm, get and set the seeds, and use
any kind of defined random distribution. The static methods set TheSeed () and getTheSeed () will set and get
respectively the initial seed to the main engine used by the static generator. For example:

HepRandom: : setTheSeed (seed); // to change the current seed to 'seed'
int startSeed = HepRandom::getTheSeed(); // to get the current initial seed
HepRandom: : saveEngineStatus () ; // to save the current engine status on file

HepRandom: : restoreEngineStatus(); // to restore the current engine to a previous
// saved configuration
HepRandom: : showEngineStatus () ; // to display the current engine status to stdout

int index=n;

long seeds[2];

HepRandom: :getTheTableSeeds (seeds, index) ;
// fills ‘seeds' with the values stored in the global
// seedTable at position “index'

Only one random engine can be active at a time, the user can decide at any time to change it, define a new one (if not
done already) and set it. For example:

RanecuEngine theNewEngine;
HepRandom: : setTheEngine (¢theNewEngine) ;

or simply setting it to an old instantiated engine (the old engine status is kept and the new random sequence will start
exactly from the last one previously interrupted). For example:

HepRandom: : setTheEngine (¢myOldEngine) ;

Other static methods defined in this class are:

* void setTheSeeds (const G4longx seeds, G4int)

e const G4longx getTheSeeds ()
To set/get an array of seeds for the generator, in the case of a RanecuEngine this corresponds also to set/get the
current status of the engine.

* HepRandomEnginex getTheEngine ()
To get a pointer to the current engine used by the static generator.

HEPRandom distributions

A distribution-class can collect different algorithms and different calling sequences for each method to define distribu-
tion parameters or range-intervals; it also collects methods to fill arrays, of specified size, of random values, according
to the distribution. This class collects either static and not static methods. A set of distribution classes are defined in
HEPRandom. Here is the description of some of them:

* RandFlat Class to shoot flat random values (integers or double) within a specified interval. The class provides
also methods to shoot just random bits.

* RandExponential Class to shoot exponential distributed random values, given a mean (default mean = 1)

* RandGauss Class to shoot Gaussian distributed random values, given a mean (default = 0) or specifying also a
deviation (default = 1). Gaussian random numbers are generated two at the time, so every other time a number
is shot, the number returned is the one generated the time before.

* RandBreitWigner Class to shoot numbers according to the Breit-Wigner distribution algorithms (plain or
mean”\2).

62 Chapter 3. Toolkit Fundamentals

Book For Application Developers, Release 11.2

RandPoisson Class to shoot numbers according to the Poisson distribution, given a mean (default = 1) (Algo-
rithm taken from W.H.Press et al., Numerical Recipes in C, Second Edition).

3.2.3 The HEPNumerics module

A set of classes implementing numerical algorithms has been developed in GEANT4. Most of the algorithms and
methods have been implemented mainly based on recommendations given in the books:

B.H. Flowers, An introduction to Numerical Methods In C++, Clarendon Press, Oxford 1995.
M. Abramowitz, 1. Stegun, Handbook of mathematical functions, DOVER Publications INC, New York 1965 ;
chapters 9, 10, and 22.

This set of classes includes:

G4ChebyshevApproximation Class creating the Chebyshev approximation for a function pointed by
fFunction data member. The Chebyshev polynomial approximation provides an efficient evaluation of the min-
imax polynomial, which (among all polynomials of the same degree) has the smallest maximum deviation from
the true function.

G4DataInterpolation Class providing methods for data interpolations and extrapolations: Polynomial,
Cubic Spline, ...

G4GaussChebyshevQ

G4GaussHermiteQ

G4GaussJacobiQ

G4GaussLaguerreQ Classes implementing the Gauss-Chebyshev, Gauss-Hermite, Gauss-Jacobi, Gauss-
Laguerre and Gauss-Legendre quadrature methods. Roots of orthogonal polynomials and corresponding weights
are calculated based on iteration method (by bisection Newton algorithm).

G4Integrator Template class collecting integrator methods for generic functions (Legendre, Simpson,
Adaptive Gauss, Laguerre, Hermite, Jacobi).

G4SimpleIntegration Class implementing simple numerical methods (Trapezoidal, MidPoint, Gauss,
Simpson, Adaptive Gauss, for integration of functions with signature: double f(double).

3.2.4 General management classes

The global category defines also a set of utility classes generally used within the kernel of GEANT4. These
classes include:

G4Allocator

A class for fast allocation of objects to the heap through paging mechanism. It’s meant to be used by associating
it to the object to be allocated and defining for it new and delete operators via MallocSingle () and
FreeSingle () methods of G4Allocator.

Note: G4Allocator assumes that objects being allocated have all the same size for the type they represent.
For this reason, classes which are handled by G4A11locator should avoid to be used as base-classes for oth-
ers. Similarly, base-classes of sub-classes handled through G4A1locator should not define their (eventually
empty) virtual destructors inlined; such measure is necessary in order also to prevent bad aliasing optimisations
by compilers which may potentially lead to crashes in the attempt to free allocated chunks of memory when
using the base-class pointer or not.

The list of allocators implicitly defined and used in GEANT4 is reported here:
events (G4Event): anEventAllocator

tracks (G4 Track): aTrackAllocator

stacked tracks (G4StackedTrack): aStackedTrackAllocator

primary particles (G4PrimaryParticle): aPrimaryParticleAllocator
primary vertices (G4PrimaryVertex): aPrimaryVertexAllocator

3.2. Global Usage Classes 63

Book For Application Developers, Release 11.2

— decay products (G4DecayProducts): aDecayProductsAllocator

— digits collections of an event (G4DCofThisEvent): anDCoTHAllocator

— digits collections (G4DigiCollection): aDCAllocator

— hits collections of an event (G4HCofThisEvent): anHCoTHAllocator

— hits collections (G4HitsCollection): anHCAllocator

— touchable histories (G4TouchableHistory): aTouchableHistoryAllocator

— trajectories (G4Trajectory): aTrajectoryAllocator

— trajectory points (G4TrajectoryPoint): aTrajectoryPointAllocator

— trajectory containers (G4TrajectoryContainer): aTrajectoryContainerAllocator

— navigation levels (G4NavigationLevel): aNavigationLevel Allocator

— navigation level nodes (G4NavigationLevelRep): aNavigLevelRepAllocator

- reference-counted handles (G4ReferenceCountedHandle<X>): aRCHAllocator

— counted objects (G4CountedOb ject <X>): aCountedObjectAllocator

— HEPEvt primary particles (G4HEPEvtParticle): aHEPEvtParticleAllocator

— electron occupancy objects(G4ElectronOccupancy): aElectronOccupancyAllocator

— “rich” trajectories (G4RichTrajectory): aRichTrajectoryAllocator

— “rich” trajectory points (G4RichTrajectoryPoint): aRichTrajectoryPointAllocator

— “smooth” trajectories (G4 SmoothTrajectory): aSmoothTrajectoryAllocator

— “smooth” trajectory points (G4SmoothTrajectoryPoint): aSmoothTrajectoryPointAllocator

— “ray” trajectories (G4RayTrajectory): G4RayTrajectoryAllocator

— “ray” trajectory points (G4RayTrajectoryPoint): G4RayTrajectoryPointAllocator
For each of these allocators, accessible from the global namespace, it is possible to monitor the allocation in
their memory pools or force them to release the allocated memory (for example at the end of a run):

// Return the size of the total memory allocated for tracks
//
aTrackAllocator.GetAllocatedSize () ;

// Return allocated storage for tracks to the free store
//

aTrackAllocator.ResetStorage () ;

G4ReferenceCountedHandle

Template class acting as a smart pointer and wrapping the type to be counted. It performs the reference counting
during the life-time of the counted object.

G4FastVector

Template class defining a vector of pointers, not performing boundary checking.

G4PhysicsVector

Defines a physics vector which has values of energy-loss, cross-section, and other physics values of a particle in
matter in a given range of the energy, momentum, etc. This class serves as the base class for a vector having var-
ious energy scale, for example like ‘log’ (G4PhysicsLogVector) ‘linear’ (G4PhysicsLinearVector),
‘free’ (G4PhysicsFreeVector), etc.

G4LPhysicsFreeVector

Implements a free vector for low energy physics cross-section data. A subdivision method is used to find the
energylmomentum bin.

G4PhysicsOrderedFreeVector

A physics ordered free vector inherits from G4PhysicsVector. It provides, in addition, a method for the
user to insert energy/value pairs in sequence. Methods to retrieve the max and min energies and values from the
vector are also provided.

G4Timer

Utility class providing methods to measure elapsed user/system process time. Uses <sys/times.h> and
<unistd.h> - POSIX.I.

G4UserLimits

Class collecting methods for get and set any kind of step limitation allowed in GEANT4.

G4UnitsTable

Placeholder for the system of units in GEANT4.

64

Chapter 3. Toolkit Fundamentals

Book For Application Developers, Release 11.2

3.3 System of units

3.3.1 Basic units

GEANT4 offers the user the possibility to choose and use the preferred units for any quantity. In fact, GEANT4 takes
care of the units. Internally a consistent set on units based on the HepSystemOfUnits is used:

millimeter (mm)
nanosecond (ns)

Mega electron Volt (MeV)
positron charge (eplus)
degree Kelvin (kelvin)
the amount of substance (mole)
luminous intensity (candela)
radian (radian)
steradian (steradian)

All other units are defined from the basic ones.
For instance:

millimeter = mm = 1;
meter = m = 1000+mm;

m3 = mxmxm;

In the file SCLHEP_BASE_DIR/include/CLHEP/Units/SystemOfUnits.h from the CLHEP installation,
one can find all units definitions.

One can also change the system of units to be used by the kernel.

3.3.2 Input your data

Avoid ‘hard coded’ data

The user must give the units for the data to introduce:

G4double Size = 15+km, KineticEnergy = 90.3+GeV, density = 1lsmg/cm3;

GEANT4 assumes that these specifications for the units are respected, in order to assure independence from the units
chosen in the client application.

If units are not specified in the client application, data are implicitly treated in internal GEANT4 system units; this
practice is however strongly discouraged.

If the data set comes from an array or from an external file, it is strongly recommended to set the units as soon as the
data are read, before any treatment. For instance:

for (int j=0, j<jmax, Jj++) CrossSection[]j] »= millibarn;

my calculations

3.3. System of units 65

Book For Application Developers, Release 11.2

Interactive commands

Some built-in commands from the User Interface (UI) also require units to be specified.
For instance:

/gun/energy 15.2 keV
/gun/position 3 2 -7 meter

If units are not specified, or are not valid, the command is refused.

3.3.3 Output your data

You can output your data with the wished units. To do so, it is sufficient to divide the data by the corresponding unit:

G4cout << KineticEnergy/keV << " keV";
G4cout << density/ (g/cm3) << " g/cm3";

Of course, G4cout << KineticEnergy will print the energy in the internal units system.

There is another way to output the data. Let GEANT4 choose the most appropriate units for the actual numerical value
of the data. It is sufficient to specify to which category the data belong to (Length, Time, Energy, etc.). For example:

G4cout << G4BestUnit (StepSize, "Length");

StepSize will be printed in km, m, mm, fermi, etc. depending of its actual value.

3.3.4 Introduce new units

If wished to introduce new units, there are two methods:
¢ You can extend the file SystemOfUnits.h
#include "SystemOfUnits.h"
static const G4double inch = 2.54xcm;

Using this method, it is not easy to define composed units. It is better to do the following:
* Instantiate an object of the class G4UnitDefinition. These objects are owned by the global
G4UnitsTable at construction, and must not be deleted by the user.

new G4UnitDefinition (name, symbol, category, value)
For example: define a few units for speed

new G4UnitDefinition ("km/hour" , "km/h", "Speed", km/(3600+s));
new G4UnitDefinition ("meter/ns", "m/ns", "Speed", m/ns);

The category “Speed” does not exist by default in G4UnitsTable, but it will be created automatically. The
class G4UnitDefinition is defined in source/global/management/G4UnitsTable.hh.

66 Chapter 3. Toolkit Fundamentals

Book For Application Developers, Release 11.2

3.3.5 Print the list of units

You can print the list of units with the static function: G4UnitDefinition: :PrintUnitsTable (); or with
the interactive command: /units/list

3.4 Run

3.4.1 Basic concept of Run

In GEANT4, Run is the largest unit of simulation. A run consists of a sequence of events. Within a run, the detector
geometry, the set up of sensitive detectors, and the physics processes used in the simulation should be kept unchanged.
A run is represented by a G4Run class object. A run starts with BeamOn () method of G4RunManager.

Representation of a run

G4ARun represents a run. It has a run identification number, which should be set by the user, and the number of events
simulated during the run. Please note that the run identification number is not used by the GEANT4 kernel, and thus
can be arbitrarily assigned at the user’s convenience.

G4Run has pointers to the tables G4VHitsCollection and G4VDigiCollection. These tables are associ-
ated in case sensitive detectors and digitizer modules are simulated, respectively. The usage of these tables will be
mentioned in Hits and Digitization.

G4Run has two virtual methods, and thus you can extend G4Run class. In particular if you use GEANT4 in multi-
threaded mode and need to accumulate values, these two virtual method must be overwritten to specify how such
values should be collected firstly for a worker thread, and then for the entire run. These virtual methods are the
following.

virtual void RecordEvent (const G4Eventx) Method to be overwritten by the user for recording
events in this (thread-local) run. At the end of the implementation, G4Run base-class method for must be
invoked for recording data members in the base class.

void Merge (const G4Runx) Method to be overwritten by the user for merging local Run object to the global
Run object. At the end of the implementation, G4Run base-class method for must be invoked for merging data
members in the base class.

Manage the run procedures

G4RunManager manages the procedures of a run. In the constructor of G4RunManager, all of the manager classes
in GEANT4 kernel, except for some static managers, are constructed. These managers are deleted in the destructor of
G4RunManager. G4RunManager must be a singleton created in the user’s main () program; the pointer to this
singleton object can be obtained by other code using the GetRunManager () static method.

As already mentioned in How to Define the main() Program, all of the user initialization classes defined by the user
should be assigned to G4RunManager before starting initialization of the GEANT4 kernel. The assignments of these
user classes are done by SetUserInitialization () methods. All user classes defined by the GEANT4 kernel
will be summarized in User Actions.

G4RunManager has several public methods, which are listed below.

Initialize () Allinitializations required by the GEANT4 kernel are triggered by this method. Initializations are:
* construction of the detector geometry and set up of sensitive detectors and/or digitizer modules,
* construction of particles and physics processes,
* calculation of cross-section tables.

3.4. Run 67

Book For Application Developers, Release 11.2

This method is thus mandatory before proceeding to the first run. This method will be invoked automatically
for the second and later runs in case some of the initialized quantities need to be updated.

BeamOn (G4int numberOfEvent) This method triggers the actual simulation of a run, that is, an event loop. It
takes an integer argument which represents the number of events to be simulated.

GetRunManager () This static method returns the pointer to the G4RunManager singleton object.

GetCurrentEvent () This method returns the pointer to the G4Event object which is currently being simulated.
This method is available only when an event is being processed. At this moment, the application state of
GEANT4, which is explained in the following sub-section, is “EventProc”. When GEANT4 is in a state other
than “EventProc”, this method returns null. Please note that the return value of this method is const G4Event *
and thus you cannot modify the contents of the object.

SetNumberOfEventsToBeStored (G4int nPrevious) When simulating the “pile up” of more than one
event, it is essential to access more than one event at the same moment. By invoking this method,
G4RunManager keeps nPrevious G4Event objects. This method must be invoked before proceeding to Bea-
mOn().

GetPreviousEvent (G4int i_thPrevious) The pointer to the i_thPrevious G4Event object can be ob-
tained through this method. A pointer to a const object is returned. It is inevitable that i_thPrevious events
must have already been simulated in the same run for getting the i_thPrevious event. Otherwise, this method
returns null.

AbortRun () This method should be invoked whenever the processing of a run must be stopped. It is valid for
GeomClosed and EventProc states. Run processing will be safely aborted even in the midst of processing an
event. However, the last event of the aborted run will be incomplete and should not be used for further analysis.

Run manager classes for multi-threading mode

G4MTRunManager is the replacement of G4RunManager for multi-threading mode. At the very end of
Initialize () method, GAMTRunManager creates and starts worker threads. The event each thread is tasked
is in first-come-first-served basis, so that event numbers each thread has are not sequential.

G4WorkerRunManager is the local RunManager automatically instantiated by G4AMTRunManager to take care
of initialization and event handling of a thread. Both G4AMTRunManager and G4WorkerRunManager are derived
classes of G4ARunManager base class.

The static method GARunManager: : GetRunManager () returns the following pointer.

* It returns the pointer to the G4AWorkerRunManager of the local thread when it is invoked from thread-local
object.

e It returns the pointer to the GAMTRunManager when it is invoked from shared object.

* It returns the pointer to the base G4RunManager if it is used in the sequential mode.

G4RunManager has a method GetRunManagerType () that returns an enum named RMType to indicate what
kind of RunManager itis. RMType is defined as { sequentialRM, masterRM, workerRM }. From the
thread-local object, a static method GAMTRunManager: : GetMasterRunManager () is available to access to
G4MTRunManager. From a worker thread, the user may access to, for example, detector construction (it is a shared
class) through this GetMasterRunManager () method.

68 Chapter 3. Toolkit Fundamentals

Book For Application Developers, Release 11.2

G4UserRunAction

G4UserRunAction is one of the user action classes from which you can derive your own concrete class. This base
class has three virtual methods as follows:

GenerateRun () This method is invoked at the beginning of the BeamOn() method but after confirmation of the
conditions of the GEANT4 kernel. This method should be used to instantiate a user-specific run class object.
BeginOfRunAction () This method is invoked at the beginning of the BeamOn() method but after confirmation
of the conditions of the GEANT4 kernel. Likely uses of this method include:
* setting a run identification number,
* booking histograms,
* setting run specific conditions of the sensitive detectors and/or digitizer modules (e.g., dead channels).
EndOfRunAction () This method is invoked at the very end of the BeamOn() method. Typical use cases of this
method are
* store/print histograms,
* manipulate run summaries.

3.4.2 GEANT4 as a state machine

GEANT4 is designed as a state machine. Some methods in GEANT4 are available for only a certain state(s).
G4RunManager controls the state changes of the GEANT4 application. States of GEANT4 are represented by the
enumeration G4ApplicationState. It has six states through the life cycle of a GEANT4 application.

G4State_PrelInit state A GEANT4 application starts with this state. The application needs to be initialized when
it is in this state. The application occasionally comes back to this state if geometry, physics processes, and/or
cut-off have been changed after processing a run.

G4State_Init state The application is in this state while the Initialize() method of G4RunManager is being in-
voked. Methods defined in any user initialization classes are invoked during this state.

G4State_Idle state The application is ready for starting a run.

G4State_GeomClosed state When BeamOn() is invoked, the application proceeds to this state to process a run.
Geometry, physics processes, and cut-off cannot be changed during run processing.

G4State_EventProc state A GEANT4 application is in this state when a particular event is being processed.
GetCurrentEvent() and GetPreviousEvent() methods of G4RunManager are available only at this state.

G4State_Quit state When the destructor of G4RunManager is invoked, the application comes to this “dead end”
state. Managers of the GEANT4 kernel are being deleted and thus the application cannot come back to any other
state.

G4State_Abort state When a G4Exception occurs, the application comes to this “dead end” state and causes a
core dump. The user still has a hook to do some “safe” operations, e.g. storing histograms, by implement-
ing a user concrete class of G4VStateDependent. The user also has a choice to suppress the occurrence of
G4Exception by a Ul command /control/suppressAbortion. When abortion is suppressed, you will still get error
messages issued by G4Exception, and there is NO guarantee of a correct result after the G4Exception error
message.

G4StateManager belongs to the intercoms category.

3.4. Run 69

Book For Application Developers, Release 11.2

3.4.3 User’s hook for state change

In case the user wants to do something at the moment of state change of GEANT4, the user can create a concrete class
of the G4vStateDependent base class. For example, the user can store histograms when G4Exception occurs and
GEANT4 comes to the Abort state, but before the actual core dump.

The following is an example user code which stores histograms when GEANT4 becomes to the Abort state. This class
object should be made in, for example main (), by the user code. This object will be automatically registered to
G4StateManager at its construction.

Listing 3.1: Header file of UserHookForAbortState

#ifndef UserHookForAbortState_ H
#define UserHookForAbortState H 1

#include "G4VStateDependent.hh"

class UserHookForAbortState : public G4VStateDependent
{

public:
UserHookForAbortState () ; // constructor
~UserHookForAbortState(); // destructor

virtual G4bool Notify (G4ApplicationState requiredState);
bi

Listing 3.2: Source file of UserHookForAbortState

#include "UserHookForAbortState.hh"

UserHookForAbortState: :UserHookForAbortState () {;}
UserHookForAbortState: : ~UserHookForAbortState () {;}

G4bool UserHookForAbortState::Notify (G4ApplicationState requiredState)
{

if (requiredState!=Abort) return true;
// Do book keeping here

return true;

}

3.4.4 Customizing the Run Manager

Virtual Methods in the Run Manager

G4RunManager is a concrete class with a complete set of functionalities for managing the GEANT4 kernel. It
is the only manager class in the GEANT4 kernel which must be constructed in the main () method of the user’s
application. Thus, instead of constructing the G4ARunManager provided by GEANT4, you are free to construct
your own RunManager. It is recommended, however, that your RunManager inherit G4ARunManager. For this
purpose, GARunManager has various virtual methods which provide all the functionalities required to handle the
GEANT4 kernel. Hence, your customized run manager need only override the methods particular to your needs; the
remaining methods in G4RunManager base class can still be used. A summary of the available methods is presented
here:

public: virtual void Initialize(); main entry point of GEANT4 kernel initialization
protected: virtual void InitializeGeometry(); geometry construction
protected: wvirtual void InitializePhysics(); physics processes construction
public: virtual void BeamOn (G4int n_event); main entry point of the event loop

70 Chapter 3. Toolkit Fundamentals

Book For Application Developers, Release 11.2

protected: virtual G4bool ConfirmBeamOnCondition(); check the kernel conditions for the
event loop

protected: virtual void RunlInitialization(); prepare arun

protected: virtual void DoEventLoop (G4int n_events); manage an event loop

protected: virtual G4Event* GenerateEvent (G4int i_event); generation of G4Event object

protected: virtual void AnalyzeEvent (G4Event* anEvent); storage/analysis of an event

protected: virtual void RunTermination (); terminate a run

public: wvirtual void DefineWorldVolume (G4VPhysicalVolume * worldVol); set the
world volume to G4Navigator

public: wvirtual void AbortRun(); abort the run

Customizing the Event Loop

In G4RunManager the event loop is handled by the virtual method DoEventLoop () . This method is implemented
by a for loop consisting of the following steps:

1. constructa GAEvent object and assign to it primary vertex(es) and primary particles. This is done by the virtual
GeneratePrimaryEvent () method.

2. send the G4Event object to G4EventManager for the detector simulation. Hits and trajectories will be
associated with the G4Event object as a consequence.

3. perform bookkeeping for the current G4Event object. This is done by the virtual AnalyzeEvent () method.

DoEventLoop () performs the entire simulation of an event. However, it is often useful to split the above three
steps into isolated application programs. If, for example, you wish to examine the effects of changing discriminator
thresholds, ADC gate widths and/or trigger conditions on simulated events, much time can be saved by performing
steps 1 and 2 in one program and step 3 in another. The first program need only generate the hit/trajectory information
once and store it, perhaps in a database. The second program could then retrieve the stored G4Event objects and
perform the digitization (analysis) using the above threshold, gate and trigger settings. These settings could then be
changed and the digitization program re-run without re-generating the G4Events.

Changing the Detector Geometry

The detector geometry defined in your G4VUserDetectorConstruction concrete class can be changed during
a run break (between two runs). Two different cases are considered.

The first is the case in which you want to delete the entire structure of your old geometry and build up a completely
new set of volumes. For this case, you need to delete them by yourself, and let RunManager invokes Construct ()
and ConstructSDandField () methods of your detector construction once again when RunManager starts the
next run.

G4RunManager* runManager = G4RunManager::GetRunManager () ;
runManager—>ReinitializeGeometry () ;

IfthisReinitializeGeometry () isinvoked, Geomet ryHasBeenModified () (discussed next) is automat-
ically invoked. Presumably this case is rather rare. The second case is more frequent for the user.

The second case is the following. Suppose you want to move and/or rotate a particular piece of your detector compo-
nent. This case can easily happen for a beam test of your detector. It is obvious for this case that you need not change
the world volume. Rather, it should be said that your world volume (experimental hall for your beam test) should be
big enough for moving/rotating your test detector. For this case, you can still use all of your detector geometries, and
just use a Set method of a particular physical volume to update the transformation vector as you want. Thus, you
don’t need to re-set your world volume pointer to RunManager.

If you want to change your geometry for every run, you can implement it in the BeginOfRunAction ()
method of G4UserRunAction class, which will be invoked at the beginning of each run, or, derive the

3.4. Run 71

Book For Application Developers, Release 11.2

RunInitialization () method. Please note that, for both of the above mentioned cases, you need to let Run-
Manager know “the geometry needs to be closed again”. Thus, you need to invoke

runManager—>GeometryHasBeenModified () ;

before proceeding to the next run. An example of changing geometry is given in a GEANT4 tutorial in GEANT4
Training kit #2.

Switch physics processes

Inthe InitializePhysics () method, G4AVUserPhysicsList: :Construct is invoked in order to define
particles and physics processes in your application. Basically, you can not add nor remove any particles during
execution, because particles are static objects in GEANT4 (see How fo Specify Particles and Particles for details). In
addition, it is very difficult to add and/or remove physics processes during execution, because registration procedures
are very complex, except for experts (see How to Specify Physics Processes and Physics Processes). This is why the
initializePhysics () method is assumed to be invoked at once in GEANT4 kernel initialization.

However, you can switch on/off physics processes defined in your G4VUserPhysicsList concrete class and also
change parameters in physics processes during the run break.

Youcanuse ActivateProcess () and InActivateProcess () methods of GAProcessManager anywhere
outside the event loop to switch on/off some process. You should be very careful to switch on/off processes inside the
event loop, though it is not prohibited to use these methods even in the EventProc state.

It is a likely case to change cut-off values in a run. You can change defaultCutValue in
G4AVUserPhysicsList during the Idle state. In this case, all cross section tables need to be recalculated be-
fore the event loop. You should use the CutOf fHasBeenModified () method when you change cut-off values so
that the Set Cut s method of your PhysicsList concrete class will be invoked.

3.4.5 Managing worker thread

G4UserWorkerInitialization is an additional user initialization class to be used only for the multi-
threaded mode. The object of this class can be set to GAMTRunManager, but not to G4RunManager.
GAUserWorkerInitialization class has five virtual methods as the user hooks which are invoked at several
occasions of the life cycle of each thread.

virtual void WorkerInitialize () const This method is called after the tread is created but before the
G4WorkerRunManager is instantiated.

virtual void WorkerStart () const This method is called once at the beginning of simulation job when
kernel classes and user action classes have already instantiated but geometry and physics have not been yet
initialized. This situation is identical to “Prelnit” state in the sequential mode.

virtual void WorkerStartRun() const This method is called before an event loop. Geometry and
physics have already been set up for the thread. All threads are synchronized and ready to start the local event
loop. This situation is identical to “Idle” state in the sequential mode.

virtual void WorkerRunEnd () const This method is called for each thread when the local event loop is
done, but before the synchronization over all worker threads.

virtual void WorkerStop () const This method is called once at the end of simulation job.

72 Chapter 3. Toolkit Fundamentals

Book For Application Developers, Release 11.2

3.5 Event

3.5.1 Representation of an event

G4Event represents an event. An object of this class contains all inputs and outputs of the simulated event. This
class object is constructed in G4RunManager and sent to G4EventManager. The event currently being processed
can be obtained via the getCurrentEvent () method of G4RunManager.

3.5.2 Structure of an event

A G4Event object has four major types of information. Get methods for this information are available in G4Event.

Primary vertexes and primary particles Details are given in Event Generator Interface.

Trajectories Trajectories are stored in G4TrajectoryContainer class objects and the pointer to this container is stored
in G4Event. The contents of a trajectory are given in Trajectory and Trajectory Point.

Hits collections Collections of hits generated by sensitive detectors are kept in GAHCofThisEvent class object
and the pointer to this container class object is stored in G4Event. See Hits for the details.

Digits collections Collections of digits generated by digitizer modules are kept in GADCofThisEvent class object
and the pointer to this container class object is stored in G4Event. See Digitization for the details.

3.5.3 Mandates of G4EventManager

G4AEventManager is the manager class to take care of one event. It is responsible for:

* converting G4PrimaryVertex and G4PrimaryParticle objects associated with the current GAEvent
object to G4Track objects. All of G4Track objects representing the primary particles are sent to
G4StackManager.

e Pop one G4Track object from G4StackManager and send it to G4TrackingManager. The current
G4Track object is deleted by GAEventManager after the track is simulated by G4TrackingManager, if
the track is marked as “killed”.

* In case the primary track is “suspended” or “postponed to next event” by G4TrackingManager, it is sent
back to the G4StackManager. Secondary G4Track objects returned by G4TrackingManager are also
sent to G4StackManager.

e When G4StackManager returns NULL for the “pop” request, G4AEventManager terminates the current
processing event.

¢ invokes the user-defined methods beginOfEventAction () and endOfEventAction () from the
G4UserEventAction class. See User Information Classes for details.

3.5.4 Stacking mechanism

G4StackManager has three stacks, named urgent, waiting and postpone-to-next-event, which are objects of the
G4TrackStack class. By default, all G4Track objects are stored in the urgent stack and handled in a “last in first
out” manner. In this case, the other two stacks are not used. However, tracks may be routed to the other two stacks by
the user-defined G4UserStackingAction concrete class.

If the methods of G4UserStackingAction have been overridden by the user, the postpone-to-next-event and
waiting stacks may contain tracks. At the beginning of an event, G4StackManager checks to see if any tracks left
over from the previous event are stored in the postpone-to-next-event stack. If so, it attempts to move them to the
urgent stack. But first the PrepareNewEvent () method of G4UserStackingAction is called. Here tracks
may be re-classified by the user and sent to the urgent or waiting stacks, or deferred again to the postpone-to-next-event
stack. As the event is processed G4StackManager pops tracks from the urgent stack until it is empty. At this point

3.5. Event 73

Book For Application Developers, Release 11.2

the NewStage () method of G4UserStackingAction is called. In this method tracks from the waiting stack
may be sent to the urgent stack, retained in the waiting stack or postponed to the next event.

Details of the user-defined methods of G4UserStackingAction and how they affect track stack management are
given in User Information Classes.

3.6 Event Generator Interface

3.6.1 Structure of a primary event
Primary vertex and primary particle

The G4Event class object should have a set of primary particles when it is sent to G4EventManager via
processOneEvent () method. It is the mandate of your G4VUserPrimaryGeneratorAction concrete class
to send primary particles to the G4Event object.

The G4PrimaryParticle class represents a primary particle with which GEANT4 starts simulating an event.
This class object has information on particle type and its three momenta. The positional and time information of
primary particle(s) are stored in the G4PrimaryVertex class object and, thus, this class object can have one or
more G4PrimaryParticle class objects which share the same vertex. Primary vertexes and primary particles are
associated with the G4Event object by a form of linked list.

A concrete class of G4VPrimaryGenerator, the G4PrimaryParticle object is constructed with either a
pointer to G4ParticleDefinition or an integer number which represents P.D.G. particle code. For the case of
some artificial particles, e.g., geantino, optical photon, etc., or exotic nuclear fragments, which the P.D.G. particle code
does not cover, the G4APrimaryParticle should be constructed by G4ParticleDefinition pointer. On the
other hand, elementary particles with very short life time, e.g., weak bosons, or quarks/gluons, can be instantiated
as G4PrimaryParticle objects using the P.D.G. particle code. It should be noted that, even though primary
particles with such a very short life time are defined, GEANT4 will simulate only the particles which are defined as
G4ParticleDefinition class objects. Other primary particles will be simply ignored by G4EventManager.
But it may still be useful to construct such “intermediate” particles for recording the origin of the primary event.

Forced decay channel

The G4APrimaryParticle class object can have a list of its daughter particles. If the parent particle is an “inter-
mediate” particle, which GEANT4 does not have a corresponding G4ParticleDefinition, this parent particle is
ignored and daughters are assumed to start from the vertex with which their parent is associated. For example, a Z
boson is associated with a vertex and it has positive and negative muons as its daughters, these muons will start from
that vertex.

There are some kinds of particles which should fly some reasonable distances and, thus, should be simulated by
GEANT4, but you still want to follow the decay channel generated by an event generator. A typical case of these
particles is B meson. Even for the case of a primary particle which has a corresponding G4ParticleDefinition,
it can have daughter primary particles. GEANT4 will trace the parent particle until it comes to decay, obeying multiple
scattering, ionization loss, rotation with the magnetic field, etc. according to its particle type. When the parent comes
to decay, instead of randomly choosing its decay channel, it follows the “pre-assigned” decay channel. To conserve
the energy and the momentum of the parent, daughters will be Lorentz transformed according to their parent’s frame.

74 Chapter 3. Toolkit Fundamentals

Book For Application Developers, Release 11.2

3.6.2 Interface to a primary generator

G4HEPEVvtinterface

Unfortunately, almost all event generators presently in use, commonly are written in FORTRAN. For GEANT4, it was
decided to not link with any FORTRAN program or library, even though the C++ language syntax itself allows such
a link. Linking to a FORTRAN package might be convenient in some cases, but we will lose many advantages of
object-oriented features of C++, such as robustness. Instead, GEANT4 provides an ASCII file interface for such event
generators.

GAHEPEvtInterface is one of GAVPrimaryGenerator concrete class and thus it can be used in your
G4VUserPrimaryGeneratorAction concrete class. G4HEPEvtInterface reads an ASCII file produced
by an event generator and reproduces G4PrimaryParticle objects associated with a G4PrimaryVertex ob-
ject. It reproduces a full production chain of the event generator, starting with primary quarks, etc. In other words,
G4HEPEvtInterface converts information stored in the /HEPEVT/ common block to an object-oriented data
structure. Because the /HEPEVT/ common block is commonly used by almost all event generators written in FOR-
TRAN, G4HEPEvtInterface can interface to almost all event generators currently used in the HEP commu-
nity. The constructor of G4HEPEvtInterface takes the file name. Listing 3.3 shows an example how to use
GAHEPEvtInterface. Note that an event generator is not assumed to give a place of the primary particles, the
interaction point must be set before invoking GeneratePrimaryVertex () method.

Listing 3.3: An example code for GAHEPEvt Interface

#ifndef ExNO4PrimaryGeneratorAction_h
#define ExNO4PrimaryGeneratorAction_h 1

#include "G4VUserPrimaryGeneratorAction.hh"
#include "globals.hh"

class G4VPrimaryGenerator;
class G4Event;

class ExNO4PrimaryGeneratorAction : public G4VUserPrimaryGeneratorAction
{
public:
ExNO4PrimaryGeneratorAction () ;
~ExNO4PrimaryGeneratorAction () ;

public:
void GeneratePrimaries (G4Event* anEvent) ;

private:
G4VPrimaryGenerator* HEPEvt;
bi

#endif

#include "ExNO4PrimaryGeneratorAction.hh"

#include "G4Event.hh"
#include "G4HEPEvtInterface.hh"

ExNO4PrimaryGeneratorAction: :ExNO4PrimaryGeneratorAction ()

{
HEPEvt = new G4HEPEvtInterface ("pythia_ event.data");

}

ExNO4PrimaryGeneratorAction: : ~ExNO4PrimaryGeneratorAction ()

{
delete HEPEvVt;

}
(continues on next page)

3.6. Event Generator Interface 75

Book For Application Developers, Release 11.2

(continued from previous page)

void ExNO4PrimaryGeneratorAction: :GeneratePrimaries (G4Event* anEvent)
{
HEPEvt->SetParticlePosition (G4ThreeVector (0.+cm,0.*cm, 0.+cm)) ;
HEPEvt->GeneratePrimaryVertex (anEvent) ;

}

Format of the ASCII file

An ASCII file, which will be fed by G4HEPEvt Interface should have the following format.

 The first line of each primary event should be an integer which represents the number of the following lines of
primary particles.

» Each line in an event corresponds to a particle in the /HEPEVT/ common. Each line has ISTHEP, IDHEP,
JDAHEP (1), JDAHEP (2), PHEP (1), PHEP(2), PHEP(3), PHEP (5). Refertothe /HEPEVT/
manual for the meanings of these variables.

Listing 3.4 shows an example FORTRAN code to generate an ASCII file.

Listing 3.4: A FORTRAN example using the /HEPEVT/ common.

KAk Ak hhkhk kA A A Ak Ak kA A Ak hk kA A Ak hkhk kA Ak kb hk Ak Ak hkhkhkhkhkhkhhh ok ok khhkk*k
SUBROUTINE HEP2G4

*

« Convert /HEPEVT/ event structure to an ASCII file

* to be fed by G4HEPEvtInterface

*

Ak hkhhkhkkh kA hkhkhhhhhkhkhhhhkhhkhrrhhhkhkhkhrhrhkhhkhhkhkhrhhkhkkhkkhkhkhrrhkhhhhhhhkk*k
PARAMETER (NMXHEP=2000)
COMMON/HEPEVT/NEVHEP , NHEP, ISTHEP (NMXHEP) , IDHEP (NMXHEP) ,

>JMOHEP (2, NMXHEP) , JDAHEP (2, NMXHEP) , PHEP (5, NMXHEP) , VHEP (4, NMXHEP)

DOUBLE PRECISION PHEP, VHEP

WRITE (6,) NHEP
DO IHEP=1,NHEP
WRITE (6,10)
> ISTHEP (IHEP), IDHEP (IHEP), JDAHEP (1, IHEP) , JDAHEP (2, IHEP),
> PHEP (1, IHEP),PHEP (2, IHEP) , PHEP (3, IHEP) , PHEP (5, IHEP)
10 FORMAT (4110,4 (1X,D15.8))
ENDDO

RETURN
END

Future interface to the new generation generators

Several activities have already been started for developing object-oriented event generators. Such new generators
can be easily linked and used with a GEANT4 based simulation. Furthermore, we need not distinguish a primary
generator from the physics processes used in GEANT4. Future generators can be a kind of physics process plugged-in
by inheriting G4VProcess.

76 Chapter 3. Toolkit Fundamentals

Book For Application Developers, Release 11.2

3.6.3 Event overlap using multiple generators

Your G4VUserPrimaryGeneratorAction concrete class can have more than one G4VPrimaryGenerator
concrete class. Each G4VPrimaryGenerator concrete class can be accessed more than once per event. Using
these class objects, one event can have more than one primary event.

One possible use is the following. Within an event, a GAHEPEvt Interface class object instantiated with a mini-
mum bias event file is accessed 20 times and another G4AHEPEvt Interface class object instantiated with a signal
event file is accessed once. Thus, this event represents a typical signal event of LHC overlapping 20 minimum bias
events. It should be noted that a simulation of event overlapping can be done by merging hits and/or digits associ-
ated with several events, and these events can be simulated independently. Digitization over multiple events will be
mentioned in Digitization.

3.7 Event Biasing Techniques

3.7.1 Scoring, Geometrical Importance Sampling and Weight Roulette

GEANT4 provides event biasing techniques which may be used to save computing time in such applications as
the simulation of radiation shielding. These are geometrical splitting and Russian roulette (also called geomet-
rical importance sampling), and weight roulette. Scoring is carried out by G4MultiFunctionalDetector
(see G4MultiFunctionalDetector and G4VPrimitiveScorer and Concrete classes of G4VPrimitiveScorer) using the
standard GEANT4 scoring technique. Biasing specific scorers have been implemented and are described within
G4MultiFunctionalDetector documentation. In this chapter, it is assumed that the reader is familiar with
both the usage of GEANT4 and the concepts of importance sampling. More detailed documentation may be found in
the documents ‘Scoring, geometrical importance sampling and weight roulette’.

A detailed description of different use-cases which employ the sampling and scoring techniques can be found in the
document ‘Use cases of importance sampling and scoring in Geant4’,

The purpose of importance sampling is to save computing time by sampling less often the particle histories entering
“less important” geometry regions, and more often in more “important” regions. Given the same amount of com-
puting time, an importance-sampled and an analogue-sampled simulation must show equal mean values, while the
importance-sampled simulation will have a decreased variance.

The implementation of scoring is independent of the implementation of importance sampling. However both share
common concepts. Scoring and importance sampling apply to particle types chosen by the user, which should be
borne in mind when interpreting the output of any biased simulation.

Examples on how to use scoring and importance sampling may be found in examples/extended/biasing.

Geometries

The kind of scoring referred to in this note and the importance sampling apply to spatial cells provided by the user.

A cell is a physical volume (further specified by it’s replica number, if the volume is a replica). Cells may be defined
in two kinds of geometries:

1. mass geometry: the geometry setup of the experiment to be simulated. Physics processes apply to this geometry.
2. parallel-geometry: a geometry constructed to define the physical volumes according to which scoring and/or
importance sampling is applied.

The user has the choice to score and/or sample by importance the particles of the chosen type, according to mass
geometry or to parallel geometry. It is possible to utilize several parallel geometries in addition to the mass geometry.
This provides the user with a lot of flexibility to define separate geometries for different particle types in order to apply
scoring or/and importance sampling.

3.7. Event Biasing Techniques 77

http://geant4-internal.web.cern.ch/node/211
http://geant4-internal.web.cern.ch/node/212

Book For Application Developers, Release 11.2

Note: Parallel geometries should be constructed using the implementation as described in Parallel Geometries. There
are a few conditions for parallel geometries:

¢ The world volume for parallel and mass geometries must be identical copies.
* Scoring and importance cells must not share boundaries with the world volume.

Changing the Sampling

Samplers are higher level tools which perform the necessary changes of the GEANT4 sampling in order to apply
importance sampling and weight roulette.

Variance reduction (and scoring through the G4MultiFunctionalDetector) may be combined arbitrarily for
chosen particle types and may be applied to the mass or to parallel geometries.

The G4GeometrySampler can be applied equally to mass or parallel geometries with an abstract interface supplied
by G4VSampler. G4VSampler provides Prepare. .. methods and a Configure method:

class G4VSampler
{
public:
G4vVSampler () ;
virtual ~G4VSampler();
virtual void PreparelImportanceSampling(G4VIStore =xistore,
const G4VImportanceAlgorithm

xialg = 0) = 0;
virtual void PrepareWeightRoulett (G4double wsurvive = 0.5,
G4double wlimit = 0.25,
G4double isource = 1) = 0;

virtual void PrepareWeightWindow (G4VWeightWindowStore xwwstore,
G4VWeightWindowAlgorithm *wwAlg = O,
G4PlaceOfAction placeOfAction =

onBoundary) = 0;
virtual void Configure() = 0;
virtual void ClearSampling() = 0;
virtual G4bool IsConfigured() const = 0;

bi

The methods for setting up the desired combination need specific information:

* Importance sampling: message PrepareImportanceSampling with a G4VIStore and optionally a
G4VImportanceAlgorithm
* Weight window: message PrepareWeightWindow with the arguments:
— *wwstore: a G4VWeightWindowStore for retrieving the lower weight bounds for the energy-space
cells
- *wwAlg: a G4VWeightWindowAlgorithm if a customized algorithm should be used
— placeOfAction: a G4PlaceOfAction specifying where to perform the biasing
* Weight roulette: message PrepareWeightRoulett with the optional parameters:
— wsurvive: survival weight
— wlimit: minimal allowed value of weight * source importance / cell importance
— isource: importance of the source cell

Each object of a sampler class is responsible for one particle type. The particle type is given to the constructor of the
sampler classes via the particle type name, e.g. “neutron”. Depending on the specific purpose, the Configure () of
a sampler will set up specialized processes (derived from G4VProcess) for transportation in the parallel geometry,
importance sampling and weight roulette for the given particle type. When Configure () is invoked the sampler
places the processes in the correct order independent of the order in which user invoked the Prepare. . . methods.

78 Chapter 3. Toolkit Fundamentals

Book For Application Developers, Release 11.2

Note:

e The Prepare. .. () functions may each only be invoked once.
* To configure the sampling the function Configure () must be called after the G4RunManager has been
initialized and the PhysicsList has been instantiated.

The interface and framework are demonstrated in the examples/extended/biasing directory, with the main
changes being to the G4GeometrySampler class and the fact that in the parallel case the WorldVolume is a copy of
the Mass World. The parallel geometry now has to inherit from G4VUserParallelWorld which also has the
GetWorld () method in order to retrieve a copy of the mass geometry World Volume.

class BO2ImportanceDetectorConstruction : public G4VUserParallelWorld
ghostWorld = GetWorld();

The constructor for G4Geomet rySampler takes a pointer to the physical world volume and the particle type name
(e.g. “neutron”) as arguments. In a single mass geometry the sampler is created as follows:

G4GeometrySampler mgs (detector—->GetWorldVolume (), "neutron") ;
mgs.SetParallel (false);

Whilst the following lines of code are required in order to set up the sampler for the parallel geometry case:
G4VPhysicalVolume* ghostWorld = pdet->GetWorldVolume () ;
G4GeometrySampler pgs (ghostWorld, "neutron");

pgs.SetParallel (true);

Also note that the preparation and configuration of the samplers has to be carried out affer the instantiation of the
UserPhysicsList. With the modular reference PhysicsList the following set-up is required (first is for biasing, the
second for scoring):

physicsList->RegisterPhysics (new G4ImportanceBiasing (&pgs,parallelName)) ;
physicsList->RegisterPhysics (new G4ParallelWorldPhysics (parallelName)) ;

If the a UserPhysicsList is being implemented, then the following should be used to give the pointer to the Geome-
trySampler to the PhysicsList:

physlist->AddBiasing (&pgs,parallelName) ;

Then to instantiate the biasing physics process the following should be included in the UserPhysicsList and called
from ConstructProcess ():

AddBiasingProcess () {
fGeomSampler->SetParallel (true); // parallelworld
G4IStorex iStore = G4IStore::GetInstance (fBiasWorldName) ;
fGeomSampler->SetWorld (iStore->GetParallelWorldVolumePointer ()) ;
// fGeomSampler->PreparelmportanceSampling (G4IStore::
// GetInstance (fBiasWorldName), 0);
static G4bool first = true;
if(first) {
fGeomSampler->PrepareImportanceSampling (iStore, 0);

fGeomSampler->Configure () ;
G4cout << " GeomSampler Configured!!! " << G4endl;
first = false;

}

#ifdef G4MULTITHREADED

(continues on next page)

3.7. Event Biasing Techniques 79

Book For Application Developers, Release 11.2

(continued from previous page)

fGeomSampler->AddProcess () ;
#else
G4cout << " Running in singlethreaded mode!!! " << G4endl;
#endif

pgs.PrepareImportanceSampling (G4IStore: :GetInstance (pdet—>GetName ()), O0);
pgs.Configure () ;

Due to the fact that biasing is a process and has to be inserted after all the other processes have been created.

Importance Sampling

Importance sampling acts on particles crossing boundaries between “importance cells”. The action taken depends on
the importance values assigned to the cells. In general a particle history is either split or Russian roulette is played
if the importance increases or decreases, respectively. A weight assigned to the history is changed according to the
action taken.

The tools provided for importance sampling require the user to have a good understanding of the physics in the
problem. This is because the user has to decide which particle types require importance sampled, define the cells,
and assign importance values to the cells. If this is not done properly the results cannot be expected to describe a real
experiment.

The assignment of importance values to a cell is done using an importance store described below.

An “importance store” with the interface G4VIStore is used to store importance values related to cells. In order
to do importance sampling the user has to create an object (e.g. of class G4IStore) of type G4VIStore. The
samplers may be given a G4VIStore. The user fills the store with cells and their importance values. The store is
now a singleton class so should be created using a GetInstance method:

G4IStore *alstore = G4IStore::GetInstance () ;

Or if a parallel world is used:

G4IStore ralstore = G4IStore::GetInstance (pdet->GetName());

An importance store has to be constructed with a reference to the world volume of the geometry used for importance
sampling. This may be the world volume of the mass or of a parallel geometry. Importance stores derive from the
interface G4VIStore:

class GA4VIStore
{
public:

G4VIStore () ;
virtual ~G4VIStore();
virtual G4double GetImportance (const G4GeometryCell &gCell) const = 0;
virtual G4bool IsKnown (const G4GeometryCell &gCell) const = 0;
virtual const G4VPhysicalVolume &GetWorldVolume () const = 0O;

}i

A concrete implementation of an importance store is provided by the class G4VStore. The public part of the class is:

class G4IStore : public G4VIStore
{
public:
explicit G4IStore(const G4VPhysicalVolume &worldvolume) ;
virtual ~G4IStore();
virtual G4double GetImportance (const G4GeometryCell &gCell) const;
virtual G4bool IsKnown (const G4GeometryCell &gCell) const;

(continues on next page)

80 Chapter 3. Toolkit Fundamentals

Book For Application Developers, Release 11.2

(continued from previous page)

virtual const G4VPhysicalVolume &GetWorldVolume () const;
void AddImportanceGeometryCell (G4double importance,
const G4GeometryCell &gCell);
void AddImportanceGeometryCell (G4double importance,
const G4VPhysicalVolume ¢,
G4int aRepNum = 0);
void ChangeImportance (G4double importance,
const G4GeometryCell &gCell);
void ChangeImportance (G4double importance,
const G4VPhysicalVolume &,
G4int aRepNum = 0);
G4double GetImportance (const G4VPhysicalVolume ¢,
G4int aRepNum = 0) const ;
private:

bi

The member function AddImportanceGeometryCell () enters a cell and an importance value into the impor-
tance store. The importance values may be returned either according to a physical volume and a replica number or
according to a G4GeometryCell. The user must be aware of the interpretation of assigning importance values to
a cell. If scoring is also implemented then this is attached to logical volumes, in which case the physical volume and
replica number method should be used for assigning importance values. See examples/extended/biasing
B01 and BO2 for examples of this.

Note: An importance value must be assigned to every cell.

The different cases:

 Cell is not in store
Not filling a certain cell in the store will cause an exception.
* Importance value = zero
Tracks of the chosen particle type will be killed.
* importance values > 0
Normal allowed values
e Importance value smaller zero
Not allowed!

The Importance Sampling Algorithm

Importance sampling supports using a customized importance sampling algorithm. To this end, the sampler interface
Changing the Sampling may be given a pointer to the interface G4AVImportanceAlgorithm:

class G4VImportanceAlgorithm
{
public:
G4VImportanceAlgorithm() ;
virtual ~G4VImportanceAlgorithm() ;
virtual G4Nsplit_Weight Calculate (G4double ipre,
G4double ipost,
G4double init_w) const = 0;
bi

The method Calculate () takes the arguments:

* ipre, ipost : importance of the previous cell and the importance of the current cell, respectively.
* init_w: the particle’s weight

It returns the struct:

3.7. Event Biasing Techniques 81

Book For Application Developers, Release 11.2

class G4Nsplit_Weight
{
public:

G4int f£N;
G4double fW;
}i

* fN: the calculated number of particles to exit the importance sampling
* fW: the weight of the particles
The user may have a customized algorithm used by providing a class inheriting from G4VImportanceAlgorithm.

If no customized algorithm is given to the sampler the default importance sampling algorithm is used. This algorithm
is implemented in G4 ImportanceAlgorithm.

The Weight Window Technique

The weight window technique is a weight-based alternative to importance sampling:

* applies splitting and Russian roulette depending on space (cells) and energy
* user defines weight windows in contrast to defining importance values as in importance sampling

In contrast to importance sampling this technique is not weight blind. Instead the technique is applied according to the
particle weight with respect to the current energy-space cell.

Therefore the technique is convenient to apply in combination with other variance reduction techniques such as cross-
section biasing and implicit capture.

A weight window may be specified for every cell and for several energy regions: space-energy cell.

splitting
to survival weight

P

upper weight bound

survival weight

weight window

lower weight bound -
Russian roulette

~ kill or move to survival weight

Fig. 3.2: Weight window concept

Weight window concept
The user specifies a lower weight bound W_L for every space-energy cell.

* The upper weight bound W_U and the survival weight W_S are calculated as:

82 Chapter 3. Toolkit Fundamentals

Book For Application Developers, Release 11.2

W _U=C_UW_Land
W_S=C_SW_L.
* The user specifies C_S and C_U once for the whole problem.
* The user may give different sets of energy bounds for every cell or one set for all geometrical cells
¢ Special case: if C_S = C_U =1 for all energies then weight window is equivalent to importance sampling
* The user can choose to apply the technique: at boundaries, on collisions or on boundaries and collisions

The energy-space cells are realized by G4Geomet ryCell as in importance sampling. The cells are stored in a weight
window store defined by G4VileightWindowStore:

class G4VWeightWindowStore ({
public:
G4ViWeightWindowStore () ;
virtual ~G4VWeightWindowStore () ;
virtual G4double GetLowerWeitgh (const G4GeometryCell &gCell,
G4double partEnergy) const = 0;
virtual G4bool IsKnown (const G4GeometryCell &gCell) const = 0;
virtual const G4VPhysicalVolume &GetWorldVolume () const = 0;
bi

A concrete implementation is provided:

class G4WeightWindowStore: public G4VWeightWindowStore {
public:
explicit G4WeightWindowStore (const G4VPhysicalVolume &worldvolume) ;
virtual ~G4WeightWindowStore () ;
virtual G4double GetLowerWeitgh (const G4GeometryCell &gCell,
G4double partEnergy) const;
virtual G4bool IsKnown (const G4GeometryCell &gCell) const;
virtual const G4VPhysicalVolume &GetWorldVolume () const;
void AddLowerWeights (const G4GeometryCell &gCell,
const std::vector<G4double> &lowerWeights);
void AddUpperEboundLowerWeightPairs (const G4GeometryCell &gCell,
const G4UpperEnergyToLowerWeightMapé&
enWeMap) ;
void SetGeneralUpperEnergyBounds (const
std::set<G4double, std::less<G4double> > & enBounds) ;

private::

bi

The user may choose equal energy bounds for all cells. In this case a set of upper energy bounds must be given to
the store using the method SetGeneralUpperEnergyBounds. If a general set of energy bounds have been set
AddLowerWeights can be used to add the cells.

Alternatively, the user may chose different energy regions for different cells. In this case the user must
provide a mapping of upper energy bounds to lower weight bounds for every cell using the method
AddUpperEboundLowerWeightPairs.

Weight window algorithms implementing the interface class G4VileightWindowAlgorithm can be used to define
a customized algorithm:

class G4VWeightWindowAlgorithm {
public:
G4ViWeightWindowAlgorithm () ;
virtual ~G4VWeightWindowAlgorithm() ;
virtual G4Nsplit_Weight Calculate (G4double init_w,
G4double lowerWeightBound) const = 0;
}i

A concrete implementation is provided and used as a default:

3.7. Event Biasing Techniques 83

Book For Application Developers, Release 11.2

class G4WeightWindowAlgorithm : public G4VWeightWindowAlgorithm {
public:
G4WeightWindowAlgorithm (G4double upperLimitFaktor =
G4double survivalFaktor = 3
G4int maxNumberOfSplits = 5
virtual ~G4WeightWindowAlgorithm() ;
virtual G4Nsplit_Weight Calculate (G4double init_w,
G4double lowerWeightBound) const;

5,

) i

private:

Vi

The constructor takes three parameters which are used to: calculate the upper weight bound (upperLimitFaktor),
calculate the survival weight (survivalFaktor), and introduce a maximal number (maxNumberOfSplits) of copies to be
created in one go.

In addition, the inverse of the maxNumberOfSplits is used to specify the minimum survival probability in case of
Russian roulette.

The Weight Roulette Technique

Weight roulette (also called weight cutoff) is usually applied if importance sampling and implicit capture are used
together. Implicit capture is not described here but it is useful to note that this procedure reduces a particle weight in
every collision instead of killing the particle with some probability.

Together with importance sampling the weight of a particle may become so low that it does not change any result
significantly. Hence tracking a very low weight particle is a waste of computing time. Weight roulette is applied in
order to solve this problem.

The weight roulette concept

Weight roulette takes into account the importance “Ic” of the current cell and the importance “Is” of the cell in which
the source is located, by using the ratio “R=Is/Ic”.

Weight roulette uses a relative minimal weight limit and a relative survival weight. When a particle falls below the
weight limit Russian roulette is applied. If the particle survives, tracking will be continued and the particle weight will
be set to the survival weight.

The weight roulette uses the following parameters with their default values:

e wsurvival: 0.5
e wlimit: 0.25
e isource: 1

The following algorithm is applied:
If a particle weight “w” is lower than R*wlimit:

* the weight of the particle will be changed to “ws = wsurvival*R”
* the probability for the particle to survive is “p = w/ws”

84 Chapter 3. Toolkit Fundamentals

Book For Application Developers, Release 11.2

3.7.2 Physics Based Biasing

GEANT4 supports physics based biasing through a number of general use, built in biasing techniques. A utility class,
G4WrapperProcess, is also available to support user defined biasing.

Built in Biasing Options

Primary Particle Biasing

Primary particle biasing can be used to increase the number of primary particles generated in a particular phase space
region of interest. The weight of the primary particle is modified as appropriate. A general implementation is provided
through the G4GeneralParticleSource class. It is possible to bias position, angular and energy distributions.

GAGeneralParticleSource is a concrete implementation of G4VPrimaryGenerator. To use, instantiate
G4GeneralParticleSource inthe G4VUserPrimaryGeneratorAction class, as demonstrated below.

MyPrimaryGeneratorAction: :MyPrimaryGeneratorAction () {
generator = new G4GeneralParticleSource;

}

void
MyPrimaryGeneratorAction: :GeneratePrimaries (G4Event+anEvent) {
generator->GeneratePrimaryVertex (anEvent) ;

}

The biasing can be configured through interactive commands, as described in General Particle Source. Examples are
also distributed with the GEANT4 distribution in examples/extended/eventgenerator/exgps.

Hadronic Leading Particle Biasing

One hadronic leading particle biasing technique is implemented in the G4HadLeadBias utility. This method keeps
only the most important part of the event, as well as representative tracks of each given particle type. So the track
with the highest energy as well as one of each of Baryon, pi0, mesons and leptons. As usual, appropriate weights are
assigned to the particles. Setting the SwitchLeadBiasOn environmental variable will activate this utility.

Hadronic Cross Section Biasing

Cross section biasing artificially enhances/reduces the cross section of a process. This may be useful for studying
thin layer interactions or thick layer shielding. The built in hadronic cross section biasing applies to photon inelastic,
electron nuclear and positron nuclear processes.

The biasing is controlled through the BiasCrossSectionByFactor method in G4HadronicProcess, as demonstrated
below.

void MyPhysicsList::ConstructProcess ()

{

G4ElectroNuclearReaction » theElectroReaction =
new G4ElectroNuclearReaction;

G4ElectronNuclearProcess theElectronNuclearProcess;
theElectronNuclearProcess.RegisterMe (theElectroReaction) ;
theElectronNuclearProcess.BiasCrossSectionByFactor (100);

pManager—>AddDiscreteProcess (&theElectronNuclearProcess) ;
(continues on next page)

3.7. Event Biasing Techniques 85

Book For Application Developers, Release 11.2

(continued from previous page)

Radioactive Decay Biasing
The G4RadioactiveDecay (GRDM) class simulates the decay of radioactive nuclei and implements the following
biasing options:

¢ Increase the sampling rate of radionuclides within observation times through a user defined probability distribu-
tion function

* Nuclear splitting, where the parent nuclide is split into a user defined number of nuclides

 Branching ratio biasing where branching ratios are sampled with equal probability

G4RadioactiveDecay is a process which must be registered with a process manager, as demonstrated below.

void MyPhysicsList::ConstructProcess ()

{

G4RadioactiveDecay* theRadioactiveDecay =
new G4RadioactiveDecay();

G4ProcessManager* pmanager = ...
pmanager —>AddProcess (theRadioactiveDecay) ;

Biasing can be controlled either in compiled code or through interactive commands. Radioactive decay biasing exam-
ples are also distributed with the GEANT4 distribution in examples/extended/radioactivedecay/exrdm.

To select biasing as part of the process registration, use

theRadioactiveDecay->SetAnalogueMonteCarlo (false) ;

or the equivalent macro command:

/grdm/analogeMC [true|false]

In both cases, true specifies that the unbiased (analogue) simulation will be done, and false selects biasing.

Limited Radionuclides

Radioactive decay may be restricted to only specific nuclides, in order (for example) to avoid tracking extremely long-
lived daughters in decay chains which are not of experimental interest. To limit the range of nuclides decayed as part
of the process registration (above), use

G4NucleusLimits limits (aMin, aMax, zMin, zMax);
theRadioactiveDecay->SetNucleusLimits (1limits);

or via the macro command

/grdm/nucleusLimits [aMin] [aMax] [zMin] [zMax]

86 Chapter 3. Toolkit Fundamentals

Book For Application Developers, Release 11.2

Geometric Biasing

Radioactive decays may be generated throughout the user’s detector model, in one or more specified volumes, or
nowhere. The detector geometry must be defined before applying these geometric biases.

Volumes may be selected or deselected programmatically using

theRadioactiveDecay->SelectAllVolumes () ;
theRadioactiveDecay->DeselectAllVolumes () ;

G4LogicalVolume* aLogicalVolume; // Acquired by the user

theRadioactiveDecay->SelectVolume (aLlogicalVolume) ;
theRadioactiveDecay—->DeselectVolume (aLogicalVolume) ;

or with the equivalent macro commands
/grdm/allVolumes
/grdm/noVolumes

/grdm/selectVolume [logicalVolume]
/grdm/deselectVolume [logicalVolume]

In macro commands, the volumes are specified by name, and found by searching the G4LogicalVolumeStore.

Decay Time Biasing

The decay time function (normally an exponential in the natural lifetime) of the primary particle may be replaced with
a time profile F(t), as discussed in Section 40.6 of the Physics Reference Manual. The profile function is represented
as a two-column ASCII text file with up to 100 time points (first column) with fractions (second column).

theRadioactiveDecay->SetSourceTimeProfile (fileName) ;
theRadioactiveDecay->SetDecayBias (fileName) ;

/grdm/sourceTimeProfile [fileName]
/grdm/decayBiasProfile [fileName]

Branching Fraction Biasing
Radionuclides with rare decay channels may be biased by forcing all channels to be selected uniformly (BRBias =
true below), rather than according to their natural branching fractions (false).

theRadioactiveDecay—>SetBRBias (true) ;

/grdm/BRbias [true|false]

Nuclear Splitting

The statistical efficiency of generated events may be increased by generating multiple “copies” of nuclei in an event,
each of which is decayed independently, with an assigned weight of 1/Nsplit. Scoring the results of tracking the decay
daughters, using their corresponding weights, can improve the statistical reach of a simulation while preserving the
shape of the resulting distributions.

theRadioactiveDecay->SetSplitNuclei (Nsplit);

3.7. Event Biasing Techniques 87

Book For Application Developers, Release 11.2

/grdm/splitNucleus [Nsplit]

G4WrapperProcess

G4WrapperProcess can be used to implement user defined event biasing. G4WrapperProcess, which is a process itself,
wraps an existing process. By default, all function calls are forwarded to the wrapped process. It is a non-invasive way
to modify the behaviour of an existing process.

To use this utility, first create a derived class inheriting from G4WrapperProcess. Override the methods whose be-
haviour you would like to modify, for example, PostStepDolt, and register the derived class in place of the process to
be wrapped. Finally, register the wrapped process with G4WrapperProcess. The code snippets below demonstrate its
use.

class MyWrapperProcess : public G4WrapperProcess {

G4VParticleChange» PostStepDolt (const G4Tracké& track,
const G4Step& step) |
// Do something interesting
}
bi

void MyPhysicsList::ConstructProcess ()

{

G4eBremsstrahlung* bremProcess =
new G4eBremsstrahlung();

MyWrapperProcess* wrapper = new MyWrapperProcess();
wrapper—>RegisterProcess (bremProcess) ;

processManager—>AddProcess (wrapper, -1, -1, 3);

3.7.3 Adjoint/Reverse Monte Carlo

Another powerful biasing technique available in GEANT4 is the Reverse Monte Carlo (RMC) method, also known
as the Adjoint Monte Carlo method. In this method particles are generated on the external boundary of the sensitive
part of the geometry and then are tracked backward in the geometry till they reach the external source surface, or
exceed an energy threshold. By this way the computing time is focused only on particle tracks that are contributing
to the tallies. The RMC method is much rapid than the Forward MC method when the sensitive part of the geometry
is small compared to the rest of the geometry and to the external source, that has to be extensive and not beam like.
At the moment the RMC method is implemented in GEANT4 only for some electromagnetic processes (see Reverse
processes). An example illustrating the use of the Reverse MC method in GEANT4 is distributed within the GEANT4
toolkit in examples/extended/biasing/ReverseMCO01.

88 Chapter 3. Toolkit Fundamentals

Book For Application Developers, Release 11.2

Treatment of the Reverse MC method in GEANT4

Different G4Adjoint classes have been implemented into the GEANT4 toolkit in order to run an adjoint/reverse simu-
lation in a GEANT4 application. This implementation is illustrated in Fig. 3.3. An adjoint run is divided in a series of
alternative adjoint and forward tracking of adjoint and normal particles. One GEANT4 event treats one of this tracking
phase.

Reverse Tracking of adjoint

particles from the Forward Tracking of normal
Boundary of the sensitive particles trough the
region sensitive region from the
to the External source. same starting position than

the reverse tracking.

Adjoint source External
Boundary of the region xtema
with sensitive source

components

Fig. 3.3: Schematic view of an adjoint/reverse simulation in GEANT4.

Adjoint tracking phase

Adjoint particles (adjoint_e-, adjoint_gamma,...) are generated one by one on the so called adjoint source with
random position, energy (1/E distribution) and direction. The adjoint source is the external surface of a user defined
volume or of a user defined sphere. The adjoint source should contain one or several sensitive volumes and should
be small compared to the entire geometry. The user can set the minimum and maximum energy of the adjoint source.
After its generation the adjoint primary particle is tracked backward in the geometry till a user defined external surface
(spherical or boundary of a volume) or is killed before if it reaches a user defined upper energy limit that represents the
maximum energy of the external source. During the reverse tracking, reverse processes take place where the adjoint
particle being tracked can be either scattered or transformed in another type of adjoint particle. During the reverse
tracking the G4AdjointSimulationManager replaces the user defined primary, run, stepping, ... actions, by its own
actions. A reverse tracking phase corresponds to one GEANT4 event.

Forward tracking phase

When an adjoint particle reaches the external surface its weight, type, position, and direction are registered and a
normal primary particle, with a type equivalent to the last generated primary adjoint, is generated with the same
energy, position but opposite direction and is tracked in the forward direction in the sensitive region as in a forward
MC simulation. During this forward tracking phase the event, stacking, stepping, tracking actions defined by the user
for his forward simulation are used. By this clear separation between adjoint and forward tracking phases, the code
of the user developed for a forward simulation should be only slightly modified to adapt it for an adjoint simulation
(see How to update a G4 application to use the reverse Monte Carlo mode). Indeed the computation of the signals
is done by the same actions or classes that the one used in the forward simulation mode. A forward tracking phase
corresponds to one G4 event.

3.7. Event Biasing Techniques 89

Book For Application Developers, Release 11.2

Reverse processes

During the reverse tracking, reverse processes act on the adjoint particles. The reverse processes that are at the moment
available in GEANT4 are the:

* Reverse discrete ionization for e-, proton and ions

* Continuous gain of energy by ionization and bremsstrahlung for e- and by ionization for protons and ions
* Reverse discrete e- bremsstrahlung

* Reverse photo-electric effect

* Reverse Compton scattering

* Approximated multiple scattering (see comment in Reverse multiple scattering)

It is important to note that the electromagnetic reverse processes are cut dependent as their equivalent forward pro-
cesses. The implementation of the reverse processes is based on the forward processes implemented in the G4 standard
electromagnetic package.

Nb of adjoint particle types and nb of G4 events of an adjoint simulation

The list of type of adjoint and forward particles that are generated on the adjoint source and considered in the simulation
is a function of the adjoint processes declared in the physics list. For example if only the e- and gamma electromagnetic
processes are considered, only adjoint e- and adjoint gamma will be considered as primaries. In this case an adjoint
event will be divided in four G4 event consisting in the reverse tracking of an adjoint e-, the forward tracking of its
equivalent forward e-, the reverse tracking of an adjoint gamma, and the forward tracking of its equivalent forward
gamma. In this case a run of 100 adjoint events will consist into 400 GEANT4 events. If the proton ionization is also
considered adjoint and forward protons are also generated as primaries and 600 GEANT4 events are processed for 100
adjoint events.

How to update a G4 application to use the reverse Monte Carlo mode

Some modifications are needed to an existing GEANT4 application in order to adapt it for the use of the reverse
simulation mode (see also the G4 example examples/extended/biasing/ReverseMC01). It consists into the:

* Creation of the adjoint simulation manager in the main code

* Optional declaration of user actions that will be used during the adjoint tracking phase
» Use of a special physics lists that combine the adjoint and forward processes

* Modification of the user analysis part of the code

Creation of G4AdjointSimManager in the main

The class G4AdjointSimManager represents the manager of an adjoint simulation. This static class should be created
somewhere in the main code. The way to do that is illustrated below

int main (int argc,charx* argv) {

G4AdjointSimManager* theAdjointSimManager = G4AdjointSimManager::GetInstance () ;

By doing this the G4 application can be run in the reverse MC mode as well as in the forward MC mode. It is important
to note that G4AdjointSimManager is not a new G4RunManager and that the creation of G4RunManager in the main
and the declaration of the geometry, physics list, and user actions to G4RunManager is still needed. The definition
of the adjoint and external sources and the start of an adjoint simulation can be controlled by G4UI commands in the
directory /adjoint.

920 Chapter 3. Toolkit Fundamentals

Book For Application Developers, Release 11.2

Optional declaration of adjoint user actions

During an adjoint simulation the user stepping, tracking, stacking and event actions declared to G4RunManager are
used only during the G4 events dedicated to the forward tracking of normal particles in the sensitive region, while
during the events where adjoint particles are tracked backward the following happen concerning these actions:

* The user stepping action is replaced by G4AdjointSteppingAction that is responsible to stop an adjoint
track when it reaches the external source, exceed the maximum energy of the external source, or cross
the adjoint source surface. If needed the user can declare its own stepping action that will be called by
G4AdjointSteppingAction after the check of stopping track conditions. This stepping action can be different
that the stepping action used for the forward simulation. It is declared to G4AdjointSimManager by the follow-
ing lines of code:

G4AdjointSimManager theAdjointSimManager = G4AdjointSimManager::GetInstance();
theAdjointSimManager—>SetAdjointSteppingAction (aUserDefinedSteppingAction) ;

* No stacking, tracking and event actions are considered by default. If needed the user can declare to
G4AdjointSimManager stacking, tracking and event actions that will be used only during the adjoint tracking
phase. The following lines of code show how to declare these adjoint actions to G4AdjointSimManager:

G4AdjointSimManager* theAdjointSimManager = G4AdjointSimManager::GetInstance () ;
theAdjointSimManager—->SetAdjointEventAction (aUserDefinedEventAction) ;
theAdjointSimManager—>SetAdjointStackingAction (aUserDefinedStackingAction) ;
theAdjointSimManager—>SetAdjointTrackingAction (aUserDefinedTrackingAction) ;

By default no user run action is considered in an adjoint simulation but if needed such action can be declared to
G4AdjointSimManager as such:

G4AdjointSimManager* theAdjointSimManager = G4AdjointSimManager::GetInstance () ;
theAdjointSimManager—>SetAdjointRunAction (aUserDefinedRunAction) ;

Physics list for reverse and forward electromagnetic processes

To run an adjoint simulation a specific physics list should be used where existing G4 adjoint electromagnetic pro-
cesses and their forward equivalent have to be declared. An example of such physics list is provided by the class
G4AdjointPhysicsLits in the G4 example extended/biasing/ReverseMC01.

Modification in the analysis part of the code

The user code should be modified to normalize the signals computed during the forward tracking phase to the weight
of the last adjoint particle that reaches the external surface. This weight represents the statistical weight that the last
full adjoint tracks (from the adjoint source to the external source) would have in a forward simulation. If multiplied
by a signal and registered in function of energy and/or direction the simulation results will give an answer matrix of
this signal. To normalize it to a given spectrum it has to be furthermore multiplied by a directional differential flux
corresponding to this spectrum The weight, direction, position , kinetic energy and type of the last adjoint particle
that reaches the external source, and that would represents the primary of a forward simulation, can be gotten from
G4AdjointSimManager by using for example the following line of codes

G4AdjointSimManager* theAdjointSimManager = G4AdjointSimManager::GetInstance () ;

G4String particle_name = theAdjointSimManager->GetFwdParticleNameAtEndOfLastAdjointTrack();
G4int PDGEncoding= theAdjointSimManager->GetFwdParticlePDGEncodingAtEndOfLastAdjointTrack () ;
G4double weight = theAdjointSimManager->GetWeightAtEndOfLastAdjointTrack () ;

G4double Ekin = theAdjointSimManager->GetEkinAtEndOfLastAdjointTrack () ;

G4double Ekin_per_nuc=theAdjointSimManager->GetEkinNucAtEndOfLastAdjointTrack(); // for ions
G4ThreeVector dir = theAdjointSimManager->GetDirectionAtEndOfLastAdjointTrack();
G4ThreeVector pos = theAdjointSimManager->GetPositionAtEndOfLastAdjointTrack () ;

3.7. Event Biasing Techniques 91

Book For Application Developers, Release 11.2

In order to have a code working for both forward and adjoint simulation mode, the extra code needed in user actions
or analysis manager for the adjoint simulation mode can be separated to the code needed only for the normal forward
simulation by using the following public method of G4AdjointSimManager:

G4bool GetAdjointSimMode () ;

that returns true if an adjoint simulation is running and false if not.

The following code example shows how to normalize a detector signal and compute an answer matrix in the case of
an adjoint simulation.

Listing 3.5: Normalization in the case of an adjoint simulation. The de-
tector signal S computed during the forward tracking phase is normalized
to a primary source of e- with a differential directional flux given by the
function F. An answer matrix of the signal is also computed.

G4double S = ...; // signal in the sensitive volume computed during a forward tracking phase

//Normalization of the signal for an adjoint simulation

G4AdjointSimManager* theAdjSimManager = G4AdjointSimManager::GetInstance () ;

if (theAdjSimManager->GetAdjointSimMode ()) {
G4double normalized_S=0.; //normalized to a given e- primary spectrum
G4double S_for_answer_matrix=0.; //for e- answer matrix

if (theAdjSimManager->GetFwdParticleNameAtEndOfLastAdjointTrack() == "e-") {
G4double ekin_prim = theAdjSimManager->GetEkinAtEndOfLastAdjointTrack () ;
G4ThreeVector dir_prim = theAdjointSimManager->GetDirectionAtEndOfLastAdjointTrack();
G4double weight_prim = theAdjSimManager->GetWeightAtEndOfLastAdjointTrack () ;
S_for_answer_matrix = Sxweight_prim;
normalized_S = S_for_ answer_matrix+F (ekin_prim,dir);

// F(ekin_prim,dir_prim) gives the differential directional flux of primary e-

}

//follows the code where normalized S and S_for_answer_matrix are registered or whatever

//analysis/normalization code for forward simulation
else {

Control of an adjoint simulation

The G4UI commands in the directory /adjoint. allow the user to :

* Define the adjoint source where adjoint primaries are generated
* Define the external source till which adjoint particles are tracked
e Start an adjoint simulation

92 Chapter 3. Toolkit Fundamentals

AllResources/Control/UIcommands/_adjoint_.html

Book For Application Developers, Release 11.2

Known issues in the Reverse MC mode

Occasional wrong high weight in the adjoint simulation

In rare cases an adjoint track may get a wrong high weight when reaching the external source. While this happens not
often it may corrupt the simulation results significantly. This happens in some tracks where both reverse photo-electric
and bremsstrahlung processes take place at low energy. We still need some investigations to remove this problem at
the level of physical adjoint/reverse processes. However this problem can be solved at the level of event actions or
analysis in the user code by adding a test on the normalized signal during an adjoint simulation. An example of such
test has been implemented in the GEANT4 example extended/biasing/ReverseMCO01. In this implementation an event
is rejected when the relative error of the computed normalized energy deposited increases during one event by more
than 50% while the computed precision is already below 10%.

Reverse bremsstrahlung

A difference between the differential cross sections used in the adjoint and forward bremsstrahlung models is the
source of a higher flux of >100 keV gamma in the reverse simulation compared to the forward simulation mode.
In principle the adjoint processes/models should make use of the direct differential cross section to sample the ad-
joint secondaries and compute the adjoint cross section. However due to the way the effective differential cross
section is considered in the forward model G4eBremsstrahlungModel this was not possible to achieve for the reverse
bremsstrahlung. Indeed the differential cross section used in G4AdjointeBremstrahlungModel is obtained by the nu-
merical derivation over the cut energy of the direct cross section provided by G4eBremsstrahlungModel. This would
be a correct procedure if the distribution of secondary in G4eBremsstrahlungModel would match this differential
cross section. Unfortunately it is not the case as independent parameterization are used in G4eBremsstrahlungModel
for both the cross sections and the sampling of secondaries. (It means that in the forward case if one would integrate
the effective differential cross section considered in the simulation we would not find back the used cross section). In
the future we plan to correct this problem by using an extra weight correction factor after the occurrence of a reverse
bremsstrahlung. This weight factor should be the ratio between the differential CS used in the adjoint simulation and
the one effectively used in the forward processes. As it is impossible to have a simple and direct access to the forward
differential CS in G4eBremsstrahlungModel we are investigating the feasibility to use the differential CS considered
in G4Penelope models.

Reverse multiple scattering

For the reverse multiple scattering the same model is used than in the forward case. This approximation makes that
the discrepancy between the adjoint and forward simulation cases can get to a level of ~ 10-15% relative differences
in the test cases that we have considered. In the future we plan to improve the adjoint multiple scattering models by
forcing the computation of multiple scattering effect at the end of an adjoint step.

3.7.4 Generic Biasing

The generic biasing scheme provides facilities for:

* physics-based biasing, to alter the behavior of existing physics processes:
— biasing of physics process interaction occurrence,
— biasing of physics process final state production;
* non-physics-based biasing, to introduce or remove particles in the simulation but without affecting the existing
physics processes, with techniques like, but not limited to
— splitting,
— Russian roulette (killing).

3.7. Event Biasing Techniques 93

Book For Application Developers, Release 11.2

Decisions on what techniques to apply are taken on a step by step and intra-step basis, hence providing a lot of
flexibility.

The scheme has been introduced in 10.0, with new features and some non-backward compatible changes introduced in
10.1 and 10.2; these are documented in Changes from 10.0 to 10.1 and Changes from 10.1 to 10.2. Parallel geometry
capability has been introduced in 10.3.

Overview

The generic biasing scheme relies on two abstract classes, that are meant to model the biasing problems. You have to
inherit from them to create your own concrete classes, or use some of the concrete instances provided (see Existing
biasing operations, operator and interaction laws), if they respond to your case. A dedicated process provides the
interface between these biasing classes and the tracking. In case of parallel geometry usage, an other process handles
the navigation in these geometries.

The two abstract classes are:

* G4VBiasingOperation: which represents a simple, or “atomic” biasing operation, like changing a process
interaction occurrence probability, or changing its final state production, or making a splitting operation, etc.
For the occurrence biasing case, the biasing is handled with an other class, * * G4VBiasingInteractionLaw" *,
which holds the properties of the biased interaction law. An object of this class type must be provided by the
occurrence biasing operation returned.

* G4VBiasingOperator: which purpose is to make decisions on the above biasing operations to be applied.
It is attached to a G4Logical Volume and is the pilot of the biasing in this volume. An operator may decide to
delegate to other operators. An operator acts only in the G4LogicalVolume itis attached to. In volumes with

no biasing operator attached, the usual tracking is applied.
The process acting as interface between the biasing classes and the tracking is:

* G4BiasingProcessInterface: itisaconcrete GAVProcess implementation. It interrogates the current
biasing operator, if any, for biasing operations to be applied. The G4BiasingProcessInterface can
either:

— hold a physics process that it wraps and controls: in this case it asks the operator for physics-based biasing
operations (only) to be applied to the wrapped process,

— not hold a physics process: in this case it asks the operator for non-physics-based biasing operations (only):
splitting, killing, etc.

e The G4BiasingProcessInterface class provides many information that can be used by the biasing op-

erator. Each G4BiasingProcessInterface provides its identity to the biasing operator it calls, so that
the operator has this information but also information of the underneath wrapped physics process, if it is the
case.
The G4BiasingProcessInterface can be asked for all other G4BiasingProcessInterface in-
stances at play on the current track. In particular, this allows the operator to get all cross-sections at the current
point (feature available since 10.1). The code is organized in such a way that these cross-sections are all available
at the first call to the operator in the current step.

* To make G4BiasingProcessInterface instances wrapping physics processes, or to insert instances not
holding a physics process, the physics list has to be modified -the generic biasing approach is hence invasive to
the physics list-. The way to configure your physics list and related helper tools are described below.

The process handling parallel geometries is:

* G4ParallelGeometriesLimiterProcess,itisaconcrete G4VProcess implementation, which takes
care of limiting the step on the boundaries of parallel geometries.

e A single instance of G4ParallelGeometriesLimiterProcess handles all parallel ge-
ometries to be considered for a particle type. It collects these geometries by means of
myLimiterProcess—>AddParallelWorld ("myParallelGeometry") calls.

Given such a process is attached to a particle type, parallel geometries are hence specified per particle type.

94 Chapter 3. Toolkit Fundamentals

Book For Application Developers, Release 11.2

» Attaching an instance of this process to a given particle type, and specifying the parallel geometries to be
considered is eased by the helper tools as explained below.

Getting Started

Examples

Seven “Generic Biasing (GB)” examples are proposed (they have been introduced in 10.0, 10.1, 10.3 and 10.6):

* examples/extended/biasing/GB01:

— which shows how biasing of process cross-section can be done.

— This example uses the physics-based biasing operation G4BOptnChangeCrossSection de-
fined in geant4/source/processes/biasing/generic. This operation performs
the actual process cross-section change. In the example a first G4VBiasingOperator,
GB01BOptrChangeCrossSection, configures and selects this operation. This operator applies to
only one particle type.

— To allow several particle types to be biased, a second G4VBiasingOperator,
GBO1BOptrMultiParticleChangeCrossSection, is implemented, and which holds a
GB01BOptrChangeCrossSection operator for each particle type to be biased. This second operator
then delegates to the first one the handling of the biasing operations.

* examples/extended/biasing/GB02:

— which shows how a “force collision” scheme very close to the MCNP one can be activated.

— This second example has a quite similar approach than the GBO1 one, with a G4VBiasingOperator,
QGB02BOptrMultiParticleForceCollision, that holds as many operators than particle types
to be biased, this operators being of G4BOptrForceCollision type.

— This G4BOptrForceCollision operator is defined in source/processes/biasing/
generic. It combines several biasing operations to build-up the needed logic (see Setting up the ap-
plication). It can be in particular looked at to see how it collects and makes use of physics process cross-
sections.

* examples/extended/biasing/GB03:

— which implements a kind of importance geometry biasing, using the generic biasing classes.

— The example uses a simple sampling calorimeter. On the boundary of the absorber parts, it does splitting
(killing) if the track is moving forward (backward). As the splitting can be too strong in some cases, falling
into an over-splitting situation, even with a splitting by a factor 2, a technique is introduced to alleviate
the problem : a probability to apply the splitting (killing) is introduced, and with proper tuning of this
probability, the over-splitting can be avoided.

* examples/extended/biasing/GB04:

— which implements a bremsstrahlung splitting. Bremsstrahlung splitting exists in the EM package. In the
present example, it is shown how to implement a similar technique, using the generic biasing classes.

— A biasing operator, GBO4BOptrBremSplitting, sends a final state biasing operation,
GB04BOptnBremSplitting, for the bremsstrahlung process. Splitting factor, and options to
control the biasing are available through command line.

* examples/extended/biasing/GB05:

— which illustrates a technique that uses physics cross-sections to determine the splitting[killing] rate in a
shielding problem, it is applied to neutrons. This technique is supposed to be an invention, to illustrate a
technique combining physics-based information with splitting/killing.

— In the classical treatment of the shielding problem, the shield is divided in slices at the boundaries of which
particles are splitted[killed] if moving forward[backward]. In the present technique, we collect the cross-
sections of “absorbing/destroying” processes : decay, capture, inelastic. We then use the generic biasing
facilities to create an equivalent of a splitting process, that has a “cross-section” which is the sum of the
previous ones. This process is competing with other processes, as a regular one. When this process wins
the competition, it splits the track, with a splitting factor 2. This splitting is hence occurring at the same
rate than the absorption, resulting in an expected maintained (unweighted) flux.

3.7. Event Biasing Techniques 95

Book For Application Developers, Release 11.2

— GB05BOptrSplitAndKillByCrossSectionand GRO5BOptnSplitAndKillByCrossSection
are respectively the biasing operator and operation. The operator collects the absorbing cross-sections
at the beginning of the step, passes them to the operation, requests it to sample the distance to its next
interaction, and returns this operation to the calling G4BiasingProcessInterface as the operation
to be applied in the step.

— The operation interaction distance is then proposed by the calling G4BiasingProcessInterface
and, if being the shortest of the interaction distances, the operation final state generation (the splitting) is
applied by the process.

* examples/extended/biasing/GB06:

— which demonstrates the use of parallel geometries in generic biasing, on a classical shield problem, using
geometry-based importance biasing.

— The mass geometry consists of a single block of concrete; it is overlayed by a parallel geometry defining
the slices used for splitting/killing.

— The navigation capability in the parallel geometry is activated in the main program, by means of the physics
list constructor.

* examples/extended/biasing/GB07:

— which demonstrates the use of the leading particle biasing technique in generic biasing.

— The mass geometry consists of a block of concrete in which the biasing is applied. A thin volume then
follows to score (simple printing) the particles leaving the block of concrete.

Setting up the application

For making an existing G4VBiasingOperator used by your application, you have to do two things:

1. Attach the operator to the G4LogicalVolume where the biasing should take place: You have to make this
attachment in your ConstructSDandField () method (to make your application both sequential and MT-
compliant):

Listing 3.6: Attachment of a G4BiasingOperator to a
G4LogicalVolume. We assume such a volume has been cre-
ated with name “volumeWithBiasing”, and we assume that a biasing
operator class MyBiasingOperator has been created, inheriting
from G4VBiasingOperator:

// Fetch the logical volume pointer by name (it is an example, not a mandatory way) :

G4LogicalVolume* biasingVolume = G4LogicalVolumeStore::GetInstance () ->GetVolume (

—"volumeWithBiasing") ;

// Create the biasing operator:

MyBiasingOperator* myBiasingOperator = new MyBiasingOperator ("ExampleOperator");

// Attach it to the volume:

myBiasingOperator->AttachTo (biasingVolume) ;

2. Setup the physics list you use to properly include the needed G4BiasingProcessInterface instances.
You have several options for this.

* The easiest way is if you use a pre-packaged physics list (e.g. FTFP_BERT, QGSP...). As such a physics
list is of G4VModularPhysicsList type, you can alter it with a G4VPhysicsConstructor. The
constructor G4GenericBiasingPhysics is meant for this. It can be used, typically in your main
program, as:

96 Chapter 3. Toolkit Fundamentals

Book For Application Developers, Release 11.2

Listing 3.7: Use of the G4GenericBiasingPhysics
physics constructor to setup a pre-packaged physics list (of
G4VModularPhysicsList type). Here we assume the FTFP_BERT
physics list, and we assume that runManager is a pointer on a created
G4RunManager or G4ARMTunManager object.

// Instantiate the physics list:

FTFP_BERT* physicsList = new FTFP_BERT;

// Create the physics constructor for biasing:
G4GenericBiasingPhysics* biasingPhysics = new G4GenericBiasingPhysics();
// Tell what particle types have to be biased:
biasingPhysics->Bias ("gamma") ;

biasingPhysics->Bias ("neutron");

// Register the physics constructor to the physics list:
physicsList->RegisterPhysics (biasingPhysics) ;

// Set this physics list to the run manager:
runManager—>SetUserInitialization (physicsList) ;

Doing so, all physics processes will be wrapped, and, for example, the gamma conversion process,
"conv", will appear as "biasWrapper (conv)" when dumping the processes (/particle/
process/dump). An additional "biasWrapper (0) " process, for non-physics-based biasing is also
inserted.

Other methods to specifically chose some physics processes to be biased or to insert only
G4BiasingProcessInterface instances for non-physics-based biasing also exist.

e The second way is useful if you write your own physics list, and if this one is not a modular physics
list, but inherits directly from the lowest level abstract class G4VUserPhysicsList. In this case,
the above solution with G4GenericBiasingPhysics does not apply. Instead you can use the
G4BiasingHelper utility class (this one is indeed used by G4GenericBiasingPhysics).

Listing 3.8: Use of the G4BiasingHelper utility class to
setup a physics list for biasing in case this physics list is not
of G4VModularPhysicsList type but inherits directly from
G4VUserPhysicsList.

// Get physics list helper:
G4PhysicsListHelperx ph = G4PhysicsListHelper::GetPhysicsListHelper();

// Assume "particle" is a pointer on a G4ParticleDefinition object
G4String particleName = particle->GetParticleName () ;

if (particleName == "gamma")

{

ph->RegisterProcess (new G4PhotoElectricEffect , particle);
ph->RegisterProcess (new G4ComptonScattering , particle);
ph->RegisterProcess (new G4GammaConversion , particle);
G4ProcessManager* pmanager = particle->GetProcessManager ();
G4BiasingHelper: :ActivatePhysicsBiasing (pmanager, "phot");
G4BiasingHelper: :ActivatePhysicsBiasing (pmanager, "compt");
G4BiasingHelper: :ActivatePhysicsBiasing (pmanager, "conv");
G4BiasingHelper: :ActivateNonPhysicsBiasing (pmanager) ;

}

* A last way to setup the physics list is by direct insertion of the G4BiasingProcessInterface in-
stances, but this requires solid expertise in physics list creation.

In case you also use parallel geometries, you have to make the generic biasing sensitive to these. Assum-
ing you have created three parallel geometries with names "parallelWorldl", "parallelWorld2" and
"parallelWorld3" that you want to be active for neutrons, the additional calls you have to make compared
to example EviBias.GenericBiasing. Overview.UsePhysConstructor above are simply:

3.7. Event Biasing Techniques 97

Book For Application Developers, Release 11.2

Listing 3.9: Calls to activate parallel geometry navigation

// —-— activate parallel geometries for neutrons:

biasingPhysics->AddParallelGeometry ("neutron”, "parallelWorldl");
biasingPhysics—>AddParallelGeometry ("neutron", "parallelWorld2") ;
biasingPhysics->AddParallelGeometry ("neutron”, "parallelWorld3");

It is also possible, even though less convenient, to use the G4BiasingHelper utility class making
calls to the static method limiter = G4BiasingHelper::AddLimiterProcess (pmanager,
"limiterProcessName") inaddition to the ones of example EvtBias.GenericBiasing. Overview.UseBiasingHelper
above. This call returns a pointer 1imiter on the constructed G4ParallelGeometriesLimiterProcess
process, setting its name as "limiterProcessName", this pointer has then to be used to specify the parallel
geometries to the process : limiter—>AddParallelWorld ("parallelWorldl")...

Existing biasing operations, operator and interaction laws

Below are the set of available concrete biasing operations, operators and interaction laws. These are defined in
source/processes/biasing/generic. Please note that several examples (Examples) also implement dedi-
cated operators and operations.

* Concrete implementation classes of G4VBiasingOperation:

— G4BOptnCloning: a non-physics-based biasing operation that clones the current track. Each of the two
copies is given freely a weight.

— G4BOptnChangeCrossSection: a physics-based biasing operation to change one process cross-
section

— G4BOptnForceFreeFlight: a physics-based biasing operation to force a flight with no interaction
through the current volume. This operation is better said a “silent flight”: the flight is conducted under a
zero weight, and the track weight is restored at the end of the free flight, taking into account the cumulative
weight change for the non-interaction flight. This special feature is because this class in used in the MCNP-
like force collision scheme G4BOptrForceCollision.

— G4BOptnForceCommonTruncatedExp: a physics-based biasing operation to force a collision inside
the current volume. It is “common” as several processes may be forced together, driving the related
interaction law by the sum of these processes cross-section. The relative natural occurrence of processes
is conserved. This operation makes use of a “truncated exponential” law, which is the exponential law
limited to a segment [0,L], where L is the distance to exit the current volume.

— G4BOptnLeadingParticle: a non-physics-based biasing operation that implements a Leading Par-
ticle Biasing scheme. The technique can be applied to hadronic, electromagnetic et decay processes. At
each interaction point, are kept:

the leading particle (highest energy track),

* one particle of each species (considering particles and anti-particles as of same species, and all parti-
cles with Z >= 2 as one species).

A Russian roulette is additionnally played on the surviving non-leading tracks. This is specially of in-
terest for electromagnetic processes as these have low multiplicities, making unaffected the final state if
applying the above algorithm. The default killing probability is 2/3, but can be changed by the void
SetFurtherKillingProbability (G4double p) method.

* Concrete implementation class of G4VBiasingOperator:

— G4BOptrForceCollision: abiasing operator that implements a force collision scheme quite close to
the one provided by MCNP. It handles the scheme though the following sequence:

1. The operator starts by using a G4BOptnCloning cloning operation, making a copy of the primary
entering the volume. The primary is given a zero weight.

2. The primary is then transported through to the volume, without interactions. This is done with the
operator requesting forced free flight G4BOptnForceFreeFlight operations to all physics pro-
cesses. The weight is zero to prevent the primary to contribute to scores. This flight purpose is to
accumulate the probability to fly through the volume without interaction. When the primary reaches

98 Chapter 3. Toolkit Fundamentals

Book For Application Developers, Release 11.2

the volume boundary, the first free flight operation restores the primary weight to its initial weight
and all operations multiply this weight by their weight for non-interaction flight. The operator then
abandons here the primary track, letting it back to normal tracking.

3. The copy of the primary track starts and the track is forced to interact in the volume, using the
G4BOptnForceCommonTruncatedExp operation, itself using the total cross-section to compute
the forced interaction law (exponential law limited to path length in the volume). One of the physics
processes is randomly selected (on the basis of cross-section values) for the interaction.

4. Other processes are receiving a forced free flight operation, from the operator.

5. The copy of the primary is transported up to its interaction point. With these operations configured, the
G4BiasingProcessInterface instances have all needed information to automatically compute
the weight of the primary track and of its interaction products.

As this operation starts on the volume boundary, a single force interaction occurs: if the track survives
the interaction (e.g Compton process), as it moved apart the boundary, the operator does not consider it
further.

* G4VBiasingInteractionLaw classes. These classes describe the interaction law in term of a non-
interaction probability over a segment of length I, and an “effective” cross-section for an interaction at distance
1 (see Physics Reference Manual, section generic biasing). An interaction law can also be sampled.

— G4InteractionLawPhysical: the usual exponential law, driven by a cross-section constant over a
step. The effective cross-section is the cross-section.

— G4ILawForceFreeFlight: an “interaction” law for, precisely, a non-interacting track, with non-
interaction probability always 1, and zero effective cross-section. It is a limit case of the modeling.

— G4ILawTruncatedExp: an exponential interaction law limited to a segment [0,L]. The non-interaction
probability and effective cross-section depend on I, the distance travelled, and become zero and infinite,
respectively, at 1=L.

Changes from 10.0 to 10.1

The G4VBiasingOperation class has been evolved to simplify the interface. The changes regard physics-based
biasing (occurrence biasing and final state biasing) and are:

e Suppression of the method virtual G4ForceCondition ProposeForceCondition (const
G4ForceCondition wrappedProcessCondition)
— The functionality has been kept, absorbing the ProposeForceCondition (...) method by the
ProvideOccurenceBiasingInteractionLaw (.. .) one, which has now the signature:

virtual const G4VBiasingInteractionLawx
ProvideOccurenceBiasingInteractionLaw (const
G4BiasingProcessInterfacex callingProcess, G4ForceConditioné&
proposeForceCondition) = 0;

— The value of proposeForceCondition passed to the method is the G4ForceCondition value of
the wrapped process, as this was the case with deprecated method ProposeForceCondition (. ..)

 Suppression of the virtual method “G4bool DenyProcessPostStepDolt(const G4BiasingProcessInterface* call-
ingProcess, const G4Track* track, const G4Step* step, G4double& proposedTrackWeight)”:

— This method was used to prevent the wrapped process hold by callingProcess to have its
PostStepDoIt (...) called, providing a weight for this non-call.

— The method has been removed, but the functionality still exists, and has been merged and generalized with
the change of the pure virtual ApplyFinalStateBiasing (.. .) described just after.

» Extra argument G4bools& forceBiasedFinalState added as last argu-
ment of virtual G4VParticleChangex ApplyFinalStateBiasing(const
G4BiasingProcessInterfacex callingProcess, const G4Trackx track, const
G4Step* step, G4bools& forceBiasedFinalState) = 0

— This method is meant to return a final state interaction through the G4VParticleChange. The final
state may be the analog wrapped process one, or a biased one, which comes with its weight correction

3.7. Event Biasing Techniques 99

Book For Application Developers, Release 11.2

for biasing the final state. If an occurrence biasing is also at play in the same step, the weight correction
for this biasing is applied to the final state before this one is returned to the stepping. This is the default
behavior. This behavior can be controlled by forceBiasedFinalState:

* If forceBiasedFinalState isleft false, the above default behavior is applied.

If forceBiasedFinalState is set to true, the G4VParticleChange final state will be
returned as is to the stepping, and that, regardless there is an occurrence at play. Hence, when setting
forceBiasedFinalState to true, the biasing operation takes full responsibility for the total
weight (occurrence + final state) calculation.

* Deletion of G4ILawCommonTruncatedExp, which could be eliminated after better implementation of
G4BOptnForceCommonTruncatedExp operation.

Changes from 10.1 to 10.2

Changes in 10.2 derive from the introduction of the track feature G4VAuxiliaryTrackInformation. They
regard essentially the force collision operator G4BOpt rForceCollision and related features. These changes are
transparent to the user if using G4BOptrForceCollision and following examples/extended/biasing/
GBO02. The information below are provided for developers of biasing classes.

The G4VAuxiliaryTrackInformation functionality allows to extend the G4Track attributes with an in-
stance of a concrete class deriving from G4VAuxiliaryTrackInformation. Such an object is registered
to the G4Track using an ID that has to be previously obtained from the G4PhysicsModelCatalog. The
G4VBiasingOperator class defines two new virtual methods, Configure () and ConfigureForWorker (),
to help with the creation of these ID ' s at the proper time (see G4BOptrForceCollision as an example).

Before 10.2, the G4BOptrForceCollision class was using state variables to make the bookkeeping of the
tracks handled by the scheme. Now this bookkeeping is handled using a G4VAuxiliaryTrackInformation,
G4BOptrForceCollisionTrackData.

To help with the bookkeeping, the base class G4AVBiasingOperator was defining a set of methods
(GetBirthOperation(..), RememberSecondaries(..), ForgetTrack (..)), these have been re-
moved in 10.2 and are easy to overpass with a dedicated G4VAuxiliaryTrackInformation.

100 Chapter 3. Toolkit Fundamentals

CHAPTER
FOUR

DETECTOR DEFINITION AND RESPONSE

4.1 Geometry

4.1.1 Introduction

The detector definition requires the representation of its geometrical elements, their materials and electronics prop-
erties, together with visualization attributes and user defined properties. The geometrical representation of detector
elements focuses on the definition of solid models and their spatial position, as well as their logical relations to one
another, such as in the case of containment.

GEANT4 uses the concept of “Logical Volume” to manage the representation of detector element properties. The
concept of “Physical Volume” is used to manage the representation of the spatial positioning of detector elements
and their logical relations. The concept of “Solid” is used to manage the representation of the detector element solid
modeling. Volumes and solids must be dynamically allocated using ‘new’ in the user program; they must not be
declared as local objects. Volumes and solids are automatically registered on creation to dedicated stores; these stores
will delete all objects at the end of the job.

4.1.2 Solids

The GEANT4 geometry modeller implements Constructive Solid Geometry (CSG) representations for geometrical
primitives. CSG representations are easy to use and normally give superior performance.

All solids must be allocated using ‘new’ in the user’s program; they get registered to a G4SolidStore at construc-
tion, which will also take care to deallocate them at the end of the job, if not done already in the user’s code.

All constructed solids can stream out their contents via appropriate methods and streaming operators.
For all solids it is possible to estimate the geometrical volume and the surface area by invoking the methods:

G4double GetCubicVolume ()
G4double GetSurfaceArea ()

which return an estimate of the solid volume and total area in internal units respectively. For elementary solids the
functions compute the exact geometrical quantities, while for composite or complex solids an estimate is made using
Monte Carlo techniques.

For all solids it is also possible to generate pseudo-random points lying on their surfaces, by invoking the method

G4ThreeVector GetPointOnSurface () const

which returns the generated point in local coordinates relative to the solid. To be noted that this function is not meant
to provide a uniform distribution of points on the surfaces of the solids.

101

Book For Application Developers, Release 11.2

Since release 10.3, solids can be scaled in their dimensions along the Cartesian axes X, Y or Z, by providing a scale
transformation associated to the original solid.

G4ScaledSolid(const G4Strings& pName,
G4vVSolid* pSolid ,
const G4Scale3D& pScale)

Note: GEANT4 does not impose any restriction on the name assigned to solids; names can be shared. It is however
good practice to specify unique names for each constructed solid, to allow for easier retrivial from stores for post-
processing use.

Constructed Solid Geometry (CSG) Solids

CSG solids are defined directly as three-dimensional primitives. They are described by a minimal set of parameters
necessary to define the shape and size of the solid. CSG solids are Boxes, Tubes and their sections, Cones and their
sections, Spheres, Wedges, and Toruses.

Box:

To create a box one can use the constructor:

G4Box (const G4String& pName,
G4double pX,
G4double pY,
G4double pZ)

In the picture:
pX = 30, pY = 40, pZ = 60

by giving the box a name and its half-lengths along the X, Y and Z axis:

’ pX \ half length in X \ pY \ half lengthin Y \ PZ \ half length in Z

This will create a box that extends from —pX to +pX in X, from —pY to +pY in Y, and from —pZ to +p?Z in Z.

For example to create a box that is 2 by 6 by 10 centimeters in full length, and called BoxA one should use the
following code:

G4Box* aBox = new G4Box ("BoxA", 1.0xcm, 3.0xcm, 5.0%cm);

Cylindrical Section or Tube:

Similarly to create a cylindrical section or tube, one would use the constructor:

102 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.2

G4Tubs (const G4String& pName,
G4double pRMin,
G4double pRMax,
G4double pDz,
G4double pSPhi,
G4double pDPhi)

In the picture:
PRMin = 10, pRMax = 15, pDz = 20

giving its name pName and its parameters which are:

pRMin | Inner radius

PRMax

Outer radius

pDz Half length in Z

pSPhi

Starting phi angle in radians

pDPhi | Angle of the segment in radians

Cylindrical Cut Section or Cut Tube:

A cutin Z can be applied to a cylindrical section to obtain a cut tube. The following constructor should be used:

G4CutTubs (const G4Stringé
G4double
G4double
G4double
G4double

pName,
pRMin,
PRMax,
pDz,

pSPhi,

G4double pDPhi,
G4ThreeVector pLowNorm,
G4ThreeVector pHighNorm)

In the picture:

pPRMin = 12, pRMax = 20, pDbz = 30,
pSPhi = 0, pDPhi = 1.5xpi, pLowNorm =
(0,-0.7,-0.71), pHighNorm = (0.7,0,0.
71)

giving its name pName and its parameters which are:

4.1. Geometry

103

Book For Application Developers, Release 11.2

PRMin Inner radius PRMax Outer radius

pDz Half length in Z pSPhi Starting phi angle in radians
pDPhi Angle of the segment in radians | pLowNorm | Outside Normal at -Z
pHighNorm | Outside Normal at +Z

Cone or Conical section:

Similarly to create a cone, or conical section, one would use the constructor

G4Cons (const G4Strings& pName,
G4double pRminl,
G4double pRmaxl,
G4double pRmin2,
G4double pRmax2,
G4double pDz,
G4double pSPhi,
G4double pDPhi)

In the picture:

PRminl = 5, pRmaxl = 10, PRmin2 =
20, pRmax2 = 25, pbz = 40, pSPhi = 0,
pDPhi = 4/3xPi

giving its name pName, and its parameters which are:

pRminl | inside radius at —pDz pRmax1 | outside radius at —pDz

pPRmin2 | inside radius at +pDz pRmax2 | outside radius at +pDz

pDz half length in Z pSPhi starting angle of the segment in radians
pDPhi the angle of the segment in radians

Parallelepiped:

A parallelepiped is constructed using:

G4Para (const G4String& pName,
G4double dx, _4—02
G4double dy,
G4double dz,
G4double alpha,
G4double theta, ey
G4double phi)

In the picture:
dx = 30, dy

Il
sy
o
<
(o
N
Il
o
o

giving its name pName and its parameters which are:

104 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.2

dx, dy, Half-length in x,y,z
dz
alpha Angle formed by the Y axis and by the plane joining the centre of the faces parallel to the Z-X plane
at -dy and +dy
theta Polar angle of the line joining the centres of the faces at -dz and +dz in Z
phi Azimuthal angle of the line joining the centres of the faces at -dz and +dz in Z
Trapezoid:

To construct a trapezoid use:

G4Trd (const G4String& pName,
G4double dx1,
G4double dx2,
G4double dyl,
G4double dy2,
G4double dz)

In the picture:
dxl = 30, dx2 = 10, dyl = 40, dy2 =
15, dz = 60

to obtain a solid with name pName and parameters

dx1 | Half-length along X at the surface positioned at —dz
dx2 | Half-length along X at the surface positioned at +dz
dyl | Half-length along Y at the surface positioned at —dz
dy2 | Half-length along Y at the surface positioned at +dz
dz Half-length along Z axis

Generic Trapezoid:

To build a generic trapezoid, the G4Trap class is provided. G4Trap is a solid with six trapezoidal faces, it has two
bases parallel to the XY-plane and four lateral faces. The bases are located at the same distance from the XY-plane,
but on opposite sides from it. Each of the bases has two edges parallel the X-axis. Let’s call the line joining middle
point of these edges - the centre line of the base, and the middle point of this line - the centre of the base. An important
property of G4Trap is that the line joining the centres of the bases goes through the origin of the local coordinate
system.

G4Trap has three main constructors; for a Right Angular Wedge, for a general trapezoid and a constructor from eight
points:

4.1. Geometry 105

Book For Application Developers, Release 11.2

G4Trap (const G4Strings& pName,
G4double pZ,
G4double pY,
G4double pX,
G4double pLTX)
G4Trap (const G4String& pName,
G4double pDz, G4double,
—pTheta,
G4double pPhi, G4double pDyl,
G4double pDxl, G4double pDx2,
G4double pAlpl, G4double pDy2,
gijouiie p2§3é) G4double pDx4, Inthelﬁctunz
oubie PP pDx1 = pDx2 = 40, pDyl = 40, pDx3
GATrap (const G4String& pName, = 10, pbx4 = 14, pby2 = 16, pDz = 60,
const G4ThreeVector pt([8]) pTheta = 20+«Degree, pPhi = 5xDegree,
pPAlpl = pAlp2 = 10*Degree
Y
oA
TX
pL\ 0.5 pY tan(a)
\\\\\ X
J—‘./\
to obtain a Right Angular Wedge with name pName and parameters:
pZ Length along Z
pY Length along Y
pX Length along X at the wider side
pLTX | Length along X at the narrower side (p1 TX<=pX)

The angle between the Y-axis and the centre lines of the bases in case of Right Angular Wedge is defined by the
following expression:

tan(alpha) = 0.5 * (pLTX - pX) / pY

or, to obtain the general trapezoid:

pDz Half Z length - distance from the origin to the bases
pTheta | Polar angle of the line joining the centres of the bases at -/+pDz
pPhi Azimuthal angle of the line joining the centre of the base at -pDz to the centre of the base at +pDz
pDyl Half Y length of the base at -pDz
pDy2 Half Y length of the base at +pDz
pDx1 Half X length at smaller Y of the base at -pDz
pDx2 Half X length at bigger Y of the base at -pDz
pDx3 Half X length at smaller Y of the base at +pDz
pDx4 Half X length at bigger y of the base at +pDz
pAlpl Angle between the Y-axis and the centre line of the base at -pDz (lower endcap)
PAlp?2 Angle between the Y-axis and the centre line of the base at +pDz (upper endcap)
106 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.2

Note: The angle pAlphl and pAlph2 have to be the same due to the planarity condition.

or, to obtain from eight points with name pName:

pt | Coordinates of the vertices

pt[0],pt[1] | Edge with smaller Y of the base at -z

9 p

| Edge with bigger Y of the base at -z

b p

pt[2],pt[3]
pt[4],pt[5] | Edge with smaller Y of the base at +z
ptl[6],pt[7] | Edge with bigger Y of the base at +z

Array of vertices is given as a sequence of four edges parallel to the X-axis, first two edges define the base at -z, next
two edges define the base at +z. First point in edge should have smaller X.

Note: The following properties of G4Trap should be respected: (a) Lateral faces should be planar; (b) The line

joining the centers of the bases should go through the origin

Sphere or Spherical Shell Section:

To build a sphere, or a spherical shell section, use:

G4Sphere (const G4Stringé& pName,
G4double pRmin,
G4double pRmax,
G4double pSPhi,
G4double pDPhi,
G4double pSTheta,
G4double pDTheta)

In the picture:

PRmin = 100, pRmax = 120, pSPhi =
OxDegree, pDPhi = 180xDegree, pSTheta
= 0 Degree, pDTheta = 180*Degree

to obtain a solid with name pName and parameters:

PRmin Inner radius

PRmax Outer radius

pSPhi Starting Phi angle of the segment in radians
pDPhi Delta Phi angle of the segment in radians
pSTheta | Starting Theta angle of the segment in radians
pDTheta | Delta Theta angle of the segment in radians

Full Solid Sphere:
To build a full solid sphere use:

4.1. Geometry

107

Book For Application Developers, Release 11.2

G40rb (const G4String& pName,
G4double pRmax)

In the picture:
pRmax = 100

The Orb can be obtained from a Sphere with: pRmin =0, pSPhi =0, pDPhi =27, pSTheta =0, pDTheta=mn

PRmax

Outer radius

Torus:

To build a torus use:

G4Torus (const G4String& pName,
G4double pRmin,
G4double pRmax,
G4double pRtor,
G4double pSPhi,
G4double pDPhi)

In the picture:
PRmin = 40,
pSPhi = O,

60,

pRmax =
pDPhi =

pRtor =
90xdegree

200,

to obtain a solid with name pName and parameters:

pRmin | Inside radius

pRmax | Outside radius
pRtor | Swept radius of torus
pSPhi | Starting Phi angle in radians (£ESPhi+fDPhi<=2PI, fSPhi>-2P1I)

pDPhi

Delta angle of the segment in radians

In addition, the GEANT4 Design Documentation shows in the Solids Class Diagram the complete list of CSG classes.

Specific CSG Solids

Polycons:

Polycons (PCON) are implemented in GEANT4 through the G4Polycone class:

108

Chapter 4.

Detector Definition and Response

Book For Application Developers, Release 11.2

G4Polycone (const G4String& pName,
G4double phiStart,
G4double phiTotal,
G4int numZPlanes,
const G4double 2zPlanel],
const G4double rInner([],
const G4double rOuter([])

In the picture:
phiStart = 1/4%Pi, phiTotal = 3/2%Pi,

numZPlanes = 9, rInner = { 0, 0, O,
o, o0, 0, 0, 0, 0}, <rOuter = { 0, 10,
10, 5, 5, 10 , 10 , 2, 2}y, z = {5,
7, 9, 11, 25, 27, 29, 31, 35}
where:

phiStart Initial Phi starting angle

phiTotal Total Phi angle

numZPlanes | Number of Z planes

numRZ Number of corners in 1,Z space

zPlane Position of Z planes, with Z in increasing order

rInner Tangent distance to inner surface

rOuter Tangent distance to outer surface

r r coordinate of corners

z Z coordinate of corners

A Polycone where Z planes position can also decrease is implemented through the G4GenericPolycone class:

G4GenericPolycone (const G4Strings& pName,
G4double phiStart,
G4double phiTotal,
G4int numRZ,
const G4double «r[],
const G4double z[])

where:

4.1. Geometry 109

Book For Application Developers, Release 11.2

phiStart

Initial Phi starting angle

phiTotal

Total Phi angle

numRZ

Number of corners in r,Z space

r

r coordinate of corners

Z

7 coordinate of corners

Polyhedra (PGON):

Polyhedra (PGON) are implemented through G4Polyhedra:

G4Polyhedra (const G4String& pName,
G4double phiStart,
G4double phiTotal,
G4int numSide, -10.0
G4int numZPlanes,
const G4double zPlanel],
const G4double rInner[], 300
const G4double rOuter[])
G4Polyhedra (const G4Strings& pName, 20.0
G4double phiStart, =
G4double phiTotal, 10.0
G4int numSide,
G4int numRZ,
const G4double «r[], 0.0
const G4double z[])
In the picture:
phiStart = -1/4%Pi, phiTotal= 5/4%Pi,
numSide = 3, nunZPlanes 7, rInner =
{o0, 0, 0, O, O, 0, O 1}, rOuter = {
0, 15, 15, 4, 4, 10, 10 1}, z = { 0O,
5,8, 13, 30, 32, 35}
where:
phiStart Initial Phi starting angle
phiTotal Total Phi angle
numSide Number of sides
numZPlanes | Number of Z planes
numRZ Number of corners in 1,Z space
zPlane Position of Z planes
rInner Tangent distance to inner surface
rOuter Tangent distance to outer surface
r r coordinate of corners
z Z coordinate of corners

Tube with an elliptical cross section:

A tube with an elliptical cross section (ELTU) with elliptical semimajor and semiminor axes along the X and Y

cartesian axes can be defined as follows:

110

Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.2

G4EllipticalTube (const G4String& pName,
G4double xSemiAxis,
G4double ySemiAxis, 10
G4double Dz)

EAEEENEL RS

R e R

VRS

In the picture
xSemiAxis = 5, semiAxisY = 10, Dz =
20

The tube extends in Z from -Dz to +Dz and the equation of the surface in the x/y plane is:

(x/xSemiAxis) «+2+ (y/ySemiAxis) *+2 1.0

where:
xSemiAxis | Half length of axis along X
ySemiAxis | Half length of axis along Y
Dz Half length Z

General Ellipsoid:

The general ellipsoid with possible cut in Z can be defined as follows:

4.1. Geometry 111

Book For Application Developers, Release 11.2

G4Ellipsoid(const G4String& pName,
G4double xSemiAxis,
G4double ySemiAxis,
G4double zSemiAxis,
G4double zBottomCut=0,
G4double zTopCut=0)

In the picture:

xSemiAxis = 10, ySemiAxis = 20,
zSemiAxis = 50, zBottomCut = -10,
pzTopCut = 40

A general (or triaxial) ellipsoid is a quadratic surface which is given in Cartesian coordinates by:

1.0 = (x/xSemiAxis) «+2 + (y/ySemiAxis)«+2 + (z/zSemiAxis) 2
where:
xSemiAxis Semiaxis in X
ySemiAxis Semiaxis in Y
zSemiAxis Semiaxis in Z
zBottomCut | lower cut plane level, Z
zTopCut upper cut plane level, Z

Cone with Elliptical Cross Section:

A cone with an elliptical cross section can be defined as follows:

G4EllipticalCone (const G4String& pName,
G4double xSemiAxis,
G4double ySemiAxis,
G4double zHeight, —50
G4double zTopCut) 20¢

53

o
AN
N

7
iy

Nk
o

ALY

ot
L

i
i
i
L

L
11y
oy
i
\\\\\\\\\\\\
R

it
I,
o

By

'f._'-’
ﬁ
ALY

N

i
Y
b

In the picture:
xSemiAxis = 30/75, ySemiAxis = 60/75,
zHeight = 50, zTopCut = 25

where:

112 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.2

xSemiAxis | A scalar value, it defines the scaling along X-axis

ySemiAxis | A scalar value, it defines the scaling along Y-axis

zHeight Z-coordinate if the apex

zTopCut Upper cut plane level

Value of zTopCut cannot exceed zHeight; the bases of an elliptical cone are located at —zTopCut and

+zTopCut.

The lateral surface of an elliptical cone is described by the equation:

(x/xSemiAxis)**2 + (y/ySemiAxis)**2 = (zHeight - z)**2

Values of xSemiAxis and ySemiAxis can be figured out from the equations for the semimajor axes of the elliptical

section at z=0:

dx = xSemiAxis * zHeight dy = ySemiAxis * zHeight

Paraboloid, a solid with parabolic profile:

A solid with parabolic profile and possible cuts along the Z axis can be defined as follows:

G4Paraboloid(const G4String& pName,
G4double Dz,
G4double RI1,
G4double R2)

The equation for the solid is:

rho**x2 <= k1l *« z + k2;
—-dz <= z <= dz

rls+«2 = k1 » (-dz) + k2

r2++x2 = kl x (dz) + k2

In the picture:
R1 = 20, R2 = 35, Dz = 20

’ Dz \ Half length Z \ R1 \ Radius at -Dz \ R2 \ Radius at +Dz greater than R1 ‘

Tube with Hyperbolic Profile:

A tube with a hyperbolic profile (HYPE) can be defined as follows:

G4Hype (const G4Strings& pName,
G4double innerRadius,
G4double outerRadius,
G4double innerStereo,
G4double outerStereo,
G4double halflenZ)

In the picture:

innerStereo = 0.7, outerStereo = 0.
7, halflLenZ = 50, innerRadius = 20,
outerRadius = 30

4.1. Geometry

113

Book For Application Developers, Release 11.2

G4Hype is shaped with curved sides parallel to the Z-axis, has a specified half-length along the Z axis about which it

is centred, and a given minimum and maximum radius.

A minimum radius of 0 defines a filled Hype (with hyperbolic inner surface), i.e. inner radius = 0 AND inner stereo

The inner and outer hyperbolic surfaces can have different stereo angles. A stereo angle of 0 gives a cylindrical

Inner radius

Outer radius

Inner stereo angle in radians

Outer stereo angle in radians

Half length in Z

angle = 0.

surface:
innerRadius
outerRadius
innerStereo
outerStereo
halfLenZ

Tetrahedra:

A tetrahedra solid can be defined as follows:

G4Tet (const G4String& pName,
G4ThreeVector anchor,
G4ThreeVector p2,
G4ThreeVector p3,
G4ThreeVector p4,

G4bool~* degeneracyFlag=nullptr)

In the picture:

anchor = {0, 0, sqgrt(3)},
2+xsqrt (2/3), -1/sqrt(3) 1},
-sqrt (2), -sqrt(2/3),-1/sqgrt (3)
= { sqrt(2), -sqgrt(2/3) ,
}

P2

Z{OI
p3 = {
}r p4

-1/sqrt (3)

The solid is defined by 4 points in space:

anchor Anchor point

p2 Point 2

r3 Point 3

r4 Point 4

degeneracyFlag | Flagindicating degeneracy of points

Extruded Polygon:

The extrusion of an arbitrary polygon (extruded solid) with fixed outline in the defined Z sections can be defined as
follows (in a general way, or in a simplified construct with only two Z sections). G4Ext rudedSolid is constructed
by moving a 2D polygonal contour along a 3D polyline. During movement the polygonal contour can be scaled.

114

Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.2

G4ExtrudedSolid (const G4String& pName,
std: :vector<G4TwoVector> polygon,
std: :vector<ZSection> zsections)

G4ExtrudedSolid (const G4String& pName,
std: :vector<G4TwoVector> polygon,
G4double halfz,

G4TwoVector offl, G4double scalel,
G4TwoVector off2, G4double scale2)

In the picture:

polygon = {-30,-30},{-30,30},{30,30},
{30,-301}, {15,-30},{15,15}, {-15,15},
{-15,-30}

zsections = [-60,{0,30},0.8], [-15,
{0,-30},1.1, [10,{0,0},0.6], [60,{0,
30},1.2]

The Z-sides of the solid are the scaled versions of the same polygon.

polygon 2D polygonal contour; the vertices of the outlined polygon defined in clock-wise order
zsections 3D polyline with scale factors; the Z-sections defined by Z position in increasing order
halfz Half length in Z; distance from the origin to the sections

offl, scalel | (X,Y) position of the polygon and scale factor at -halfZ
off2, scale2 | (X,Y) position of the polygon and scale factor at +halfZ

Each node in the 3D polyline is defined as a ZSection object:

struct ZSection
{

G4double f7Z; // Z coordinate of the node
G4TwoVector fOffset; // (X, Y) coordinates of the node
G4double fScale; // Scale factor that should be applied to the 2D polygon at the node

}

Very often an extruded solid is constructed by shifting a polygon in the perpendicular direction to its plane. In such
case of£1, of£2 should be specified as G4TwoVector(0,0) and scalel, scale?2 should be equal to 1.

Box Twisted:

A box twisted along one axis can be defined as follows:

4.1. Geometry 115

Book For Application Developers, Release 11.2

G4TwistedBox (const G4String& pName,
G4double twistedangle,
G4double pDx,
G4double pDy,
G4double pDz)

In the picture:

twistedangle = 30xDegree, pDx = 30,
pDy =40, pDz = 60
G4TwistedBox is a box twisted along the z-axis. The twist angle cannot be greater than 90 degrees:
twistedangle | Twist angle
pDx Half x length
pDy Half y length
pDz Half z length
Trapezoid Twisted along One Axis:
trapezoid twisted along one axis can be defined as follows:
G4TwistedTrap (const G4Strings& pName,
G4double twistedangle,
G4double pDxxl1,
G4double pDxx2,
G4double pDy,
G4double pDz)
G4TwistedTrap (const G4Strings& pName,
G4double twistedangle,
G4double pDz,
G4double pTheta,
G4double pPhi,
G4double pDyl, In the picture:
G4double prir pDx1l = 30, pDx2 = 40, pDyl = 40, pDx3
G4double pDx2, _ _ _ _
Gddouble pDy2, = 10, pDbx4 = 14, pDhy2 = ?6, pbz = 60,
G4double pDx3, pTheta = 20xDegree, pDphi = 5xDegree,
G4double pDx4, pAlph = 10%Degree, twistedangle =
G4double pAlph) 30*Degree

The first constructor of G4TwistedTrap produces a regular trapezoid twisted along the Z-axis, where the caps of
the trapezoid are of the same shape and size.

The second constructor produces a generic trapezoid with polar, azimuthal and tilt angles.

The twist angle cannot be greater than 90 degrees:

116 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.2

twistedangle | Twisted angle

pDx1 Half X length at y=-pDy

pDx2 Half X length at y=+pDy

pDy Half Y length

pDz Half Z length

pTheta Polar angle of the line joining the centres of the faces at -/+pDz
pDyl Half Y length at -pDz

pDx1 Half X length at -pDz, y=-pDy1

pDx2 Half X length at -pDz, y=+pDy1

pDy?2 Half Y length at +pDz

pDx3 Half X length at +pDz, y=-pDy2

pDx4 Half X length at +pDz, y=+pDy2

pAlph Angle with respect to the Y axis from the centre of the side

Twisted Trapezoid with X and Y dimensions varying along Z:

A twisted trapezoid with the X and Y dimensions varying along Z can be defined as follows:

G4TwistedTrd (const G4Strings& pName,

G4double pDx1,

G4double pDx2,

G4double pDyl,

G4double pDy2,

G4double pDz,

G4double twistedangle)
In the picture:
dxl = 30, dx2 = 10, dyl = 40, dy2 =
15, dz = 60, twistedangle = 30xDegree

where:

pDx1 Half X length at the surface positioned at -dz

pDx2 Half X length at the surface positioned at +dz

pDyl Half Y length at the surface positioned at -dz

pDy2 Half Y length at the surface positioned at +dz

pDz Half Z length

twistedangle | Twisted angle

Generic trapezoid with optionally collapsing vertices:

An arbitrary trapezoid with up to 8 vertices standing on two parallel planes perpendicular to the Z axis can be defined

as follows:

G4GenericTrap (const G4String& pName,

G4double

pDz,

const std::vector<G4TwoVector>& vertices)

4.1. Geometry

117

Book For Application Developers, Release 11.2

In the picture:
pDz = 25 vertices = {-30, -30}, {-30, 30}, {30, 30}, {30, -30} {-5, -20%,
{-20, 20}, {20, 20}, {20, -20}

In the picture:
pbz = 25 vertices = {-30,-30}, {-30,30}, {30,30}, {30,-30} {-20,-20}, {-20,
20}, {20,20}, {20, 20}

In the picture:
pDz = 25 vertices = {-30,-30}, {-30,30}, {30,30}, {30,-30} {0,0}, {0O,0}, {O,
0}, {0,0}

where:

pDz Half Z length
vertices | The (X,Y) coordinates of vertices

The order of specification of the coordinates for the vertices in G4GenericTrap is important. The first four points
are the vertices sitting on the —hz plane; the last four points are the vertices sitting on the +hz plane.

The order of defining the vertices of the solid is the following:

point 0 is connected with points 1,3,4
point 1 is connected with points 0,2,5
point 2 is connected with points 1,3,6
point 3 is connected with points 0,2, 7
point 4 is connected with points 0,5,7
point 5 is connected with points 1,4,6
point 6 is connected with points 2,5,7
point 7 is connected with points 3,4, 6

118 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.2

Points can be identical in order to create shapes with less than 8§ vertices; the only limitation is to have at least one
triangle at +hz or —hz; the lateral surfaces are not necessarily planar. Not planar lateral surfaces are represented by a
surface that linearly changes from the edge on —hz to the corresponding edge on +hz; it represents a sweeping surface
with twist angle linearly dependent on Z, but it is not a real twisted surface mathematically described by equations as

for the other twisted solids described in this chapter.
Tube Section Twisted along Its Axis:

A tube section twisted along its axis can be defined as follows:

G4TwistedTubs (const G4Stringé& pName,
G4double twistedangle,
G4double endinnerrad,
G4double endouterrad,
G4double halfzlen,
G4double dphi)

In the picture:

endinnerrad = 10, endouterrad =
halfzlen = 20, dphi = 90xDegree,
twistedangle = 60xDegree

15,

GATwistedTubs is a sort of twisted cylinder which, placed along the Z-axis and divided into phi-segments is
shaped like an hyperboloid, where each of its segmented pieces can be tilted with a stereo angle.

It can have inner and outer surfaces with the same stereo angle:

twistedangle

Twisted angle

endinnerrad

Inner radius at endcap

endouterrad

Outer radius at endcap

halfzlen

Half Z length

dphi

Phi angle of a segment

Additional constructors are provided, allowing the shape to be specified either as:

¢ the number of segments in phi and the total angle for all segments, or
* a combination of the above constructors providing instead the inner and outer radii at z=0 with different z-

lengths along negative and positive Z-axis.

4.1. Geometry

119

Book For Application Developers, Release 11.2

Solids made by Boolean operations

Simple solids can be combined using Boolean operations. For example, a cylinder and a half-sphere can be combined
with the union Boolean operation.

Creating such a new Boolean solid, requires:

e Two solids
* A Boolean operation: union, intersection or subtraction.
* Optionally a transformation for the second solid.

The solids used should be either CSG solids (for examples a box, a spherical shell, or a tube) or another Boolean solid:
the product of a previous Boolean operation. An important purpose of Boolean solids is to allow the description of
solids with peculiar shapes in a simple and intuitive way, still allowing an efficient geometrical navigation inside them.

Note: The constituent solids of a Boolean operation should possibly avoid be composed by sharing all or part of their
surfaces. This precaution is necessary in order to avoid the generation of ‘fake’ surfaces due to precision loss, or errors
in the final visualization of the Boolean shape. In particular, if any one of the subtractor surfaces is coincident with a
surface of the subtractee, the result is undefined. Moreover, the final Boolean solid should represent a single ‘closed’
solid, i.e. a Boolean operation between two solids which are disjoint or far apart each other, is not a valid Boolean
composition.

Note: The tracking cost for navigating in a Boolean solid is proportional to the number of constituent solids. So
care must be taken to avoid extensive, unnecessary use of Boolean solids in performance-critical areas of a geometry
description, where each solid is created from Boolean combinations of many other solids.

Examples of the creation of the simplest Boolean solids are given below:

G4Box* box =
new G4Box ("Box",20+mm, 30+mm, 40+mm) ;
G4Tubs* cyl =

new G4Tubs ("Cylinder",0,50+mm, 50+mm, 0, twopi); // r: 0 mm —> 50 mm
/) z: -50 mm -> 50 mm
// phi: 0 -> 2 pi

G4UnionSolid* union =

new G4UnionSolid("Box+Cylinder", box, cyl);
G4IntersectionSolidx intersection =

new G4IntersectionSolid("BoxxCylinder", box, cyl);
G4SubtractionSolidx subtraction =

new G4SubtractionSolid("Box-Cylinder", box, cyl);

where the union, intersection and subtraction of a box and cylinder are constructed.

The more useful case where one of the solids is displaced from the origin of coordinates also exists. In this case the
second solid is positioned relative to the coordinate system (and thus relative to the first). This can be done in two
ways:

* FEither by giving a rotation matrix and translation vector that are used to transform the coordinate system of the
second solid to the coordinate system of the first solid. This is called the passive method.

e Or by creating a transformation that moves the second solid from its desired position to its standard position,
e.g., a box’s standard position is with its centre at the origin and sides parallel to the three axes. This is called
the active method.

In the first case, the translation is applied first to move the origin of coordinates. Then the rotation is used to rotate the
coordinate system of the second solid to the coordinate system of the first.

120 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.2

G4RotationMatrix* yRot = new G4RotationMatrix; // Rotates X and Z axes only
yRot->rotateY (M_PI/4.+rad); // Rotates 45 degrees
G4ThreeVector zTrans (0, 0, 50);

G4UnionSolid* unionMoved =
new G4UnionSolid("Box+CylinderMoved", box, cyl, yRot, zTrans);

// The new coordinate system of the cylinder is translated so that
// its centre is at +50 on the original Z axis, and it is rotated
// with its X axis halfway between the original X and Z axes.

// Now we build the same solid using the alternative method
//
G4RotationMatrix invRot = yRot->invert ();
G4Transform3D transform(invRot, zTrans);
G4UnionSolid* unionMoved =
new G4UnionSolid("Box+CylinderMoved", box, cyl, transform);

Note that the first constructor that takes a pointer to the rotation-matrix (G4RotationMatrix«), does NOT copy
it. Therefore once used a rotation-matrix to construct a Boolean solid, it must NOT be modified.

In contrast, with the alternative method shown, a G4Transform3D is provided to the constructor by value, and its
transformation is stored by the Boolean solid. The user may modify the G4Transform3D and eventually use it
again.

When positioning a volume associated to a Boolean solid, the relative center of coordinates considered for the posi-
tioning is the one related to the first of the two constituent solids.

Multi-Union Structures

Since release 10.4, the possibility to define multi-union structures is part of the standard set of constructs in GEANT4.
A G4Mult iUnion structure allows for the description of a Boolean union of many displaced solids at once, therefore
representing volumes with the same associated material. An example on how to define a simple MultiUnion structure
is given here:

#include "G4MultiUnion.hh"

// Define two —-G4Box— shapes

//
G4Box* boxl = new G4Box ("Boxl1", 5.xmm, 5.*mm, 10.*mm);
G4Box* box2 = new G4Box ("Box2", 5.xmm, 5.*mm, 10.*mm);

// Define displacements for the shapes

//

G4RotationMatrix rotm = G4RotationMatrix();
G4ThreeVector positionl = G4ThreeVector (0.,0.,1.);
G4ThreeVector position2 = G4ThreeVector(0.,0.,2.);
G4Transform3D trl = G4Transform3D (rotm,positionl);
G4Transform3D tr2 = G4Transform3D (rotm,position2);

// Initialise a MultiUnion structure
//
G4MultiUnion* munion_solid = new G4MultiUnion ("Boxes_Union");

// Add the shapes to the structure
//

munion_solid->AddNode (*boxl,trl) ;
munion_solid->AddNode (*box2,tr2) ;

// Finally close the structure
//
munion_solid->Voxelize () ;

(continues on next page)

4.1. Geometry 121

Book For Application Developers, Release 11.2

(continued from previous page)

// Associate it to a logical volume as a normal solid

//

G4LogicalVolume* 1lvol =

new G4LogicalVolume (munion_solid, // its solid
munion_mat, // its material
"Boxes_Union_LV"); // its name

Fast detection of intersections in tracking is assured by the adoption of a specialised optimisation applied to the 3D
structure itself and generated at initialisation.

Tessellated Solids

In GEANT4 it is also implemented a class G4TessellatedSolid which can be used to generate a generic solid
defined by a number of facets (G4VFacet). Such constructs are especially important for conversion of complex
geometrical shapes imported from CAD systems bounded with generic surfaces into an approximate description with
facets of defined dimension (see Fig. 4.1).

Fig. 4.1: Example of geometries imported from CAD system and converted to tessellated solids.

They can also be used to generate a solid bounded with a generic surface made of planar facets. It is important that
the supplied facets shall form a fully enclosed space to represent the solid, and that adjacent facets always share a
complete edge (no vertex on one facet can lie between vertices on an adjacent facet).

Two types of facet can be used for the construction of a G4TessellatedSolid: a triangular facet
(G4TriangularFacet) and a quadrangular facet (G4QuadrangularFacet).

An example on how to generate a simple tessellated shape is given below.

Listing 4.1: Example of geometries imported from CAD system and con-
verted to tessellated solids.
// First declare a tessellated solid

//
G4TessellatedSolid solidTarget = new G4TessellatedSolid("Solid name");

// Define the facets which form the solid
//
G4double targetSize = 10xcm ;

(continues on next page)

122 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.2

(continued from previous page)

G4TriangularFacet xfacetl = new

G4TriangularFacet (G4ThreeVector (-targetSize, -targetSize, 0.0),
G4ThreeVector (+targetSize, -targetSize, 0.0),
G4ThreeVector (0.0, 0.0, +ttargetSize),
ABSOLUTE) ;

G4TriangularFacet +facet2 = new

G4TriangularFacet (G4ThreeVector (+targetSize, -targetSize, 0.0),
G4ThreeVector (+targetSize, ttargetSize, 0.0),
G4ThreeVector (0.0, 0.0, +ttargetSize),
ABSOLUTE) ;

G4TriangularFacet xfacet3 = new

G4TriangularFacet (G4ThreeVector (+targetSize, ttargetSize, 0.0),
G4ThreeVector (-targetSize, ttargetSize, 0.0),
G4ThreeVector (0.0, 0.0, +ttargetSize),
ABSOLUTE) ;

G4TriangularFacet xfacet4 = new

G4TriangularFacet (G4ThreeVector (-targetSize, +targetSize, 0.0),
G4ThreeVector (-targetSize, ~targetSize, 0.0),
G4ThreeVector (0.0, 0.0, +targetSize),
ABSOLUTE) ;

G4QuadrangularFacet xfacetb = new

G4QuadrangularFacet (G4ThreeVector (-targetSize, targetSize,
G4ThreeVector (-targetSize, +targetSize,
G4ThreeVector (+targetSize, ttargetSize,
G4ThreeVector (+targetSize, ~targetSize,

o O O o
o O O o
~

ABSOLUTE) ;

// Now add the facets to the solid

/7

solidTarget->AddFacet ((G4VFacet*) facetl)
solidTarget->AddFacet ((G4VFacet~) facet?2)
solidTarget->AddFacet ((G4VFacet*) facet3);
solidTarget->AddFacet ((G4VFacet*) facetd)
solidTarget->AddFacet ((G4VFacet*) facet))

’

’

’

’

Finally declare the solid is complete

/7

solidTarget->SetSolidClosed (true) ;

The G4TriangularFacet class is used for the construction of G4TessellatedSolid. It is defined by three
vertices, which shall be supplied in anti-clockwise order looking from the outside of the solid where it belongs. Its

constructor looks like:

G4TriangularFacet (const G4ThreeVector PtO,
const G4ThreeVector vtl,
const G4ThreeVector vt2,

G4FacetVertexType fType)

i.e., it takes 4 parameters to define the three vertices:

G4FacetVertexType | ABSOLUTE in which case Pt 0, vt 1 and vt2 are the three vertices in anti-clockwise
order looking from the outside.
G4FacetVertexType | RELATIVE in which case the first vertex is Pt 0, the second vertex is Pt0+vt1l

and the third vertex is Pt 0+vt 2, all in anti-clockwise order when looking from the
outside.

The G4QuadrangularFacet class can be used for the construction of G4TessellatedSolid as well. It is
defined by four vertices, which shall be in the same plane and be supplied in anti-clockwise order looking from the
outside of the solid where it belongs. Its constructor looks like:

4.1. Geometry

123

Book For Application Developers, Release 11.2

G4QuadrangularFacet (const G4ThreeVector PtO,
const G4ThreeVector vtl,
const G4ThreeVector vt2,
const G4ThreeVector vt3,

G4FacetVertexType fType)

i.e., it takes 5 parameters to define the four vertices:

G4FacetVertexType | ABSOLUTE in which case Pt 0, vt1, vt2 and vt 3 are the four vertices required in
anti-clockwise order when looking from the outside.

G4FacetVertexType | RELATIVE in which case the first vertex is Pt 0, the second vertex is Pt 0+vt, the
third vertex is Pt 0+vt2 and the fourth vertex is Pt 0+vt 3, in anti-clockwise order
when looking from the outside.

Importing CAD models as tessellated shapes

Tessellated solids can also be used to import geometrical models from CAD systems (see fig-geom-solid-1). In order
to do this, it is required to convert first the CAD shapes into tessellated surfaces. A way to do this is to save the shapes
in the geometrical model as STEP files and convert them to tessellated (faceted surfaces) solids, using a tool which
allows such conversion. This strategy allows to import any shape with some degree of approximation; the converted
CAD models can then be imported through GDML (Geometry Description Markup Language) into GEANT4 and be
represented as G4TessellatedSolid shapes.

Tools which can be used to generate meshes to be then imported in GEANT4 as tessellated solids are:

e FASTRAD - 3D tool for radiation shielding analysis; exports meshes to GDML.

* InStep - A free STL to GDML conversion tool.

* SALOME - Open-source software allowing to import STEP/BREP/IGES/STEP/ACIS formats, mesh them and
export to STL.

* ESABASE?2 - Space environment analysis CAD, basic modules free for academic non-commercial use. Can
import STEP files and export to GDML shapes or complete geometries.

* CADMesh - Tool based on the VCG Library to read STL files and import in GEANT4.

* Cogenda - Commercial TCAD software for generation of 3D meshes through the module Gds2Mesh and final
export to GDML.

* EDGE - A commercial GDML editor, able to import/export STEP/STL geometries.

e CadMC - Tool to convert FreeCAD geometries to Geant4 (tessellated and CSG shapes).

* pygdometry - A python library to manipulate GDML geometery. Has an interface from OpenCASCADE and
Geant4 tessellated

Unified Solids

An alternative implementation for most of the cited geometrical primitives is provided since release 10.0 of GEANT4.
With release 10.6, all primitives shapes except the twisted specific solids, can be replaced.

The code for the new geometrical primitives originated as part of the AIDA Unified Solids Library and is now in-
tegrated in the VecGeom library (the vectorized geometry library for particle-detector simulation); it is provided as
alternative use and can be activated in place of the original primitives defined in GEANT4, by selecting the appropri-
ate compilation flag when configuring the GEANT4 libraries installation. The installation allows to build against an
external system installation of the VecGeom library, therefore the appropriate installation path must also be provided
during the installation configuration:

~DGEANT4_USE_USOLIDS="all" // to replace all available shapes
-DGEANT4_USE_USOLIDS="box;tubs" // to replace only individual shapes

124 Chapter 4. Detector Definition and Response

http://cern.ch/gdml/
http://www.fastrad.net/
http://www.solveering.com/instep.htm
http://www.salome-platform.org/
http://esabase2.net/
https://github.com/christopherpoole/CADMesh
https://sourceforge.net/projects/vcg
http://www.cogenda.com/
https://www.space-suite.com/edge/
http://polar.psi.ch/cadmc/
https://bitbucket.org/jairhul/pyg4ometry/src/develop/
https://cern.ch/aidasoft/USolids
https://gitlab.cern.ch/VecGeom/VecGeom

Book For Application Developers, Release 11.2

The original API for all geometrical primitives is preserved.

4.1.3 Logical Volumes

The Logical Volume manages the information associated with detector elements represented by a given Solid and
Material, independently from its physical position in the detector.

G4ALogicalVolumes must be allocated using ‘new’ in the user’s program; they get registered to a
G4LogicalVolumeStore at construction, which will also take care to deallocate them at the end of the job, if
not done already in the user’s code.

A Logical Volume knows which physical volumes are contained within it. It is uniquely defined to be their mother
volume. A Logical Volume thus represents a hierarchy of unpositioned volumes whose positions relative to one another
are well defined. By creating Physical Volumes, which are placed instances of a Logical Volume, this hierarchy or tree
can be repeated.

A Logical Volume also manages the information relative to the Visualization attributes (Visualization Attributes) and
user-defined parameters related to tracking, electro-magnetic field or cuts (through the G4UserLimits interface).

By default, tracking optimization of the geometry (voxelization) is applied to the volume hierarchy identified by a
logical volume. It is possible to change the default behavior by choosing not to apply geometry optimization for a
given logical volume. This feature does not apply to the case where the associated physical volume is a parameterised
volume; in this case, optimization is always applied.

G4LogicalVolume (G4VSolid« pSolid,
G4Material * pMaterial,
const G4String& Name,
G4FieldManagerx* pFieldMgr=0,
G4VSensitiveDetector* pSDetector=0,
G4UserLimits+ pULimits=0,
G4bool Optimise=true)

Note: GEANT4 does not impose any restriction on the name assigned to logical volumes; names can be shared. It is
however good practice to specify unique names for each logical volume, to allow for easier retrivial from stores for
post-processing use.

Through the logical volume it is also possible to tune the granularity of the optimisation algorithm to be applied to the
sub-tree of volumes represented. This is possible using the methods:

G4double GetSmartless () const
void SetSmartless (G4double s)

The default smartless value is 2 and controls the average number of slices per contained volume which are used in the
optimisation. The smaller the value, the less fine grained optimisation grid is generated; this will translate in a possible
reduction of memory consumed for the optimisation of that portion of geometry at the price of a slight CPU time
increase at tracking time. Manual tuning of the optimisation is in general not required, since the optimal granularity
level is computed automatically and adapted to the specific geometry setup; however, in some cases (like geometry
portions with ‘dense’ concentration of volumes distributed in a non-uniform way), it may be necessary to adopt manual
tuning for helping the optimisation process in dealing with the most critical areas. By setting the verbosity to 2 through
the following UI run-time command:

/run/verbose 2

a statistics of the memory consumed for the allocated optimisation nodes will be displayed volume by volume, allowing
to easily identify the critical areas which may eventually require manual intervention.

4.1. Geometry 125

Book For Application Developers, Release 11.2

The logical volume provides a way to estimate the mass of a tree of volumes defining a detector or sub-detector. This
can be achieved by calling the method:

G4double GetMass (G4bool forced=false)

The mass of the logical volume tree is computed from the estimated geometrical volume of each solid and material
associated with the logical volume and its daughters. Note that this computation may require a considerable amount
of time, depending on the complexity of the geometry tree. The returned value is cached by default and can be used
for successive calls, unless recomputation is forced by providing t rue for the Boolean argument forced in input.
Computation should be forced if the geometry setup has changed after the previous call.

Finally, the Logical Volume manages the information relative to the Envelopes hierarchy required for fast Monte Carlo
parameterisations (Parameterisation).

Sub-detector Regions

In complex geometry setups, such as those found in large detectors in particle physics experiments, it is useful to think
of specific Logical Volumes as representing parts (sub-detectors) of the entire detector setup which perform specific
functions. In such setups, the processing speed of a real simulation can be increased by assigning specific production
cuts to each of these detector parts. This allows a more detailed simulation to occur only in those regions where it is
required.

The concept of detector Region is introduced to address this need. Once the final geometry setup of the detector has
been defined, a region can be specified by constructing it with:

G4Region(const G4String& rName)

where:

rName | String identifier for the detector region

G4Regions must be allocated using ‘new’ in the user’s program; they get registered to a G4RegionStore at
construction, which will also take care to deallocate them at the end of the job, if not done already in the user’s code.

A G4Region must then be assigned to a logical volume, in order to make it a Root Logical Volume:

G4Region* emCalorimeter = new G4Region ("EM-Calorimeter");
emCalorimeterLV->SetRegion (emCalorimeter) ;
emCalorimeter->AddRootLogicalVolume (emCalorimeterlV) ;

A root logical volume is the first volume at the top of the hierarchy to which a given region is assigned. Once the
region is assigned to the root logical volume, the information is automatically propagated to the volume tree, so that
each daughter volume shares the same region. Propagation on a tree branch will be interrupted if an already existing
root logical volume is encountered.

Note: It is recommended to assign unique names to logical volumes specified as root logical volumes, as this will
guarantee proper retrievial from the store for post-processing use in persistency. The same applies for names assigned
to regions.

A specific Production Cut can be assigned to the region, by defining and assigning to ita G4ProductionCut object

emCalorimeter—>SetProductionCuts (emCalCuts) ;

Set production threshold (SetCut methods) describes how to define a production cut. The same region can be assigned
to more than one root logical volume, and root logical volumes can be removed from an existing region. A logical

126 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.2

volume can have only one region assigned to it. Regions will be automatically registered in a store which will take
care of destroying them at the end of the job. A default region with a default production cut is automatically created
and assigned to the world volume.

Regions can also become ‘envelopes’ for fast-simulation; can be assigned user-limits or generic user-information
(G4vUserRegionInformation); can be associated to specific stepping-actions (G4UserSteppingAction)
or have assigned a local magnetic-field (local fields specifically associated to logical volumes take precedence any-
how).

4.1.4 Physical Volumes

Physical volumes represent the spatial positioning of the volumes describing the detector elements. Several techniques
can be used. They range from the simple placement of a single copy to the repeated positioning using either a simple
linear formula or a user specified function.

Any physical volume must be allocated using ‘new’ in the user’s program; they get registered to a
G4PhysicalVolumeStore at construction, which will also take care to deallocate them at the end of the job,
if not done already in the user’s code.

The simple placement involves the definition of a transformation matrix for the volume to be positioned. Repeated
positioning is defined using the number of times a volume should be replicated at a given distance along a given
direction. Finally it is possible to define a parameterised formula to specify the position of multiple copies of a
volume. Details about these methods are given below.

Note: For geometries which vary between runs and for which components of the old geometry setup are explicitly
-deleted-, it is required to consider the proper order of deletion (which is the exact inverse of the actual construction,
i.e., first delete physical volumes and then logical volumes). Deleting a logical volume does NOT delete its daughter
volumes.

It is not necessary to delete the geometry setup at the end of a job, the system will take care to free the volume and
solid stores at the end of the job. The user has to take care of the deletion of any additional transformation or rotation
matrices allocated dynamically in his/her own application.

Note: GEANT4 does not impose any restriction on the name assigned to volumes; names can be shared. It is however
good practice to specify unique names for each physical node in a tree, to allow for easier retrivial from stores for
post-processing use.

Placements: single positioned copy

In this case, the Physical Volume is created by associating a Logical Volume with a Transformation that defines the
position of the current volume in the mother volume. The solid itself is moved by rotating and translating it to bring
it into the system of coordinates of the mother volume. The decomposition of the Transformation must contain only
rotation and translation (reflection and scaling are not allowed).

To create a Placement one must construct it using:

G4PVPlacement (G4Transform3D solidTransform,
G4LogicalVolumex* pCurrentLogical,
G4Stringé& pName,
G4LogicalVolume* pMotherLogical,
G4bool pMany,
G4int pCopyNo,
G4bool pSurfChk=false)

4.1. Geometry

127

Book For Application Developers, Release 11.2

where:
solidTransform Position in its mother volume
pCurrentLogical | The associated Logical Volume
pName String identifier for this placement
pMotherLogical The associated mother volume
pMany For future use. Can be set to false
pCopyNo Integer which identifies this placement
pSurfChk if true activates check for overlaps with existing volumes

Currently Boolean operations are not implemented at the level of physical volume. So pMany must be false. However,
an alternative implementation of Boolean operations exists. In this approach a solid can be created from the union,
intersection or subtraction of two solids. See Solids made by Boolean operations above for an explanation of this.

The mother volume must be specified for all volumes except the world volume.

An alternative way to specify a Placement is to use a Rotation Matrix and a Translation Vector. If compared with the
previous construct, the Rotation Matrix is the inverse of the rotation from the decomposition of the transformation,
but the Translation Vector is the same. The Rotation Matrix represents the rotation of the reference frame of the
considered volume relatively to its mother volume’s reference frame. The Translation Vector represents the translation
of the current volume in the reference frame of its mother volume. This passive method can be utilized using the
following constructor:

G4PVPlacement (G4RotationMatrix+ pRot,
const G4ThreeVectoré& tlate,
G4LogicalVolumex* pCurrentLogical,
const G4Stringé& pName,
G4LogicalVolume* pMotherLogical,
G4bool pMany,
G4int pCopyNo,
G4bool pSurfChk=false)
where:
pRot Rotation with respect to its mother volume
tlate Translation with respect to its mother volume
pCurrentLogical | The associated Logical Volume
pName String identifier for this placement
pMotherLogical The associated mother volume
pMany For future use. Can be set to false
pCopyNo Integer which identifies this placement
pSurfChk if true activates check for overlaps with existing volumes

Care must be taken because the rotation matrix is not copied by a G4PVPlacement. So the user must not modify it
after creating a Placement that uses it. However the same rotation matrix can be re-used for many volumes.

An alternative method to specify the mother volume is to specify its placed physical volume. It can be used in either
of the above methods of specifying the placement’s position and rotation. The effect will be exactly the same as for
using the mother logical volume.

Note that a Placement Volume can still represent multiple detector elements. This can happen if several copies exist
of the mother logical volume. Then different detector elements will belong to different branches of the tree of the
hierarchy of geometrical volumes.

An example demonstrating various ways of placement and constructing the rotation matrix is provided in examples/
extended/geometry/transforms.

128 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.2

Repeated volumes

In this case, a single Physical Volume represents multiple copies of a volume within its mother volume, allowing to
save memory. This is normally done when the volumes to be positioned follow a well defined rotational or translational
symmetry along a Cartesian or cylindrical coordinate. The Repeated Volumes technique is available for most volumes
described by CSG solids.

Replicas

Replicas are repeated volumes in the case when the multiple copies of the volume are all identical. The coordinate
axis and the number of replicas need to be specified for the program to compute at run time the transformation matrix
corresponding to each copy.

G4PVReplica (const G4Strings& pName,
G4LogicalVolume~ pCurrentlogical,
G4LogicalVolume* pMotherLogical, // OR G4VPhysicalVolume *

const EAxis PAxis,
const G4int nReplicas,
const G4double width,
const G4double offset=0)
where:
pName String identifier for the replicated volume
pCurrentLogical | The associated Logical Volume
pMotherLogical The associated mother volume
pPAxis The axis along with the replication is applied
nReplicas The number of replicated volumes
width The width of a single replica along the axis of replication
offset Possible offset associated to mother offset along the axis of replication

G4PVReplica represents nReplicas volumes differing only in their positioning, and completely filling the con-
taining mother volume. Consequently if a G4PVReplica is ‘positioned’ inside a given mother it MUST be the
mother’s only daughter volume. Replica’s correspond to divisions or slices that completely fill the mother volume and
have no offsets. For Cartesian axes, slices are considered perpendicular to the axis of replication.

The replica’s positions are calculated by means of a linear formula. Replication may occur along:

e Cartesian axes (kXAxis,kYAxis,kZAxis)
The replications, of specified width have coordinates of form (-width* (nReplicas-1)x*0.
5+n*width, 0, 0) where n=0.. nReplicas-1 for the case of kXAx1is, and are unrotated.
* Radial axis (cylindrical polar) (kRho)
The replications are cons/tubs sections, centred on the origin and are unrotated.
They have radii of width+n+offset towidth« (n+l)+offset where n=0..nReplicas-1
* Phi axis (cylindrical polar) (kPhi)
The replications are phi sections or wedges, and of cons/tubs form.
They have phi of offset+n+widthto offset+ (n+l)«width where n=0..nReplicas-1

The coordinate system of the replicas is at the centre of each replica for the Cartesian axis. For the radial case, the
coordinate system is unchanged from the mother. For the phi axis, the new coordinate system is rotated such that the
X axis bisects the angle made by each wedge, and Z remains parallel to the mother’s Z axis.

The solid associated via the replicas’ logical volume should have the dimensions of the first volume created and must
be of the correct symmetry/type, in order to assist in good visualisation.

ex. For X axis replicas in a box, the solid should be another box with the dimensions of the replications. (same Y & Z
dimensions as mother box, X dimension = mother’s X dimension/nReplicas).

4.1. Geometry 129

Book For Application Developers, Release 11.2

Replicas may be placed inside other replicas, provided the above rule is observed. Normal placement volumes may be
placed inside replicas, provided that they do not intersect the mother’s or any previous replica’s boundaries. Parame-
terised volumes may not be placed inside.

Because of these rules, it is not possible to place any other volume inside a replication in radius.
The world volume cannot act as a replica, therefore it cannot be sliced.

During tracking, the translation + rotation associated with each G4PVReplica object is modified according to the
currently ‘active’ replication. The solid is not modified and consequently has the wrong parameters for the cases of
phi and r replication and for when the cross-section of the mother is not constant along the replication.

Example

Listing 4.2: An example of simple replicated volumes with
G4PVReplica.

G4PVReplica repX("Linear Array",
pReplogical,
pContainingMotherBox,
kXAxis, 5, 10*mm);

G4PVReplica repR("RSlices",
pRepRLogical,
pContainingMotherTub,
kRho, 5, 10*mm, O0);

G4PVReplica repZ ("zZSlices",
pRepzZLlogical,
pContainingMotherTub,
kzZAxis, 5, 10xmm);

G4PVReplica repPhi ("PhiSlices",
pRepPhilogical,
pContainingMotherTub,
kPhi, 4, M _PIx0.5xrad, 0);

RepX is an array of 5 replicas of width 10¥*mm, positioned inside and completely filling the volume pointed by
pContainingMotherBox. The mother’s X length must be 5*10*mm=50*mm (for example, if the mother’s solid
were a Box of half lengths [25,25,25] then the replica’s solid must be a box of half lengths [25,25,5]).

If the containing mother’s solid is a tube of radius 50*mm and half Z length of 25*mm, RepR divides the mother tube
into 5 cylinders (hence the solid associated with pRepRLogical must be a tube of radius 10*mm, and half Z length
25*mm); rep?Z divides the tube into 5 shorter cylinders (the solid associated with pRepZLogical must be a tube of
radius 10¥*mm, and half Z length 5*mm); finally, repPh1i divides the tube into 4 tube segments with full angle of 90
degrees (the solid associated with pRepPhilLogical must be a tube segment of radius 10*mm, half Z length 5*mm
and delta phi of M_PI*0.5*rad).

No further volumes may be placed inside these replicas. To do so would result in intersecting boundaries due to the r
replications.

130 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.2

Parameterised Volumes

Parameterised Volumes are repeated volumes in the case in which the multiple copies of a volume can be different in
size, solid type, or material. The solid’s type, its dimensions, the material and the transformation matrix can all be
parameterised in function of the copy number, both when a strong symmetry exist and when it does not. The user
implements the desired parameterisation function and the program computes and updates automatically at run time the
information associated to the Physical Volume.

An example of creating a parameterised volume (by dimension and position) exists in basic exam-
ple B2b. The implementation is provided in the two classes B2b::DetectorConstruction and
B2b: :ChamberParameterisation.

To create a parameterised volume, one must first create its logical volume like t rackerChamberLV below. Then
one must create his own parameterisation class (B2b::ChamberParameterisation) and instantiate an object of this class
(chamberParam). We will see how to create the parameterisation below.

Listing 4.3: An example of Parameterised volumes.

// Tracker segments

// An example of Parameterised volumes
// Dummy values for G4Tubs -—- modified by parameterised volume

G4Tubs* chambersS

= new G4Tubs ("tracker",0, 100xcm, 100xcm, 0.=xdeg, 360.=xdeg);
fLogicChamber

= new G4LogicalVolume (chamberS, fChamberMaterial, "Chamber",0,0,0);

G4double firstPosition = —trackerSize + chamberSpacing;
G4double firstLength = trackerLength/10;
G4double lastLength = trackerLength;

G4VPVParameterisation* chamberParam =
new ChamberParameterisation (NbOfChambers, // NoChambers
firstPosition, // Z of center of first
chamberSpacing, // Z spacing of centers
chamberWidth, // chamber width

firstLength, // initial length
lastLength) ; // final length
// dummy value : kZAxis —-—- modified by parameterised volume
new G4PVParameterised ("Chamber", // their name
fLogicChamber, // their logical volume
trackerLV, // Mother logical volume
kZAxis, // Are placed along this axis
NbOfChambers, // Number of chambers
chamberParam, // The parametrisation
fCheckOverlaps); // checking overlaps
The general constructor is:
G4PVParameterised(const G4Strings pName,
G4LogicalVolume~ pCurrentlLogical,
G4LogicalVolume~* pMotherlLogical, // OR G4VPhysicalVolume *
const EAxis pAxis,
const G4int nReplicas,
G4VPVParameterisation* pParam,
G4bool pSurfChk=false)

Note that for a parameterised volume the user must always specify a mother volume. So the world volume can never
be a parameterised volume, nor it can be sliced. The mother volume can be specified either as a physical or a logical
volume.

4.1. Geometry 131

Book For Application Developers, Release 11.2

pAxis specifies the tracking optimisation algorithm to apply: if a valid axis (the axis along which the parameterisation
is performed) is specified, a simple one-dimensional voxelisation algorithm is applied; if “kUndefined” is specified
instead, the default three-dimensional voxelisation algorithm applied for normal placements will be activated. In the
latter case, more voxels will be generated, therefore a greater amount of memory will be consumed by the optimisation

algorithm.
pSurfChk if true activates a check for overlaps with existing volumes or paramaterised instances.

The parameterisation mechanism associated to a parameterised volume is defined in the parameterisation class and its
methods. Every parameterisation must create two methods:

e ComputeTransformation defines where one of the copies is placed,
* ComputeDimensions defines the size of one copy, and
* a constructor that initializes any member variables that are required.

An example is B2b: : ChamberParameterisation that parameterises a series of tubes of different sizes

Listing 4.4: An example of Parameterised tubes of different sizes.

namespace B2b

{

class ChamberParameterisation : public G4VPVParameterisation

{

void ComputeTransformation (const G4int copyNo,
G4VPhysicalVolume xphysVol) const;

void ComputeDimensions (G4Tubsé& trackerlayer,
const G4int copyNo,
const G4VPhysicalVolume xphysVol) const;

These methods works as follows:

The ComputeTransformation method is called with a copy number for the instance of the parameterisation
under consideration. It must compute the transformation for this copy, and set the physical volume to utilize this
transformation:

void ChamberParameterisation::ComputeTransformation
(const G4int copyNo, G4VPhysicalVolume xphysVol) const
{
// Note: copyNo will start with zero!
G4double Zposition = fStartZ + copyNo » fSpacing;
G4ThreeVector origin(0,0,Zposition) ;
physVol->SetTranslation (origin);
physVol->SetRotation (0);

Note that the translation and rotation given in this scheme are those for the frame of coordinates (the passive method).
They are not for the active method, in which the solid is rotated into the mother frame of coordinates.

Similarly the ComputeDimensions method is used to set the size of that copy.

void ChamberParameterisation::ComputeDimensions
(G4Tubs& trackerChamber, const G4int copyNo, const G4VPhysicalVolumex) const
{
// Note: copyNo will start with zero!
G4double rmax = fRmaxFirst + copyNo » fRmaxIncr;
trackerChamber.SetInnerRadius (0) ;

trackerChamber.SetOuterRadius (rmax) ;
(continues on next page)

132 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.2

(continued from previous page)

trackerChamber.SetZHalfLength (fHalfWidth) ;

trackerChamber.SetStartPhiAngle (0. xdeqg) ;

trackerChamber.SetDeltaPhiAngle (360.+deq) ;
}

The user must ensure that the type of the first argument of this method (in this example G4Tubs &) corresponds to
the type of object the user give to the logical volume of parameterised physical volume.
More advanced usage allows the user:

* to change the type of solid by creating a ComputeSolid method, or
* to change the material of the volume by creating a ComputeMaterial method. This method can also utilise
information from a parent or other ancestor volume (see the Nested Parameterisation below.)

for the parameterisation.

Example examples/extended/runAndEvent /RE02 shows a simple parameterisation by material. A more
complex example is provided in examples/extended/medical/DICOM, where a phantom grid of cells is built
using a parameterisation by material defined through a map.

Note: Currently for many cases it is not possible to add daughter volumes to a parameterised volume. Only param-
eterised volumes all of whose solids have the same size are allowed to contain daughter volumes. When the size or
type of solid varies, adding daughters is not supported. So the full power of parameterised volumes can be used only
for “leaf” volumes, which contain no other volumes.

Note: A hierarchy of volumes included in a parameterised volume cannot vary. Therefore, it is not possible to
implement a parameterisation which can modify the hierarchy of volumes included inside a specific parameterised

copy.

Note: For parameterisations of tubes or cons, where the starting Phi and its DeltaPhi angles
vary, it is possible to optimise the regeneration of the trigonometric parameters of the shape, by invoking
SetStartPhiAngle (newPhi, false); SetDeltaPhiAngle (newDPhi), i.e. by specifying with
false flag to skip the computation of the parameters which will be later on properly initialised with the call for
DeltaPhi.

Note: Parameterisations of composed solids like Boolean, Reflected or Displaced solids are not recommended, given
the complexity in handling transformations that this might imply, and limitations in making persistent representations
(i.e. GDML) of the geometry itself.

Note: For multi-threaded applications, one must be careful in the implementation of the parameterisation functions
for the geometrical objects being created in the parameterisation. In particular, when parameterising by the type of a
solid, it is assumed that the solids being parameterised are being declared thread-local in the user’s parameterisation
class and allocated just once.

4.1. Geometry 133

Book For Application Developers, Release 11.2

Advanced parameterisations for ‘nested’ parameterised volumes

A different type of parameterisation enables a user to have the daughter’s material also depend on the copy number
of the parent when a parameterised volume (daughter) is located inside another (parent) repeated volume. The parent
volume can be a replica, a parameterised volume, or a division if the key feature of modifying its contents is utilised.
(Note: a ‘nested’ parameterisation inside a placement volume is not supported, because all copies of a placement
volume must be identical at all levels.)

In such a ” nested” parameterisation , the user must provide a ComputeMaterial method that utilises the new
argument that represents the touchable history of the parent volume:

// Sample Parameterisation
class SampleNestedParameterisation : public G4VNestedParameterisation
{
public:
// .. other methods
// Mandatory method, required and reason for this class
virtual G4Material* ComputeMaterial (G4VPhysicalVolume xcurrentVol,
const G4int no_lev,
const G4VTouchable xparentTouch);
private:
G4Material smateriall, smaterial2;
ti

The implementation of the method can utilise any information from a parent or other ancestor volume of its parame-
terised physical volume, but typically it will use only the copy number:

G4Material~«
SampleNestedParameterisation: :ComputeMaterial (G4VPhysicalVolume *currentVol,
const G4int no_lev,
const G4VTouchable xparentTouchable)

G4Material *material=0;

// Get the information about the parent volume

G4int no_parent= parentTouchable->GetReplicaNumber () ;

G4int no_total= no_parent + no_lev;

// A simple 'checkerboard' pattern of two materials

if(no_total / 2 == 1) material= materiall;

else material= material2;

// Set the material to the current logical volume
G4LogicalVolume* currentLogVol= currentVol->GetLogicalVolume () ;
currentLogVol->SetMaterial (material);

return material;

Nested parameterisations are suitable for the case of regular, ‘voxel’ geometries in which a large number of ‘equal’
volumes are required, and their only difference is in their material. By creating two (or more) levels of parameterised
physical volumes it is possible to divide space, while requiring only limited additional memory for very fine-level
optimisation. This provides fast navigation. Alternative implementations, taking into account the regular structure of
such geometries in navigation are under study.

Note: You can also switch the colour of individual volumes by changing the vis attributes in
your ComputeMaterial - see examples//extended/medical/DICOM or examples/advanced/
ICRP110_HumanPhantoms.

Note: The number of parameterised volumes can become very large, in the 10’s of millions for a medical phantom, for
example. This can give the graphics system a headache. See Visualization of a parameterised volume for economical

134 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.2

ways of visualising such parameterisations.

Divisions of Volumes

Divisions in GEANT4 are repeated volumes and are implemented as a specialized type of parameterised volumes.

They serve to divide a volume into identical copies along one of its axes, providing the possibility to define an offset,
and without the limitation that the daughters have to fill the mother volume as it is the case for the replicas. In the
case, for example, of a tube divided along its radial axis, the copies are not strictly identical, but have increasing radii,
although their widths are constant.

To divide a volume it will be necessary to provide:

1. the axis of division, and
2. either
* the number of divisions (so that the width of each division will be automatically calculated), or
¢ the division width (so that the number of divisions will be automatically calculated to fill as much of the
mother as possible), or
* both the number of divisions and the division width (this is especially designed for the case where the
copies do not fully fill the mother).

An offset can be defined so that the first copy will start at some distance from the mother wall. The dividing copies
will be then distributed to occupy the rest of the volume.

There are three constructors, corresponding to the three input possibilities described above:

* Giving only the number of divisions:

G4PVDivision(const G4String& pName,
G4LogicalVolume* pCurrentLogical,
G4LogicalVolume* pMotherLogical,
const EAxis pAxis,
const G4int nDivisions,
const G4double offset)

* Giving only the division width:

G4PVDivision(const G4String& pName,
G4LogicalVolume* pCurrentLogical,
G4LogicalVolume* pMotherLogical,
const EAxis pAxis,
const G4double width,
const G4double offset)

* Giving the number of divisions and the division width:

G4PVDivision(const G4String& pName,
G4LogicalVolume* pCurrentLogical,
G4LogicalVolume* pMotherLogical,
const EAxis pAxis,
const G4int nDivisions,
const G4double width,
const G4double offset)

where:

4.1. Geometry 135

Book For Application Developers, Release 11.2

pName String identifier for the replicated volume
pCurrentLogical | The associated Logical Volume
pMotherLogical The associated mother Logical Volume

PAxis The axis along which the division is applied

nDivisions The number of divisions

width The width of a single division along the axis

offset Possible offset associated to the mother along the axis of division

The parameterisation is calculated automatically using the values provided in input. Therefore the di-
mensions of the solid associated with pCurrentLogical will not be used, but recomputed through the
G4VParameterisation: :ComputeDimension () method.

Since GAVPVParameterisation may have different ComputeDimension () methods for each solid type, the
user must provide a solid that is of the same type as of the one associated to the mother volume.

As for any replica, the coordinate system of the divisions is related to the centre of each division for the Cartesian
axis. For the radial axis, the coordinate system is the same of the mother volume. For the phi axis, the new coordinate
system is rotated such that the X axis bisects the angle made by each wedge, and Z remains parallel to the mother’s Z
axis.

As divisions are parameterised volumes with constant dimensions, they may be placed inside other divisions, except
in the case of divisions along the radial axis.

It is also possible to place other volumes inside a volume where a division is placed.

The list of volumes that currently support divisioning and the possible division axis are summarised below:

G4Box kXAxis, kYAxis, kZAxis
G4Tubs kRho, kPhi, kZAxis
G4Cons kRho, kPhi, kZAxis
G4Trd kXAxis, kYAxis, kKZAXis
G4Para kXAxis, kYAxis, kZAxis
G4Polycone kRho, kPhi, kZAxis
G4Polyhedra | kRho, kPhi, kZAxis (¥)

(*) - G4Polyhedra:

¢ kPhi - the number of divisions has to be the same as solid sides, (i.e. numSides), the width will not be taken
into account.

In the case of division along kRho of G4Cons, G4Polycone, G4Polyhedra, if width is provided, it is taken as
the width at the —Z radius; the width at other radii will be scaled to this one.

Examples are given below in listings Listing 4.3 and Listing 4.5.

Listing 4.5: An example of a box division along different axes, with or
without offset.

G4Box* motherSolid = new G4Box ("motherSolid", 0.5*m, 0.5xm, 0.5*m);

G4LogicalVolume+ motherLog = new G4LogicalVolume (motherSolid, material, "mother",0,0,0);
G4Parax divSolid = new G4Para ("divSolid", 0.512+m, 1.21xm, 1.43+%m);

G4LogicalVolume* childLog = new G4LogicalVolume (divSolid, material, "child",0,0,0);

G4PVDivision divBoxl ("division along X giving nDiv",
childLog, motherLog, kXAxis, 5, 0.);

G4PVDivision divBox2 ("division along X giving width and offset",
childLog, motherLog, kXAxis, 0.lxm, 0.45+m);

(continues on next page)

136 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.2

(continued from previous page)

G4PVDivision divBox3 ("division along X giving nDiv, width and offset",
childLog, motherLog, kXAxis, 3, 0.lxm, 0.5%m);

e divBox1 is a division of a box along its X axis in 5 equal copies. Each copy will have a dimension in meters
of [0.2, 1., 1.].

* divBox2 is a division of the same box along its X axis with a width of 0.1 meters and an offset of 0.5
meters. As the mother dimension along X of 1 meter (0. 5+m of halflength), the division will be sized in total
1 - 0.45 = 0.55 meters. Therefore, there’s space for 5 copies, the first extending from -0.05to 0.05
meters in the mother’s frame and the last from 0. 35 to 0. 45 meters.

* divBox3 is a division of the same box along its X axis in 3 equal copies of width 0. 1 meters and an offset of
0.5 meters. The first copy will extend from 0. to 0.1 meters in the mother’s frame and the last from 0. 2 to
0. 3 meters.

Listing 4.6: An example of division of a polycone.

G4doublex zPlanem = new G4double[3];

zPlanem([0]= —-1.+*m
zPlanem[1l]= -0.25xm;
zPlanem([2]= 1.xm;

G4double* rInnerm = new G4double[3];
rInnerm[0

=
rInnerm[1]= O l*m,
rInnerm[2]=0.5%m;

G4double* rOuterm = new G4double[3];
rOuterm[0]=0.2+%m;
rOuterm[1]= O 4xm;
rOuterm[2]=1.*m;

G4Polyconex motherSolid = new G4Polycone ("motherSolid", 20.xdeg, 180.xdeg,
3, zPlanem, rInnerm, rOuterm);
G4LogicalVolume* motherLog = new G4LogicalVolume (motherSolid, material, "mother",0,0,0);

G4doublex zPlaned = new G4double[3];

zPlaned[0]= -3.*m
zPlaned[1]= -0.xm;
zPlaned[2]= 1.xm;

G4doublex rInnerd = new G4double[3];
rInnerd[0]=0
rInnerd[1]=0 4*m,
rInnerd[2]=0.5%m;

G4double* rOuterd = new G4double[3];
rOuterd[0]=0.5%m;
rOuterd[1]=0.8%*m;
rOuterd([2]=2.*m;

G4Polyconex divSolid = new G4Polycone ("divSolid", 0.xdeg, 10.xdeg,

3, zPlaned, rInnerd, rOuterd);
G4LogicalVolume* childLog = new G4LogicalVolume (divSolid, material, "child",0,0,0);

G4PVDivision divPconePhiW("division along phi giving width and offset",
childLog, motherLog, kPhi, 30.xdeg, 60.xdeg);

G4PVDivision divPconeZN ("division along Z giving nDiv and offset",
childLog, motherLog, kZAxis, 2, 0.1lxm);

e divPconePhiW is a division of a polycone along its phi axis in equal copies of width 30 degrees with an
offset of 60 degrees. As the mother extends from O to 180 degrees, there’s space for 4 copies. All the copies
have a starting angle of 20 degrees (as for the mother) and a phi extension of 30 degrees. They are rotated
around the Z axis by 60 and 30 degrees, so that the first copy will extend from 80 to 110 and the last from 170
to 200 degrees.

e divPconeZN is a division of the same polycone along its Z axis. As the mother polycone has two sections, it
will be divided in two one-section polycones, the first one extending from -1 to -0.25 meters, the second from

4.1. Geometry 137

Book For Application Developers, Release 11.2

-0.25 to 1 meters. Although specified, the offset will not be used.

Replicated Slices

A special kind of divided volume is represented by GAReplicatedSlice, a division allowing for gaps inbetween
divided volumes.

Three constructors, corresponding to three input possibilities are provided:
* Giving only the number of divisions:

G4ReplicatedSlice (const G4String& pName,
G4LogicalVolume* pCurrentLogical,
G4LogicalVolume* pMotherLogical,
const EAxis pAxis,
const G4int nDivisions,
const G4double half_gap,
const G4double offset)

* Giving only the division width:

G4ReplicatedSlice(const G4Stringé& pName,
G4LogicalVolume* pCurrentLogical,
G4LogicalVolume* pMotherLogical,
const EAxis pAxis,
const G4double width,
const G4double half_ gap,
const G4double offset)

* Giving the number of divisions and the division width:

G4ReplicatedSlice(const G4String& pName,

G4LogicalVolume* pCurrentLogical,
G4LogicalVolume* pMotherLogical,

const EAxis pAxis,

const G4int nDivisions,

const G4double width,

const G4double half_ gap,

const G4double offset)

where:
pName String identifier for the replicated volume
pCurrentLogical | The associated Logical Volume
pMotherLogical The associated mother Logical Volume
PAXis The axis along which the division is applied
nDivisions The number of divisions
width The width of a single division along the axis
half_gap The half width of the gap to be considered inbetween division slices
offset Possible offset associated to the mother along the axis of division

As for G4PVDivision, the parameterisation is calculated automatically using the values provided in input.

138 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.2

4.1.5 Touchables: Uniquely Identifying a Volume
Introduction to Touchables

A touchable for a volume serves the purpose of providing a unique identification for a detector element. This can
be useful for description of the geometry alternative to the one used by the GEANT4 tracking system, such as a
Sensitive Detectors based read-out geometry, or a parameterised geometry for fast Monte Carlo. In order to create a
touchable volume, several techniques can be implemented: for example, in GEANT4 touchables are implemented as
solids associated to a transformation-matrix in the global reference system, or as a hierarchy of physical volumes up
to the root of the geometrical tree.

A touchable is a geometrical entity (volume or solid) which has a unique placement in a detector description. It is
represented by an abstract base class which can be implemented in a variety of ways. Each way must provide the
capabilities of obtaining the transformation and solid that is described by the touchable.

What can a Touchable do?

All G4VTouchable implementations must respond to the two following “requests”, where in all cases, by depth it
is meant the number of levels up in the tree to be considered (the default and current one is 0):

1. GetTranslation (depth)
2. GetRotation (depth)

that return the components of the volume’s transformation.

Additional capabilities are available from implementations with more information. These have a default implementa-
tion that causes an exception.

Several capabilities are available from touchables with physical volumes:

1. GetSolid (depth) gives the solid associated to the touchable.

2. GetVolume (depth) gives the physical volume.

3. GetReplicaNumber (depth) or GetCopyNumber (depth) which return the copy number of the phys-
ical volume (replicated or not).

Touchables that store volume hierarchy (history) have the whole stack of parent volumes available. Thus it is possible
to add a little more state in order to extend its functionality. We add a “pointer” to a level and a member function to
move the level in this stack. Then calling the above member functions for another level the information for that level
can be retrieved.

The top of the history tree is, by convention, the world volume.

1. GetHistoryDepth () gives the depth of the history tree.

2. MoveUpHistory (num) moves the current pointer inside the touchable to point num levels up the history
tree. Thus, e.g., calling it with num=1 will cause the internal pointer to move to the mother of the current
volume.

Warning: this function changes the state of the touchable and can cause errors in tracking if applied to
Pre/Post step touchables.

These methods are valid only for the touchable-history type, as specified also below.
An update method, with different arguments is available, so that the information in a touchable can be updated:

1. UpdateYourself (vol, history) takes a physical volume pointer and can additionally take a
NavigationHistory pointer.

4.1. Geometry 139

Book For Application Developers, Release 11.2

Touchable history holds stack of geometry data

As shown in Sections Logical Volumes and Physical Volumes, a logical volume represents unpositioned detector ele-
ments, and a physical volume can represent multiple detector elements. On the other hand, touchables provide a unique
identification for a detector element. In particular, the GEANT4 transportation process and the tracking system exploit
touchables as implemented in G4TouchableHistory. The touchable history is the minimal set of information re-
quired to specify the full genealogy of a given physical volume (up to the root of the geometrical tree). These touchable
volumes are made available to the user at every step of the GEANT4 tracking in G4VUserSteppingAction.

To create/access a G4TouchableHistory the user must message G4Navigator which provides the method
CreateTouchableHistoryHandle ():

G4TouchableHistoryHandle CreateTouchableHistoryHandle () const;

this will return a handle to the touchable.

The methods that differentiate the touchable-history from other touchables (since they have meaning only for this
type...), are:

G4int GetHistoryDepth() const;
G4int MoveUpHistory(G4int num_levels = 1);

The first method is used to find out how many levels deep in the geometry tree the current volume is. The second
method asks the touchable to eliminate its deepest level.

As mentioned above, MoveUpHistory (num) significantly modifies the state of a touchable.

4.1.6 Creating an Assembly of Volumes
G4AssemblyVolume is a helper class which allows several logical volumes to be combined together in an arbitrary
way in 3D space. The result is a placement of a normal logical volume, but where final physical volumes are many.

However, an assembly volume does not act as a real mother volume, being an envelope for its daughter volumes. Its
role is over at the time the placement of the logical assembly volume is done. The physical volume objects become
independent copies of each of the assembled logical volumes.

This class is particularly useful when there is a need to create a regular pattern in space of a complex component which
consists of different shapes and can’t be obtained by using replicated volumes or parametrised volumes (see also Fig.
4.2. Careful usage of G4AssemblyVolume must be considered though, in order to avoid cases of “proliferation” of

physical volumes all placed in the same mother.

Fig. 4.2: Examples of assembly of volumes.

140 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.2

Filling an assembly volume with its “daughters”

Participating logical volumes are represented as a triplet of <logical volume, translation, rotation>
(G4AssemblyTriplet class).

The adopted approach is to place each participating logical volume with respect to the assembly’s coordinate system,
according to the specified translation and rotation.

Assembly volume placement

An assembly volume object is composed of a set of logical volumes; imprints of it can be made inside a mother logical
volume.

Since the assembly volume class generates physical volumes during each imprint, the user has no way to specify
identifiers for these. An internal counting mechanism is used to compose uniquely the names of the physical volumes
created by the invoked MakeImprint (. ..) method(s).

The name for each of the physical volume is generated with the following format:

av_WWW_impr XXX_YYY 777

where:

WWW — assembly volume instance number

XXX - assembly volume imprint number

YYY - the name of the placed logical volume

27Z — the logical volume index inside the assembly volume

It is however possible to access the constituent physical volumes of an assembly and eventually customise ID and
copy-number.

The setting of the copy-numbers can be complex, depending on how complex is the structure being built. Each as-
sembly (G4AssemblyVolume) instance gets automatically assigned a number, assemblyID, which starts from
zero and gets incremented based on the number of imprints being made. Each assembly is being stored in a
G4AssemblyStore and can always been retrieved at any time. G4AssemblyVolume allows to define a base
copy-number for each imprint (call to MakeImprint ()), by specifying it as a parameter, copyNumBase, which is
set to zero by default. The computation of the effective copy-number of each volume in the assembly is done using
such parameter, i.e. based on the number of triplets (number of volumes added in the assembly), each volume copy
number is assigned as:

numberOfDaughters + 1
where i goes from zero to the number of volumes in the assembly; numberOfDaughters is either set to the

number of daughter volumes in the mother where the assembly must be placed (if copyNumBase is zero, i.e. not
being specified at the time the imprint is made), or the specified copyNumBase.

In case the assembly includes another assembly inside, the call to makeImprint () is made recursively, and the
base copy-number in this case is being set to:

ix100+copyNumBase

so, shifted by 100 times the index of the triplet in the original assembly.

4.1. Geometry 141

Book For Application Developers, Release 11.2

Destruction of an assembly volume

At destruction all the generated physical volumes and associated rotation matrices of the imprints will be destroyed. A
list of physical volumes created by MakeImprint () method is kept, in order to be able to cleanup the objects when
not needed anymore. This requires the user to keep the assembly objects in memory during the whole job or during
the life-time of the G4Navigator, logical volume store and physical volume store may keep pointers to physical
volumes generated by the assembly volume.

The MakeImprint () method will operate correctly also on transformations including reflections and can be applied
also to recursive assemblies (i.e., it is possible to generate imprints of assemblies including other assemblies). Giving
true as the last argument of the MakeImprint () method, it is possible to activate the volumes overlap check for
the assembly’s constituents (the default is false).

Each assembly structure is registered at construction in a specialised store, G4AssemblyStore, which can then be
used to identify all structures defined in a geometry setup, as well as the volumes belonging to each imprint.

At destruction of a G4AssemblyVolume, all its generated physical volumes and rotation matrices will be automati-
cally freed.

Example

This example shows how to use the G4AssemblyVolume class. It implements a layered detector where each layer
consists of 4 plates.

In the code below, at first the world volume is defined, then solid and logical volume for the plate are created, followed
by the definition of the assembly volume for the layer.

The assembly volume for the layer is then filled by the plates in the same way as normal physical volumes are placed
inside a mother volume.

Finally the layers are placed inside the world volume as the imprints of the assembly volume (see Listing 4.7).

Listing 4.7: An example of usage of the G4AssemblyVolume class.

static unsigned int layers = 5;

void TstVADetectorConstruction::ConstructAssembly ()

{
// Define world volume
G4Box* WorldBox = new G4Box ("WBox", worldX/2., worldY/2., worldZ/2.);
G4LogicalVolume~ worldLV = new G4LogicalVolume (WorldBox, selectedMaterial,

"WLog", O, 0, 0);
G4VPhysicalVolume* worldVol = new G4PVPlacement (0, G4ThreeVector(), "WPhys",worldLV,
0, false, 0);

// Define a plate
G4Box* PlateBox = new G4Box("PlateBox", plateX/2., plateY/2., plateZ/2.);
G4LogicalVolume* platelV = new G4LogicalVolume (PlateBox, Pb, "PlateLV", 0O, 0O, 0);

// Define one layer as one assembly volume
G4AssemblyVolume* assemblyDetector = new G4AssemblyVolume () ;

// Rotation and translation of a plate inside the assembly
G4RotationMatrix Ra;

G4ThreeVector Ta;

G4Transform3D Tr;

// Rotation of the assembly inside the world
G4RotationMatrix Rm;

// Fill the assembly by the plates
Ta.setX(caloX/4.); Ta.setY(caloY/4.); Ta.setZ(0.);
(continues on next page)

142 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.2

Tr = G4Transform3D (Ra, Ta) ;
assemblyDetector->AddPlacedVolume (platelLV, Tr);

Ta.setX(—-l+caloX/4.); Ta.setY(caloY/4.); Ta.setz(0.);
Tr = G4Transform3D (Ra, Ta) ;
assemblyDetector->AddPlacedVolume (platelLV, Tr);

Ta.setX(—-lxcaloX/4.); Ta.setY(-lxcaloY/4.); Ta.setz(0.);
Tr = G4Transform3D (Ra, Ta) ;
assemblyDetector->AddPlacedVolume (platelV, Tr);

Ta.setX(caloX/4.); Ta.setY(—-lxcaloY/4.); Ta.setZ(0.);
Tr = G4Transform3D (Ra, Ta) ;
assemblyDetector->AddPlacedVolume (platelV, Tr);

// Now instantiate the layers
for (unsigned int i = 0; i < layers; i++)
{
// Translation of the assembly inside the world
G4ThreeVector Tm(0,0,i* (caloZ + caloCaloOffset) - firstCaloPos
Tr = G4Transform3D (Rm, Tm) ;
assemblyDetector->MakeImprint (worldLV, Tr);

The resulting detector will look as in Fig. 4.3.

4.1.7 Reflecting Hierarchies of Volumes

(continued from previous page)

)

Hierarchies of placed or replicated volumes can be reflected by means of the G4ReflectionFactory class and
G4ReflectedSolid, which implements a solid that has been shifted from its original reference frame to a new ‘re-
flected’ one. The reflection transformation is applied as a decomposition into rotation and translation transformations.

The factory is a singleton object which provides the following methods:

G4PhysicalVolumesPair Place (const G4Transform3Dé& transform3D,
const G4String& name,
G4LogicalVolume* LV,
G4LogicalVolume* motherLV,

G4bool isMany,

G4int copyNo,

G4bool surfCheck=false)
G4PhysicalVolumesPair Replicate (const G4Strings name,

G4LogicalVolumex LV,
G4LogicalVolume* motherLV,

EAxis axis,

G4int nofReplicas,

G4double width,

G4double offset=0)
G4PhysicalVolumesPair Divide (const G4Stringé& name,

G4LogicalVolume* LV,
G4LogicalVolume* motherLV,

EAxis axis,

G4int nofDivisions,
G4double width,
G4double offset);

The method Place () used for placements, evaluates the passed transformation
a reflection, the factory will act as follows:

1. Performs the transformation decomposition.

. In case the transformation contains

4.1. Geometry

143

Book For Application Developers, Release 11.2

Fig. 4.3: The geometry corresponding to the Listing 4.7.

144 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.2

2. Creates a new reflected solid and logical volume, or retrieves them from a map if the reflected object was already
created.
3. Transforms the daughters (if any) and place them in the given mother.

If successful, the result is a pair of physical volumes, where the second physical volume is a placement in a re-
flected mother. Optionally, it is also possible to force the overlaps check at the time of placement, by activating the
surfCheck flag.

The method Replicate () creates replicas in the given mother. If successful, the result is a pair of physical volumes,
where the second physical volume is a replica in a reflected mother.

The method Divide () creates divisions in the given mother. If successful, the result is a pair of physical volumes,
where the second physical volume is a division in a reflected mother. There exists also two more variants of this
method which may specify or not width or number of divisions.

Note: In order to reflect hierarchies containing divided volumes, it is necessary to explicitly instantiate a concrete
division factory -before- applying the actual reflection: (i.e. - G4PVDivisionFactory: :GetInstance () ;).

Note: Reflection of generic parameterised volumes is currently not possible.

Listing 4.8: An example of usage of the G4ReflectionFactory class.

#include "G4ReflectionFactory.hh"

// Calor placement with rotation

G4double calThickness = 100+cm;

G4double Xpos = calThickness«*1.5;
G4RotationMatrix+ rotD3 = new G4RotationMatrix();

rotD3->rotateY (10. xdeg) ;

G4VPhysicalVolumex* physiCalor =

new G4PVPlacement (rotD3, // rotation
G4ThreeVector (Xpos, 0.,0.), // at (Xpos,0,0)
logicCalor, // its logical volume (defined elsewhere)
"Calorimeter", // its name
logicHall, // its mother volume (defined elsewhere)
false, // no boolean operation
0); // copy number

// Calor reflection with rotation

//

G4Translate3D translation(-Xpos, 0., 0.);

G4Transform3D rotation = G4Rotate3D (xrotD3);

G4ReflectX3D reflection;

G4Transform3D transform = translationsrotationxreflection;

G4ReflectionFactory: :Instance ()

—>Place (transform, // the transformation with reflection
"Calorimeter", // the actual name
logicCalor, // the logical volume
logicHall, // the mother volume
false, // no boolean operation
i, // copy number
false); // no overlap check triggered

// Replicate layers
//
G4ReflectionFactory: :Instance ()
->Replicate ("Layer", // layer name

(continues on next page)

4.1. Geometry 145

Book For Application Developers, Release 11.2

(continued from previous page)

logiclLayer, // layer logical volume (defined elsewhere)
logicCalor, // its mother

kXAxis, // axis of replication
5, // number of replica
20xcm) ; // width of replica

4.1.8 The Geometry Navigator

Navigation through the geometry at tracking time is implemented by the class G4Navigator. The navigator is used
to locate points in the geometry and compute distances to geometry boundaries. At tracking time, the navigator is
intended to be the only point of interaction with tracking.

Internally, the G4Navigator has several private helper/utility classes:

G4NavigationHistory - stores the compounded transformations, replication/parameterisation information, and
volume pointers at each level of the hierarchy to the current location. The volume types at each level are also
stored - whether normal (placement), replicated or parameterised.

G4NormalNavigation - provides location & distance computation functions for geometries containing ‘place-
ment’ volumes, with no voxels.

G4VoxelNavigation - provides location and distance computation functions for geometries containing ‘place-
ment’ physical volumes with voxels. Internally a stack of voxel information is maintained. Private functions
allow for isotropic distance computation to voxel boundaries and for computation of the ‘next voxel’ in a speci-
fied direction.

G4ParameterisedNavigation - provides location and distance computation functions for geometries containing
parameterised volumes with voxels. Voxel information is maintained similarly to G4VoxelNavigation, but
computation can also be simpler by adopting voxels to be one level deep only (unrefined, or 1D optimisation)
G4ReplicaNavigation - provides location and distance computation functions for replicated volumes.
G4RegularNavigation - provides location and distance computation functions for fast navigation in volumes
containing a regular parameterisation. If two contiguous voxels have the same material, navigation does not stop
at the surface.

In addition, the navigator maintains a set of flags for exiting/entry optimisation. A navigator is not a singleton class;
this is mainly to allow a design extension in future (e.g. geometrical event biasing).

Navigation and Tracking

The main functions required for tracking in the geometry are described below. Additional functions are provided to
return the net transformation of volumes and for the creation of touchables. None of the functions implicitly requires
that the geometry be described hierarchically.

SetWorld Volume()

Sets the first volume in the hierarchy. It must be unrotated and untranslated from the origin.
LocateGlobalPointAndSetup()

Locates the volume containing the specified global point. This involves a traverse of the hierarchy, requiring the
computation of compound transformations, testing replicated and parameterised volumes (etc). To improve effi-
ciency this search may be performed relative to the last, and this is the recommended way of calling the function.
A ‘relative’ search may be used for the first call of the function which will result in the search defaulting to a
search from the root node of the hierarchy. Searches may also be performed using a G4TouchableHistory.
LocateGlobalPointAndUpdateTouchableHandle()

First, search the geometrical hierarchy like the above method LocateGlobalPointAndSetup (). Then
use the volume found and its navigation history to update the touchable.

ComputeStep()

Computes the distance to the next boundary intersected along the specified unit direction from a specified point.
The point must be have been located prior to calling ComputeStep ().

146

Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.2

When calling ComputeStep (), a proposed physics step is passed. If it can be determined that the first
intersection lies at or beyond that distance then kInfinity is returned. In any case, if the returned step is
greater than the physics step, the physics step must be taken.

* SetGeometricallyLimitedStep()
Informs the navigator that the last computed step was taken in its entirety. This enables entering/exiting optimi-
sation, and should be called prior to calling LocateGlobalPointAndSetup ().

* CreateTouchableHistory()
Creates a G4TouchableHistory object, for which the caller has deletion responsibility. The ‘touchable’
volume is the volume returned by the last Locate operation. The object includes a copy of the current Naviga-
tionHistory, enabling the efficient relocation of points in/close to the current volume in the hierarchy.

As stated previously, the navigator makes use of utility classes to perform location and step computation functions.
The different navigation utilities manipulate the G4NavigationHistory object.

In LocateGlobalPointAndSetup () the process of locating a point breaks down into three main stages - op-
timisation, determination that the point is contained with a subtree (mother and daughters), and determination of the
actual containing daughter. The latter two can be thought of as scanning first ‘up’ the hierarchy until a volume that is
guaranteed to contain the point is found, and then scanning ‘down’ until the actual volume that contains the point is
found.

In ComputeStep () three types of computation are treated depending on the current containing volume:

¢ The volume contains normal (placement) daughters (or none)
* The volume contains a single parameterised volume object, representing many volumes
* The volume is a replica and contains normal (placement) daughters

Using the navigator to locate points

More than one navigator object can be created inside an application; these navigators can act independently for dif-
ferent purposes. The main navigator which is activated automatically at the startup of a simulation program is the
navigator used for the tracking and attached the world volume of the main tracking (or mass) geometry.

The navigator for tracking can be retrieved at any state of the application by messaging the
G4TransportationManager:

G4Navigator tracking_navigator =
G4TransportationManager: :GetInstance () —>GetNavigatorForTracking () ;

This also allows to retrieve at any time a pointer to the world volume assigned for tracking:

G4VPhysicalVolume* tracking_world = tracking_navigator->GetWorldVolume () ;

The navigator for tracking also retains all the information of the current history of volumes traversed at a precise
moment of the tracking during a run. Therefore, if the navigator for tracking is used during tracking for locating a
generic point in the tree of volumes, the actual particle gets also -relocated- in the specified position and tracking will
be of course affected !

In order to avoid the problem above and provide information about location of a point without affecting the tracking,
it is suggested to either use an alternative G4Navigator object (which can then be assigned to the world-volume),
or access the information through the step.

If the user instantiates an alternative G4Navigator, ownership is retained by the user’s code, and the navigator
object should be deleted by that code.

4.1. Geometry 147

Book For Application Developers, Release 11.2

Using the ‘step’ to retrieve geometrical information

During the tracking run, geometrical information can be retrieved through the touchable handle associated to the
current step. For example, to identify the exact copy-number of a specific physical volume in the mass geometry, one
should do the following:

// Given the pointer to the step object

//

G4Stepx aStep = ..;

// ... retrieve the 'pre-step' point

/7

G4StepPoint* preStepPoint = aStep->GetPreStepPoint ();

// ... retrieve a touchable handle and access to the information
//

G4TouchableHandle theTouchable = preStepPoint->GetTouchableHandle () ;
G4int copyNo = theTouchable->GetCopyNumber () ;
G4int motherCopyNo = theTouchable->GetCopyNumber (1) ;

To determine the exact position in global coordinates in the mass geometry and convert to local coordinates (local to
the current volume):

G4ThreeVector worldPosition = preStepPoint->GetPosition();

G4ThreeVector localPosition = theTouchable->GetHistory () —>
GetTopTransform() .TransformPoint (worldPosition) ;

Using an alternative navigator to locate points

In order to know (when in the idle state of the application) in which physical volume a given point is located in the
detector geometry, it is necessary to create an alternative navigator object first and assign it to the world volume:

G4Navigatorx aNavigator = new G4Navigator();
aNavigator->SetWorldvVolume (worldvVolumePointer) ;

Then, locate the point myPoint (defined in global coordinates), retrieve a fouchable handle and do whatever you
need with it:

aNavigator->LocateGlobalPointAndSetup (myPoint) ;

G4TouchableHistoryHandle aTouchable =

aNavigator->CreateTouchableHistoryHandle () ;

// Do whatever you need with it ...

// ... convert point in local coordinates (local to the current volume)
//
G4ThreeVector localPosition = aTouchable->GetHistory () >

GetTopTransform() .TransformPoint (myPoint) ;

// ... convert back to global coordinates system
G4ThreeVector globalPosition = aTouchable->GetHistory ()-—>
GetTopTransform() .Inverse () .TransformPoint (localPosition);

If outside of the tracking run and given a generic local position (local to a given volume in the geometry tree), it is
-not- possible to determine a priori its global position and convert it to the global coordinates system. The reason for
this is rather simple, nobody can guarantee that the given (local) point is located in the right -copy- of the physical
volume ! In order to retrieve this information, some extra knowledge related to the absolute position of the physical
volume is required first, i.e. one should first determine a global point belonging to that volume, eventually making a
dedicated scan of the geometry tree through a dedicated G4Navigator object and then apply the method above after
having created the touchable for it.

148 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.2

Navigation in parallel geometries

Since release 8.2 of GEANT4, it is possible to define geometry trees which are parallel to the tracking geometry and
having them assigned to navigator objects that transparently communicate in sync with the normal tracking geometry.

Parallel geometries can be defined for several uses (fast shower parameterisation, geometrical biasing, particle scoring,
readout geometries, etc ...) and can overlap with the mass geometry defined for the tracking. The parallel
transportation will be activated only after the registration of the parallel geometry in the detector description setup; see
Section Parallel Geometries for how to define a parallel geometry and register it to the run-manager.

The G4TransportationManager provides all the utilities to verify, retrieve and activate the navigators associated
to the various parallel geometries defined.

Fast navigation in regular patterned geometries and phantoms

Since release 9.1 of GEANT4, a specialised navigation algorithm has been introduced to allow for optimal memory use
and extremely efficient navigation in geometries represented by a regular pattern of volumes and particularly three-
dimensional grids of boxes. A typical application of this kind is the case of DICOM phantoms for medical physics
studies.

The class G4RegularNavigation is used and automatically activated when such geometries are defined. It is
required to the user to implement a parameterisation of the kind G4PhantomParameterisation and place the
parameterised volume containing it in a container volume, so that all cells in the three-dimensional grid (voxels)
completely fill the container volume. This way the location of a point inside a voxel can be done in a fast way,
transforming the position to the coordinate system of the container volume and doing a simple calculation of the kind:

copyNo_x = (localPoint.x () +fVoxelHalfX+fNoVoxelX) / (fVoxelHalfX«*2.)

where fVoxelHalfX is the half dimension of the voxel along X and fNoVoxelX is the number of vox-
els in the X dimension. Voxel 0 will be the one closest to the corner (fVoxelHalfXxfNoVoxelX,
fVoxelHalfY+xfNoVoxelY, fVoxelHalfZxfNoVoxelZ).

Having the voxels filling completely the container volume allows to avoid the lengthy computation of
ComputeStep () and ComputeSafety methods required in the traditional navigation algorithm. In this case,
when a track is inside the parent volume, it has always to be inside one of the voxels and it will be only necessary to
calculate the distance to the walls of the current voxel.

Skipping borders of voxels with same material

Another speed optimisation can be provided by skipping the frontiers of two voxels which the same material assigned,
so that bigger steps can be done. This optimisation may be not very useful when the number of materials is very big
(in which case the probability of having contiguous voxels with same material is reduced), or when the physical step
is small compared to the voxel dimensions (very often the case of electrons). The optimisation can be switched off in
such cases, by invoking the following method with argument skip = 0:

4.1. Geometry 149

Book For Application Developers, Release 11.2

Phantoms with only one material

If you want to describe a phantom of a unique material, you may spare some memory by not filling the set of indices
of materials of each voxel. If the method SetMaterialIndices () is not invoked, the index for all voxels will be

0, that is the first (and unique) material in your list.

G4RegularParameterisation: :SetSkipEqualMaterials (G4bool skip);

Example

To use the specialised navigation, it is required to first create an object of type G4PhantomParameterisation:

G4PhantomParameterisation* param = new G4PhantomParameterisation();

Then, fill it with the all the necessary data:

// Voxel dimensions in the three dimensions

//

G4double halfX = ...;
G4double halfy = ...;
G4double halfz = ...;

param->SetVoxelDimensions (halfX, halfY, halfz);

// Number of voxels in the three dimensions

//

G4int nVoxelX = ...;
G4int nVoxelY = ...;
G4int nVoxelZ = 0B

param->SetNoVoxel (nVoxelX, nVoxelY, nVoxelZ);

// Vector of materials of the voxels

//

std: :vector < G4Material* > theMaterials;
theMaterials.push_back (new G4Material (
theMaterials.push_back (new G4Material (
param->SetMaterials (theMaterials);

// List of material indices
// For each voxel it is a number that correspond to the index of its
// material in the vector of materials defined above;

//

size t+ mateIDs = new size_t[nVoxelXsnVoxelY+nVoxelZ];
mateIDs[0] = nO0;

mateIDs[1] = nl;

param->SetMaterialIndices (matelIDs);

Then, define the volume that contains all the voxels:

G4Box+* cont_solid = new G4Box ("PhantomContainer",nVoxelX+halfX.,nVoxelY+halfY.

G4LogicalVolume* cont_logic =
new G4LogicalVolume (cont_solid,

matePatient, // material is not relevant here...
"PhantomContainer",

0, 0, 0);

G4VPhysicalVolume * cont_phys =
new G4PVPlacement (rotm, // rotation

pos, // translation
cont_logic, // logical volume
"PhantomContainer", // name

world_logic, // mother volume

,nVoxelZ+halfZ);

(continues on next page)

150 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.2

(continued from previous page)

false, // No op. bool.
1) // Copy number

The physical volume should be assigned as the container volume of the parameterisation:
param->BuildContainerSolid (cont_phys) ;

// Assure that the voxels are completely filling the container volume

//

param->CheckVoxelsFillContainer (cont_solid->GetXHalfLength(),
cont_solid->GetyHalfLength (),
cont_solid->GetzHalfLength());

// The parameterised volume which uses this parameterisation is placed
// in the container logical volume

//
G4PVParameterised * patient_phys =
new G4PVParameterised ("Patient", // name
patient_logic, // logical volume
cont_logic, // mother volume
kXAxis, // optimisation hint
nVoxelX+nVoxelY+nVoxelZ, // number of voxels
param) ; // parameterisation

// Indicate that this physical volume is having a regular structure
//
patient_phys->SetRegularStructureId(l) ;

An example showing the application of the optimised navigation algorithm for phantoms geometries is avail-
able in examples/extended/medical/DICOM. It implements a real application for reading DICOM im-
ages and convert them to GEANT4 geometries with defined materials and densities, allowing for different imple-
mentation solutions to be chosen (non-optimised, classical 3D optimisation, nested parameterisations and use of
G4PhantomParameterisation).

Run-time commands

When running in verbose mode (i.e. the default, GAVERBOSE set while installing the GEANT4 kernel libraries), the
navigator provides a few commands to control its behavior. It is possible to select different verbosity levels (up to 5),
with the command:

geometry/navigator/verbose [verbose_level]

or to force the navigator to run in check mode:

geometry/navigator/check_mode [true/false]

The latter will force more strict and less tolerant checks in step/safety computation to verify the correctness of the
solids’ response in the geometry.

By combining check_mode with verbosity level-1, additional verbosity checks on the response from the solids can be
activated.

4.1. Geometry 151

Book For Application Developers, Release 11.2

Setting Geometry Tolerance to be relative

The tolerance value defining the accuracy of tracking on the surfaces is by default set to a reasonably small value of
10E-9 mm. Such accuracy may be however redundant for use on simulation of detectors of big size or macroscopic
dimensions. Since release 9.0, it is possible to specify the surface tolerance to be relative to the extent of the world
volume defined for containing the geometry setup.

The class G4GeometryManager can be used to activate the computation of the surface tolerance to be relative to
the geometry setup which has been defined. It can be done this way:

G4GeometryManager: :GetInstance () —>SetWorldMaximumExtent (WorldExtent) ;

where, Wor1dExtent is the actual maximum extent of the world volume used for placing the whole geometry setup.

Such call to G4Geomet ryManager must be done before defining any geometrical component of the setup (solid
shape or volume), and can be done only once!

The class G4GeometryTolerance is to be used for retrieving the actual values defined for tolerances, surface
(Cartesian), angular or radial respectively:

G4GeometryTolerance: :GetInstance () —>GetSurfaceTolerance () ;
G4GeometryTolerance: :GetInstance () ~—>GetAngularTolerance () ;
G4GeometryTolerance: :GetInstance () —>GetRadialTolerance () ;

4.1.9 Converting Geometries from Geant3.21

Approach

G3toG4 is the GEANT4 facility to convert GEANT 3.21 geometries into GEANT4. This is done in two stages:

1. The user supplies a GEANT 3.21 RZ-file (.rz) containing the initialization data structures. An executable
rztog4 reads this file and produces an ASCII call list file containing instructions on how to build the ge-
ometry. The source code of rztog4 is FORTRAN.

2. A call list interpreter (G4BuildGeom. cc) reads these instructions and builds the geometry in the user’s client
code for GEANT4.

Importing converted geometries into GEANT4

Two examples of how to use the call list interpreter are supplied in the directory examples/extended/g3tog4:

1. cltogd is a simple example which simply invokes the call list interpreter method G4BuildGeom from the
G3toG4DetectorConstruction class, builds the geometry and exits.

2. clGeometry, is more complete and is patterned as for the basic GEANT4 examples. It also invokes the call
list interpreter, but in addition, allows the geometry to be visualized and particles to be tracked.

To compile and build the G3toG4 libraries, you need to have enabled GEANT4_USE_G3TO0G4 at the build configura-
tion of GEANT4. The G3toG4 libraries are not built by default.

152 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.2

Current Status

The package has been tested with the geometries from experiments like: BaBar, CMS, Atlas, Alice, Zeus, L3, and
Opal.

Here is a comprehensive list of features supported and not supported or implemented in the current version of the
package:

» Supported shapes: all GEANT 3.21 shapes except for GTRA, CTUB.

* PGON, PCON are built using the specific solids G4Polycone and G4Polyhedra.

e GEANT 3.21 MANY feature is only partially supported. MANY positions are resolved in the G3t 0oG4MANY ()
function, which has to be processed before G3toG4BuildTree () (it is not called by default). In order
to resolve MANY, the user code has to provide additional info using G4gsbool (G4String volName,
G4String manyVolName) function for all the overlapping volumes. Daughters of overlapping volumes
are then resolved automatically and should not be specified via Gsbool.

Limitation: a volume with a MANY position can have only this one position; if more than one position is needed
a new volume has to be defined (gsvolu ()) for each position.
* GSDVx routines for dividing volumes are implemented, using G4PVReplicas, for shapes:
— BOX, TUBE, TUBS, PARA - all axes;

CONE, CONS - axes 2, 3;

TRD1, TRD2, TRAP - axis 3;

PGON, PCON - axis 2;

PARA -axis 1; axis 2,3 for a special case

* GSPOSP is implemented via individual logical volumes for each instantiation.

* GSROTM is implemented. Reflections of hierarchies based on plain CSG solids are implemented through the
G3Division class.

* Hits are not implemented.

* Conversion of GEANT 3.21 magnetic field is currently not supported. However, the usage of magnetic field has
to be turned on.

4.1.10 Detecting Overlapping Volumes

The problem of overlapping volumes

Volumes are often positioned within other volumes with the intent that one is fully contained within the other. If,
however, a volume extends beyond the boundaries of its mother volume, it is defined as overlapping. It may also be
intended that volumes are positioned within the same mother volume such that they do not intersect one another. When
such volumes do intersect, they are also defined as overlapping.

The problem of detecting overlaps between volumes is bounded by the complexity of the solid model description.
Hence it requires the same mathematical sophistication which is needed to describe the most complex solid topology,
in general. However, a tunable accuracy can be obtained by approximating the solids via first and/or second order
surfaces and checking their intersections.

In general, the most powerful clash detection algorithms are provided by CAD systems, treating the intersection
between the solids in their topological form.

4.1. Geometry 153

Book For Application Developers, Release 11.2

Detecting overlaps at construction

The GEANT4 geometry modeler provides the ability to detect overlaps of placed volumes (normal placements or
parameterised) at the time of construction. This check is optional and can be activated when instantiating a place-
ment (see G4PVPlacement constructor in Placements: single positioned copy) or a parameterised volume (see
G4PVParameterised constructor in Repeated volumes).

The positioning of that specific volume will be checked against all volumes in the same hierarchy level and its mother
volume. Depending on the complexity of the geometry being checked, the check may require considerable CPU time;
it is therefore suggested to use it only for debugging the geometry setup and to apply it only to the part of the geometry
setup which requires debugging.

The classes G4PVPlacement and G4PVParameterised also provide a method:

G4bool CheckOverlaps (G4int res=1000, G4double tol=0., G4bool verbose=true, G4int maxErr=1)

which will force the check for the specified volume, and can be therefore used to verify for overlaps also once the
geometry is fully built. The check verifies if each placed or parameterised instance is overlapping with other instances
or with its mother volume. A default resolution for the number of points to be generated and verified is provided. The
method returns t rue if an overlap occurs. It is also possible to specify a “tolerance” by which overlaps not exceeding
such quantity will not be reported and a maximum of overlaps errors for the volume; by default, one overlap per
volume is reported.

Detecting overlaps: built-in kernel commands

Built-in run-time commands to activate verification tests for the user-defined geometry are also provided

geometry/test/run

—-—> to start verification of geometry for overlapping regions
recursively through the volumes tree.

geometry/test/recursion_start [int]

——> to set the starting depth level in the volumes tree from where
checking overlaps. Default is level '0' (i.e. the world volume).
The new settings will then be applied to any recursive test run.

geometry/test/recursion_depth [int]

——> to set the total depth in the volume tree for checking overlaps.
Default is '-1' (i.e. checking the whole tree).
Recursion will stop after having reached the specified depth (the
default being the full depth of the geometry tree).
The new settings will then be applied to any recursive test run.

geometry/test/tolerance [double] [unit]

——> to define tolerance by which overlaps should not be reported.
Default is '0O'.

geometry/test/verbosity [bool]

-—-> to set verbosity mode. Default is 'true'.

geometry/test/resolution [int]

—-—> to establish the number of points on surface to be generated
and checked for each volume. Default is '10000'.

geometry/test/maximum_errors [int]

——> to fix the threshold for the number of errors to be reported
for a single volume. By default, for each volume, reports stop
after the first error reported.

To detect overlapping volumes, the built-in Ul commands use the random generation of points on surface technique
described above. It allows to detect with high level of precision any kind of overlaps, as depicted below. For example,
consider Fig. 4.4:

Here we have a line intersecting some physical volume (large, black rectangle). Belonging to the volume are four
daughters: A, B, C, and D. Indicated by the dots are the intersections of the line with the mother volume and the four
daughters.

154 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.2

Wothet Volume

At
%

Fig. 4.4: Different cases of placed volumes overlapping each other.

This example has two geometry errors. First, volume A sticks outside its mother volume (this practice, sometimes used
in GEANT3.21, is not allowed in GEANT4). This can be noticed because the intersection point (leftmost magenta dot)
lies outside the mother volume, as defined by the space between the two black dots.

The second error is that daughter volumes A and B overlap. This is noticeable because one of the intersections with A
(rightmost magenta dot) is inside the volume B, as defined as the space between the red dots. Alternatively, one of the
intersections with B (leftmost red dot) is inside the volume A, as defined as the space between the magenta dots.

Another difficult issue is roundoff error. For example, daughters C and D lie precisely next to each other. It is possible,
due to roundoff, that one of the intersections points will lie just slightly inside the space of the other. In addition, a
volume that lies tightly up against the outside of its mother may have an intersection point that just slightly lies outside
the mother.

Finally, notice that no mention is made of the possible daughter volumes of A, B, C, and D. To keep the code simple,
only the immediate daughters of a volume are checked at one pass. To test these “granddaughter” volumes, the
daughters A, B, C, and D each have to be tested themselves in turn. To make this automatic, a recursive algorithm is
applied; it first tests the target volume, then it loops over all daughter volumes and calls itself.

Note: for a complex geometry, checking the entire volume hierarchy can be extremely time consuming.

Using built-in visualisation features

See Debugging geometry with vis.

Using the visualization tool DAVID

The GEANT4 visualization offers also a debugging tool for detecting potential intersections of physical volumes. The
GEANT4 DAVID visualization tool can automatically detect the overlaps between the volumes defined in GEANT4
and converted to a graphical representation for visualization purposes. The accuracy of the graphical representation
can be tuned onto the exact geometrical description. In the debugging, physical-volume surfaces are automatically
decomposed into 3D polygons, and intersections of the generated polygons are investigated. If a polygon intersects
with another one, physical volumes which these polygons belong to are visualized in color (red is the default). The
Fig. 4.5 figure below is a sample visualization of a detector geometry with intersecting physical volumes highlighted:

At present physical volumes made of the following solids can be debugged: G4Box, G4Cons, G4Para, G4Sphere,
G4Trd, GATrap, G4Tubs. (Existence of other solids is harmless.)

Visual debugging of physical-volume surfaces is performed with the DAWNFILE driver defined in the visualization
category and with the two application packages, i.e. Fukui Renderer “DAWN” and a visual intersection debugger

4.1. Geometry 155

Book For Application Developers, Release 11.2

I.
T
hﬁ...l!ﬁﬁﬁ o I_

L T
gy Vi
AN g tres 8
% gy

Fig. 4.5: A geometry with overlapping volumes highlighted by DAVID.

Chapter 4. Detector Definition and Response

156

Book For Application Developers, Release 11.2

“DAVID”.
How to compile GEANT4 with the DAWNFILE driver incorporated is described in The Visualization Drivers.

If the DAWNFILE driver, DAWN and DAVID are all working well in your host machine, the visual intersection
debugging of physical-volume surfaces can be performed as follows:

Run your GEANT4 executable, invoke the DAWNFILE driver, and execute visualization commands to visualize your
detector geometry:

Idle> /vis/open DAWNFILE
..... (setting camera etc)...
Idle> /vis/drawVolume

Idle> /vis/viewer/update

Then a file “g4.prim”, which describes the detector geometry, is generated in the current directory and DAVID is
invoked to read it. (The description of the format of the file g4.prim can be found from the DAWN web site documen-
tation.)

If DAVID detects intersection of physical-volume surfaces, it automatically invokes DAWN to visualize the detector
geometry with the intersected physical volumes highlighted (See the above sample visualization).

If no intersection is detected, visualization is skipped and the following message is displayed on the console:

'l Number of intersected volumes : 0 !!!
11l Congratulations ! \(%0o")/ et

If you always want to skip visualization, set an environmental variable as follows beforehand:

% setenv DAVID_NO_VIEW 1

To control the precision associated to computation of intersections (default precision is set to 9), it is possible to use
the environmental variable for the DAWNFILE graphics driver, as follows:

$ setenv G4DAWNFILE_PRECISION 10

If necessary, re-visualize the detector geometry with intersected parts highlighted. The data are saved in a file
“g4david.prim” in the current directory. This file can be re-visualized with DAWN as follows:

% dawn g4david.prim

It is also helpful to convert the generated file gddavid.prim into a VRML-formatted file and perform interactive visu-

alization of it with your WWW browser. The file conversion tool prim2wrml can be downloaded from the DAWN
web site.

4.1.11 Dynamic Geometry Setups

GEANT4 can handle geometries which vary in time (e.g. a geometry varying between two runs in the same job).
It is considered a change to the geometry setup, whenever for the same physical volume:

* the shape or dimension of its related solid is modified;
* the positioning (translation or rotation) of the volume is changed;
* the volume (or a set of volumes, tree) is removed/replaced or added.

Whenever such a change happens, the geometry setup needs to be first “opened” for the change to be applied and
afterwards “closed” for the optimisation to be reorganised.

4.1. Geometry 157

Book For Application Developers, Release 11.2

In the general case, in order to notify the GEANT4 system of the change in the geometry setup, the G4RunManager
has to be messaged once the new geometry setup has been finalised:

G4RunManager: : GeometryHasBeenModified() ;

The above notification needs to be performed also if a material associated to a positioned volume is changed, in
order to allow for the internal materials/cuts table to be updated. However, for relatively complex geometries the
re-optimisation step may be extremely inefficient, since it has the effect that the whole geometry setup will be re-
optimised and re-initialised. In cases where only a limited portion of the geometry has changed, it may be suitable to
apply the re-optimisation only to the affected portion of the geometry (subtree).

Since release 7.1 of the GEANT4 toolkit, it is possible to apply re-optimisation local to the subtree of the geometry
which has changed. The user will have to explicitly “open/close” the geometry providing a pointer to the top physical
volume concerned:

Listing 4.9: Opening and closing a portion of the geometry without noti-
fying the GARunManager.

#include "G4GeometryManager.hh"

// Open geometry for the physical volume to be modified ...
//
G4GeometryManager: :OpenGeometry (physCalor) ;

// Modify dimension of the solid ...
//
physCalor->GetLogicalVolume () —>GetSolid () —>SetXHalfLength (12.5+cm) ;

// Close geometry for the portion modified ...
//
G4GeometryManager: :CloseGeometry (physCalor) ;

If the existing geometry setup is modified locally in more than one place, it may be convenient to apply such a
technique only once, by specifying a physical volume on top of the hierarchy (subtree) containing all changed portions
of the setup.

An alternative solution for dealing with dynamic geometries is to specify NOT to apply optimisation for the subtree
affected by the change and apply the general solution of invoking the GARunManager. In this case, a performance
penalty at run-time may be observed (depending on the complexity of the not-optimised subtree), considering that,
without optimisation, intersections to all volumes in the subtree will be explicitly computed each time.

Note: in multi-threaded runs, dynamic geometries are only allowed for runs consisting only of one event.

4.1.12 Importing XML Models Using GDML

Geometry Description Markup Language (GDML) is a markup language based on XML and suited for the descrip-
tion of detector geometry models. It allows for easy exchange of geometry data in a human-readable XML-based
description and structured formatting.

The GDML parser is a component of GEANT4 which can be built and installed as an optional choice. It allows for
importing and exporting GDML files, following the schema specified in the GDML documentation. The installation
of the plugin is optional and requires the installation of the XercesC DOM parser.

Examples of how to import and export a detector description model based on GDML, and also how to extend the
GDML schema, are provided and can be found in examples/extended/persistency/gdml.

158 Chapter 4. Detector Definition and Response

http://cern.ch/gdml/
http://cern.ch/gdml/doc/GDMLmanual.pdf
http://xerces.apache.org/xerces-c/
http://cern.ch/gdml/

Book For Application Developers, Release 11.2

4.1.13 Importing ASCII Text Models

Since release 9.2 of GEANT4, it is also possible to import geometry setups based on a plain text description, according
to a well defined syntax for identifying the different geometrical entities (solids, volumes, materials and volume
attributes) with associated parameters. An example showing how to define a geometry in plain text format and import
it in a GEANT4 application is shown in examples/extended/persistency/P03. The example also covers
the case of associating a sensitive detector to one of the volumes defined in the text geometry, the case of mixing C++
and text geometry definitions and the case of defining new tags in the text format so that regions and cuts by region
can be defined in the text file. It also provides an example of how to write a geometry text file from the in-memory
GEANT4 geometry. For the details on the format see the dedicated manual.

4.1.14 Saving geometry tree objects in binary format

The GEANT4 geometry tree can be stored in the Root binary file format using the Root-I/0 technique provided by
in Root. Such a binary file can then be used to quickly load the geometry into the memory or to move geometries
between different GEANT4 applications.

See Object Persistency for details and references.

4.2 Material

4.2.1 General considerations

In nature, materials (chemical compounds, mixtures) are made of elements, and elements are made of isotopes.
GEANT4 has three main classes designed to reflect this organization. Each of these classes has a table, which is a
static data member, used to keep track of the instances of the respective classes created.

G4Isotope This class describes the properties of atoms: atomic number, number of nucleons, mass per mole, etc.
G4Element This class describes the properties of elements: effective atomic number, effective number of nucleons,
effective mass per mole, number of isotopes, shell energy, and quantities like cross section per atom, etc.
G4Material This class describes the macroscopic properties of matter: density, state, temperature, pressure, and

macroscopic quantities like radiation length, mean free path, dE/dx, etc.

Only the G4Material class is visible to the rest of the toolkit and used by the tracking, the geometry and the
physics. It contains all the information relevant to its constituent elements and isotopes, while at the same time hiding
their implementation details.

4.2.2 Introduction to the Classes

Gdlsotope

A G4Isotope object has a name, atomic number, number of nucleons, mass per mole, and an index in the table.
The constructor automatically stores “this” isotope in the isotopes table, which will assign it an index number. The
G4Isotope objects are owned by the isotopes table, and must not be deleted by user code.

4.2. Material 159

https://cern.ch/geant4/collaboration/working_groups/persistency/docs/textgeom.pdf

Book For Application Developers, Release 11.2

G4Element

A G4Element object has a name, symbol, effective atomic number, effective number of nucleons, effective mass of
a mole, an index in the elements table, the number of isotopes, a vector of pointers to such isotopes, and a vector of
relative abundances referring to such isotopes (where relative abundance means the number of atoms per volume). In
addition, the class has methods to add, one by one, the isotopes which are to form the element.

The constructor automatically stores “this” element in the elements table, which will assign it an index number. The
G4Element objects are owned by the elements table, and must not be deleted by user code.

A G4Element object can be constructed by directly providing the effective atomic number, effective number of
nucleons, and effective mass of a mole, if the user explicitly wants to do so. Alternatively, a G4Element object can
be constructed by declaring the number of isotopes of which it will be composed. The constructor will “new” a vector
of pointers to G4Isotopes and a vector of doubles to store their relative abundances. Finally, the method to add an
isotope must be invoked for each of the desired (pre-existing) isotope objects, providing their addresses and relative
abundances. At the last isotope entry, the system will automatically compute the effective atomic number, effective
number of nucleons and effective mass of a mole, and will store “this” element in the elements table.

A few quantities, with physical meaning or not, which are constant in a given element, are computed and stored here
as “derived data members”.

Using the internal GEANT4 database, a G4Element can be accessed by atomic number or by atomic symbol (“Al”,
“Fe”, “Pb”...). In that case G4Element will be found from the list of existing elements or will be constructed using
data from the GEANT4 database, which is derived from the NIST database of elements and isotope compositions.
Thus, the natural isotope composition can be built by default. The same element can be created as using the NIST
database with the natural composition of isotopes and from scratch in user code with user defined isotope composition.

G4Material

A G4Material object has a name, density, physical state, temperature and pressure (by default the standard con-
ditions), the number of elements and a vector of pointers to such elements, a vector of the fraction of mass for each
element, a vector of the atoms (or molecules) numbers of each element, and an index in the materials table. In addition,
the class has methods to add, one by one, the elements which will comprise the material.

The constructor automatically stores “this” material in the materials table, which will assign it an index number. The
G4Material objects are owned by the materials table, and must not be deleted by user code.

A G4Material object can be constructed by directly providing the resulting effective numbers, if the user explicitly
wants to do so (an underlying element will be created with these numbers). Alternatively, a G4Material object
can be constructed by declaring the number of elements of which it will be composed. The constructor will “new” a
vector of pointers to GA4Element and a vector of doubles to store their fraction of mass. Finally, the method to add
an element must be invoked for each of the desired (pre-existing) element objects, providing their addresses and mass
fractions. At the last element entry, the system will automatically compute the vector of the number of atoms of each
element per volume, the total number of electrons per volume, and will store “this” material in the materials table. In
the same way, a material can be constructed as a mixture of other materials and elements.

It should be noted that if the user provides the number of atoms (or molecules) for each element comprising the
chemical compound, the system automatically computes the mass fraction. A few quantities, with physical meaning
or not, which are constant in a given material, are computed and stored here as “derived data members”.

Some materials are included in the internal GEANT4 database, which were derived from the NIST database of material
properties. Additionally a number of materials frequently used in HEP is included in the database. Materials are
interrogated or constructed by their names (Material Database). There are Ul commands for the material category,
which provide an interactive access to the database. If material is created using the NIST database by it will consist
by default of elements with the natural composition of isotopes.

160 Chapter 4. Detector Definition and Response

https://www.nist.gov/pml/atomic-weights-and-isotopic-compositions-relative-atomic-masses
https://physics.nist.gov/PhysRefData/Star/Text/method.html
https://physics.nist.gov/PhysRefData/Star/Text/method.html

Book For Application Developers, Release 11.2

Final Considerations

The classes will automatically decide if the total of the mass fractions is correct, and perform the necessary checks.
The main reason why a fixed index is kept as a data member is that many cross section and energy tables will be built
in the physics processes “by rows of materials (or elements, or even isotopes)”. The tracking gives the physics process
the address of a material object (the material of the current volume). If the material has an index according to which
the cross section table has been built, then direct access is available when a number in such a table must be accessed.
We get directly to the correct row, and the energy of the particle will tell us the column. Without such an index, every
access to the cross section or energy tables would imply a search to get to the correct material’s row. More details will
be given in the section on processes.

Isotopes, elements and materials must be instantiated dynamically in the user application; they are automatically
registered in internal stores and the system takes care to free the memory allocated at the end of the job.

4.2.3 Recipes for Building Elements and Materials

The Listing 4.10 illustrates the different ways to define materials.

Listing 4.10: A program which illustrates the different ways to define

materials.

#include "G4Isotope.hh"
#include "G4Element.hh"
#include "G4Material.hh"
#include "G4UnitsTable.hh"

int main () {
G4String name, symbol;

// a=mass of a mole;

G4double a, z, density; // z=mean number of protons;
// iz=nb of protons in an isotope;
// n=nb of nucleons in an isotope;

G4int iz, n;

G4int ncomponents, natoms;
G4double abundance, fractionmass;

G4double temperature,

pressure;

G4UnitDefinition: :BuildUnitsTable () ;

// define Elements
a = 1.01lxg/mole;
G4Element* elH = new

a = 12.01lxg/mole;
G4Element* elC = new

a = 14.01xg/mole;
G4Element* elN = new

a = 16.00xg/mole;
G4Element+ elO = new

a = 28.09+g/mole;
G4Element+ elSi = new

a = 55.85xg/mole;
G4Element* elFe = new

a = 183.84+g/mole;

G4Element (name="Hydrogen", symbol="H" ,

G4Element (name="Carbon" ,symbol="C" ,

G4Element (name="Nitrogen", symbol="N" ,

G4Element (name="0Oxygen" ,symbol="0" ,

G4Element (name="Silicon", symbol="Si",

G4Element (name="Iron" , symbol="Fe",

G4Element* elW = new G4Element (name="Tungsten" ,symbol="W",

a = 207.20+g/mole;
G4Element+ elPb = new

G4Element (name="Lead" , symbol="Pb",

z=14.

z=26.

z=74.

z=82.

(continues on next page)

4.2. Material

161

Book For Application Developers, Release 11.2

(continued from previous page)

continues on next page

Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.2

(continued from previous page)

kStateGas, temperature, pressure) ;
CO2->AddElement (elC, natoms=1) ;
CO2->AddElement (€10, natoms=2) ;

density = 0.3xmg/cm3;
pressure = 2.*atmosphere;
temperature = 500.+kelvin;

G4Material+ steam = new G4Material (name="Water steam density, ncomponents=1,
kStateGas, temperature, pressure) ;
steam->AddMaterial (H20, fractionmass=1.);

// What about vacuum ? Vacuum is an ordinary gas with very low density

density = universe_mean_density; //from PhysicalConstants.h
pressure = l.e-19xpascal;

temperature = 0.lxkelvin;

new G4Material (name="Galactic", z=1., a=1.0l+g/mole, density,

kStateGas, temperature, pressure) ;

density = l.e-5xg/cm3;
pressure = 2.e-2+bar;
temperature = STP_Temperature; //from PhysicalConstants.h

G4Material«+ beam = new G4Material (name="Beam ", density, ncomponents=1,
kStateGas, temperature, pressure) ;
beam->AddMaterial (Air, fractionmass=1.);

// print the table of materials
Gdcout << * (G4Material::GetMaterialTable()) << Gdendl;

return EXIT_SUCCESS;
}

As can be seen in the later examples, a material has a state: solid (the default), liquid, or gas. The constructor checks
the density and automatically sets the state to gas below a given threshold (10 mg/cm3).

In the case of a gas, one may specify the temperature and pressure. The defaults are STP conditions defined in
PhysicalConstants.hh.

An element must have the number of nucleons >= number of protons >= 1.
A material must have non-zero values of density, temperature and pressure.

Materials can also be defined using the internal GEANT4 database. Listing 4.11 illustrates how to do this for the same
materials used in Listing 4.10. There are also Ul commands which allow the database to be accessed. The list of
currently available material names (Material Database) is extended permanently.

Listing 4.11: A program which shows how to define materials from the
internal database.

#include "globals.hh"
#include "G4Material.hh"
#include "G4NistManager.hh"

int main () {
G4NistManager* man = G4NistManager::Instance();
man->SetVerbose (1) ;

// define elements
G4Element+ C = man->FindOrBuildElement ("C");
G4Element Pb = man->FindOrBuildMaterial ("Pb");

// define pure NIST materials

G4Material+ Al = man->FindOrBuildMaterial ("G4 _A1");
G4Material+ Cu = man->FindOrBuildMaterial ("G4_Cu");

(continues on next page)

4.2. Material 163

Book For Application Developers, Release 11.2

(continued from previous page)

// define NIST materials

G4Materialx H20 = man->FindOrBuildMaterial ("G4 _WATER") ;

G4Material* Sci = man->FindOrBuildMaterial ("G4_PLASTIC_SC_VINYLTOLUENE") ;
G4Materialx SiO2 = man->FindOrBuildMaterial ("G4_SILICON_DIOXIDE") ;
G4Material+ Air = man->FindOrBuildMaterial ("G4_ATIR");

// HEP materials

G4Material+ PbWO4 = man->FindOrBuildMaterial ("G4_PbWO4") ;
G4Material+ 1Ar = man->FindOrBuildMaterial ("G4_1Axr");
G4Material+ vac = man—->FindOrBuildMaterial ("G4_Galactic");

// define gas material at non STP conditions (T = 120K, P=0.5atm)
G4Material+ coldAr = man—->ConstructNewGasdMaterial ("ColdAr", "G4 Ar",120.+kelvin, 0.
—5*xatmosphere) ;

// print the table of materials
G4cout << « (G4Material::GetMaterialTable()) << G4endl;

return EXIT_SUCCESS;
}

4.2.4 The Tables

Print a constituent

The following shows how to print a constituent:

Gdcout << elU << G4dendl;
G4cout << Air << G4endl;

Print the table of materials

The following shows how to print the table of materials:

G4cout << « (G4Material::GetMaterialTable()) << G4endl;

4.3 Electromagnetic Field

4.3.1 An Overview of Propagation in a Field

GEANT4 is capable of describing and propagating in a variety of fields. Magnetic fields, electric fields, electromagnetic
fields, and gravity fields, uniform or non-uniform, can specified for a GEANT4 setup. The propagation of tracks inside
them can be performed to a user-defined accuracy.

In order to propagate a track inside a field, the equation of motion of the particle in the field is integrated. In general,
this is done using a Runge-Kutta method for the integration of ordinary differential equations. However, for specific
cases where an analytical solution is known, it is possible to utilize this instead. Several Runge-Kutta methods are
available, suitable for different conditions. In specific cases (such as a uniform field where the analytical solution is
known) different solvers can also be used. In addition, when an approximate analytical solution is known, it is possible
to utilize it in an iterative manner in order to converge to the solution to the precision required. This latter method is
currently implemented and can be used particularly well for magnetic fields that are almost uniform.

Once a method is chosen that calculates the track’s propagation in a specific field, the curved path is broken up into
linear chord segments. These chord segments are determined so that they closely approximate the curved path. The

164 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.2

chords are then used to interrogate the Navigator as to whether the track has crossed a volume boundary. Several pa-
rameters are available to adjust the accuracy of the integration and the subsequent interrogation of the model geometry.

How closely the set of chords approximates a curved trajectory is governed by a parameter called the miss distance
(also called the chord distance). This is an upper bound for the value of the sagitta - the distance between the ‘real’
curved trajectory and the approximate linear trajectory of the chord. By setting this parameter, the user can control the
precision of the volume interrogation. Every attempt has been made to ensure that all volume interrogations will be
made to an accuracy within this miss distance.

miss distance

apmanat

............................ “hords
real trajectory 1‘

Fig. 4.6: The curved trajectory will be approximated by chords, so that the maximum estimated distance and chord is
less than the miss distance.

In addition to the miss distance there are two more parameters which the user can set in order to adjust the accuracy
(and performance) of tracking in a field. In particular these parameters govern the accuracy of the intersection with a
volume boundary and the accuracy of the integration of other steps. As such they play an important role for tracking.

The delta intersection parameter is the accuracy to which an intersection with a volume boundary is calculated. If
a candidate boundary intersection is estimated to have a precision better than this, it is accepted. This parameter is
especially important because it is used to limit a bias that our algorithm (for boundary crossing in a field) exhibits.
This algorithm calculates the intersection with a volume boundary using a chord between two points on the curved
particle trajectory. As such, the intersection point is always on the ‘inside’ of the curve. By setting a value for this
parameter that is much smaller than some acceptable error, the user can limit the effect of this bias on, for example,
the future estimation of the reconstructed particle momentum.

The delta one step parameter is the accuracy for the endpoint of ‘ordinary’ integration steps, those which do not
intersect a volume boundary. This parameter is a limit on the estimated error of the endpoint of each physics step. It
can be seen as akin to a statistical uncertainty and is not expected to contribute any systematic behavior to physical
quantities. In contrast, the bias addressed by delta intersection is clearly correlated with potential systematic errors in
the momentum of reconstructed tracks. Thus very strict limits on the intersection parameter should be used in tracking
detectors or wherever the intersections are used to reconstruct a track’s momentum.

Delta intersection and delta one step are parameters of the Field Manager; the user can set them according to the
demands of his application. Because it is possible to use more than one field manager, different values can be set for
different detector regions.

Note that reasonable values for the two parameters are strongly coupled: it does not make sense to request an accuracy
of 1 nm for delta intersection and accept 100 um for the delta one step error value. Nevertheless delta intersection is
the more important of the two. It is recommended that these parameters should not differ significantly - certainly not
by more than an order of magnitude.

4.3. Electromagnetic Field 165

Book For Application Developers, Release 11.2

Fig. 4.7: The distance between the calculated chord intersection point C and a computed curve point D is used to
determine whether C is an accurate representation of the intersection of the curved path ADB with a volume boundary.
Here CD is likely too large, and a new intersection on the chord AD will be calculated.

166 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.2

4.3.2 Practical Aspects

Creating a Magnetic Field for a Detector

The simplest way to define a field for a detector involves the following steps:
1. create a field. It can be uniform
#include "G4SystemOfUnits.hh"

G4MagneticField smagField;
magField = new G4UniformMagField(G4ThreeVector(0.,0.,3.0+kilogauss));

or non-uniform:
magField = new G4QuadrupoleMagField(1.+tesla/(l.xmeter));
2. set it as the default field:
G4FieldManager* fieldMgr
= G4TransportationManager: :GetTransportationManager ()
—>GetFieldManager () ;
fieldMgr->SetDetectorField (magField) ;
3. create the objects which calculate the trajectory for a pure magnetic field,:
fieldMgr->CreateChordFinder (magField);

This is a short cut, which creates all the equation of motion, a method for integration (Runge-Kutta
stepper) and the driver which controls the integration and limits its estimated error.

Creating a Uniform Magnetic Field with user commands

Since 10.0 version, it is also possible to create a uniform magnetic field and perform the other two steps above the
G4GlobalMagFieldMessenger class:

G4ThreeVector fieldValue = G4ThreeVector (0.,0.,fieldValue);
fMagFieldMessenger = new G4GlobalMagFieldMessenger (fieldValue);
fMagFieldMessenger—>SetVerboselevel (1) ;

The messenger creates the global uniform magnetic field, which 1is activated (set to the
G4TransportationManager object) only when the fieldValue is non zero vector. The messenger
class setter functions can be then used to change the field value (and activate or inactivate the field again) or the level
of output messages. The messenger also takes care of deleting the field.

As its class name suggests, the messenger creates also Ul commands which can be used to change the field value and
the verbose level interactively or from a macro:

/globalField/setValue vx vy vz unit
/globalField/verbose level

4.3. Electromagnetic Field 167

Book For Application Developers, Release 11.2

Creating a Field for a Part of the Volume Hierarchy

It is possible to create a field for a part of the detector. In particular it can describe the field (with pointer pEmField,
for example) inside a logical volume and all its daughters. This can be done by simply creating a G4FieldManager
and attaching it to a logical volume (with pointer, logicVolumeWithField, for example) or set of logical volumes.

G4bool alllocal = true;
logicVolumeWithField->SetFieldManager (localFieldManager, alllLocal);

Using the second parameter to SetFieldManager you choose whether daughter volumes of this logical volume
will also be given this new field. If it has the value t rue, the field will be assigned also to its daughters, and all their
sub-volumes. Else, if it is false, it will be copied only to those daughter volumes which do not have a field manager
already, and recursively to their sub-volumes without a field manager.

Creating an Electric or Electromagnetic Field

The design and implementation of the Field category allows and enables the use of an electric or combined electro-
magnetic field. These fields can also vary with time, as can magnetic fields.

Source listing Listing 4.12 shows how to define a uniform electric field for the whole of a detector.

Listing 4.12: How to define a uniform electric field for the whole of a
detector, extracted from example in examples/extended/field/field02 .

// in the header file (or first)

#include "G4EgMagElectricField.hh"

#include "G4UniformElectricField.hh"

#include "G4DormandPrince745.hh"

G4ElectricFieldx pEMfield;

G4EgMagElectricFieldx pEquation;
G4ChordFinderx* pChordFinder ;

// in the source file

pEMfield = new G4UniformElectricField (
G4ThreeVector (0.0,100000.0+«kilovolt/cm,0.0));

// Create an equation of motion for this field
pEquation = new G4EgMagElectricField (pEMfield) ;

G4int nvar = 8;

// Create the Runge-Kutta 'stepper' using the efficient 'DoPri5' method
auto pStepper = new G4DormandPrince745(pEquation, nvar);

// Get the global field manager

auto fieldManager= G4TransportationManager::GetTransportationManager () —>
GetFieldManager () ;

// Set this field to the global field manager

fieldManager->SetDetectorField(pEMfield);

G4double minStep = 0.010*mm ; // minimal step of 10 microns

// The driver will ensure that integration is control to give
// acceptable integration error
auto pIntgrationDriver =
new G4IntegrationDriver<G4DormandPrince745> (minStep,
pStepper,
nvar) ;

(continues on next page)

168 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.2

(continued from previous page)

pChordFinder = new G4ChordFinder (pIntgrationDriver) ;
fieldManager->SetChordFinder (pChordFinder);
}

An example with an electric field is examples/extended/field/field02, where the class FO2ElectricFieldSetup demon-
strates how to set these and other parameters, and how to choose different Integration Steppers. An example with a
uniform gravity field (G4UniformGravityField) is examples/extended/field/field06.

Note that using gravity since Geant4 10.6 it is necessary to enable it in the transportation process(es) used in the
simulation. (This is in order to enable optimisations which are possible only in its absence.)

The user can also create their own type of field, inheriting from G4VField, and an associated Equation of Motion
class (inheriting from G4EgRhs) to simulate other types of fields.

How to Adjust the Accuracy of hitting a volume

Straight-line chord segments are used to detect volume boundary crossing. The curved trajectory is broken up into
such segments using an accuracy parameter DeltaChord. Segments much be chosene so that their ‘sagitta’, the
maximum distance between the curve and chord, is smaller than DeltaChord. So effectively this is the maximum
distance by which a volume that should be intersected could be missed.

To change the accuracy of the approximation of the curved trajectory by linear segments, use the SetDeltaChord
method:

fieldMgr->GetChordFinder () ->SetDeltaChord(dcLength); // Units: length

Geant4 propagation will seek ensure that any volume within dcLenght from the curved trajectory will be intersected.

How to Adjust the Integration Accuracy

In order to obtain a particular accuracy in tracking particles through an electromagnetic field, it is necessary to adjust
the parameters of the field propagation module. In the following section, some of these additional parameters are
discussed.

When integration is used to calculate the trajectory, it is necessary to determine an acceptable level of numerical
imprecision in order to get performant simulation with acceptable errors. The parameters in GEANT4 tell the field
module what level of integration inaccuracy is acceptable.

In all quantities which are integrated (position, momentum, energy) there will be errors. Here, however, we focus
on the error in two key quantities: the position and the momentum. (The error in the energy will come from the
momentum integration).

Three parameters exist which are relevant to the integration accuracy. DeltaOneStep is a distance and is roughly
the position error which is acceptable in an integration step. Since many integration steps may be required for a
single physics step, DeltaOneStep should be a fraction of the average physics step size. The next two parameters
impose a further limit on the relative error of the position/momentum inaccuracy. EpsilonMin and EpsilonMax im-
pose a minimum and maximum on this relative error - and take precedence over DeltaOneStep. (Note: if you set
EpsilonMin=EpsilonMax=your-value, then all steps will be made to this relative precision.

Listing 4.13: How to set accuracy parameters for the ‘global’ field of the
setup.

G4FieldManager *globalFieldManager;

G4TransportationManager stransportMgr=
G4TransportationManager: :GetTransportationManager () ;

(continues on next page)

4.3. Electromagnetic Field 169

Book For Application Developers, Release 11.2

(continued from previous page)

globalFieldManager = transportMgr->GetFieldManager();
// Relative accuracy values:
G4double minEps= 1.0e-5; // Minimum & value for largest steps
G4double maxEps= 1.0e-4; // Maximum & value for smallest steps
globalFieldManager—>SetMinimumEpsilonStep (minEps) ;
globalFieldManager—>SetMaximumEpsilonStep (maxEps);
globalFieldManager->SetDeltaOneStep(0.5e-3 * mm); // 0.5 micrometer
G4cout << "EpsilonStep: set min= " << minEps << " max= " << maxEps << G4endl;
We note that the relevant parameters above limit the inaccuracy in each step. The final inaccuracy due to the full
trajectory will accumulate!

The exact point at which a track crosses a boundary is also calculated with finite accuracy. To limit this inaccuracy, a
parameter called Deltalntersection is used. This is a maximum for the inaccuracy of a single boundary crossing. Thus
the accuracy of the position of the track after a number of boundary crossings is directly proportional to the number of
boundaries.

Full control of integration method for a magnetic field

You can instead specify explicitly the full set of classes for propagating in a magnetic field. This provides full
control over the method of integration, and allows the choice of higher or lower order methods. It also all you
to select the use of methods which used to be the default choice in the past (e.g. G4ClassicalRungeRK4 or
G4DormandPrince745 without using interpolation.)

The classes required are the equation of motion:

auto pEquation = new G4Mag_UsualEgRhs (magField) ;
G4int nVar= pEquation->GetNumberOfVariables();

the method of integration (stepper):

auto pStepper = new G4DormandPrince745(pEquation);

the driver to control the accuracy of integration:

auto driver = G4InterpolationDriver<G4DormandPrince745> (minStep,pStepper, nvar);

or alternatively a driver without interpolation:

auto driver= G4IntegrationDriver<typeof (pStepper) > (minStep, pStepper, nvar);

and the chord finder:

170 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.2

auto chordFinder = new G4ChordFinder (driver);

Choosing a Stepper

Runge-Kutta integration is used to compute the motion of a charged track in a general field. There are many general
steppers from which to choose, of low and high order, and specialized steppers for pure magnetic fields. By default,
GEANT4 uses the established stepper of Dormand and Prince Runge-Kutta stepper, which is general purpose, efficient
and robust. It is a 5th order method which provides an error estimate directly , and requires fewer evaluations of the
derivative (and field) than the previous default, the classical 4th order method (for which an error estimate required
multiple sub-steps).

For somewhat smooth fields, which change smoothly over the length scales of typical physics steps, there is choice
between fifth order steppers (such as the default G4DormandPrince745):

G4int nvar = 8; // To integrate time & energy
// in addition to position, momentum
G4EgMagElectricField* pEquation= new G4EgMagElectricField(pEMfield);

auto doPriS5stepper = new G4DormandPrince745(pEquation, nvar);
// The recommended stepper, well suited for reasonably smooth fields
// and intermediate accuracy requirements (107-4 to 10°-7)

Alternative fifth order embedded steppers beside the recommended and default G4DormandPrince745 which re-
quires 7 field evaluations (stages) include the older G4CashKarpRKF45 which requires fewer field evaluations (6
‘stages’)

auto CK45stepper = new G4CashKarpRKF45(pEquation, nvar);
// Alternative 4/5th order stepper for reasonably smooth fields

The newest experimental classes G4BogackiShampine45 or G4TsitourasRK45 implement some of the most
efficient fifth order methods in the literature, but require an additional derivative (field evaluation) per step.:

auto BS45stepper = new G4BogackiShampine45(pEquation, nvar);
// Alternative 4/5th order stepper with 8 stages (evaluations).

If there are particularly challenging accuracy demands (better than le-7) it may be worth to investigate higher order
steppers. Alternatively, if the field is known to have specific properties, lower or higher order steppers can be used to
obtain the results of the necessary accuracy using fewer computing cycles.

Since Geant4 10.5 it is recommended to use the templated driver G4IntegrationDriver together with the stepper:

auto dp4bdriver =
new G4IntegrationDriver<G4DormandPrince745> (stepMin, doPri5Sstepper, nvar);

Steppers for rough fields

Sometimes the field changes greatly over short distances, and is estimated in ways that do not ensure that its derivatives
are smooth. These can present a challenge for fourth or fifth order Runge-Kutta methods.

What matters is the variation of the field in geometrical regions in which a large fraction of particles are tracked. In
particular, if the field is calculated from a field map and it varies significantly and in a non-smooth way over short
distances in important regions, it is suggested to investigate a lower order stepper.

Steppers of reduced order are also suitable when lower accuracy is required, such as errors of order 10-3. Such accuracy
could be suitable for the least important tracks, such as low energy electrons near the end of their trajectory (but still
inside material.)

4.3. Electromagnetic Field 171

Book For Application Developers, Release 11.2

Steppers of reduced order require fewer derivative evaluations per step. The choice of lower order steppers includes
the third order embedded stepper G4BogackiShampine?23, which provides a direct error estimate.:

auto stepper = new G4BogackiShampine23(pEquation, nvar);
// 3rd order embbedded stepper
// Suitable for lower accuracy needs (<~ 107-3) and/or 'rough' fields

Older type steppers, which do not provide a direct error estimate, offer an alternative for the roughest fields. (Note:
these methods estimate the error in a step by subdividing it into two smaller steps and using the difference between
the new estimate and the estimate for the whole step as the estimated error.)

The recommended ones are the fourth order G4ClassicalRK4, which was the default in releases of GEANT4 up to
10.3, and is very robust:

pStepper = new ClassicalRK4 (pEquation, nvar);
// 4th order, the old default - a robust alternative

the third order stepper G4SimpleHeum, and the second order steppers G4ImplicitEuler and
G4SimpleRunge.:

pStepper = new G4SimpleHeum(pEquation, nvar);
// 3rd order robust alternative for low accuracy and/or rought fields

pStepper = new G4SimpleRunge (pEquation, nvar);
// 2nd order, for very rough (non-smooth) fields

A first order stepper is not recommended, but may be used only for the roughest fields, as a cross check for other
higher performance methods.

For somewhat smooth fields (intermediate), the choice between a fifth order stepper (such as the default
G4DormandPrince745):

pStepper = new G4DormandPrince745(pEquation, nvar);
// The recommended stepper, well suited for reasonably smooth fields

embedded third, the older type second or third order steppers, or the established fourth order G4ClassicalRK4 or
should be made by trial and error.

Trying a few different types of steppers for a particular field or application is suggested if maximum performance is a
goal.

The choice of stepper depends on the type of field: magnetic or general. A general field can be an electric or electro-
magnetic field, it can be a magnetic field or a user-defined field (which requires a user-defined equation of motion.)

For a general field all the above steppers are potential alternatives to the recommended / default
G4DormandPrince745.

But specialized steppers for pure magnetic fields are also available. The G4NystromRK4 stepper is a fourth order
method which estimates the integration error in a step directly from the variation of the field at the initial point, the
midpoint and near the endpoint of the step. Thus it requires no additional evaluations (stages.):

G4Mag_UsualEgRhs*
pEquation = new G4Mag_UsualEgRhs (fMagneticField);
pStepper = new G4NystromRK4 (pEquation);

Others take into account the fact that a local trajectory in a slowly varying field will not vary significantly from a helix.
Combining this in with a variation the Runge-Kutta method can provide higher accuracy at lower computational cost
when large steps are possible.

172 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.2

pStepper = new G4HelixImplicitEuler (pEquation);
// Note that for magnetic field that do not vary with time,
// the default number of variables suffices.

// or ..
pStepper new G4HelixExplicitEuler (pEquation);
pStepper = new G4HelixSimpleRunge (pEquation);

A new stepper for propagation in magnetic field is available in release 9.3. Choosing the G4NystromRK4 stepper
provides accuracy near that of G4ClassicalRK4 (4th order) with a significantly reduced cost in field evaluation. Using
a novel analytical expression for estimating the error of a proposed step and the Nystrom reuse of the mid-point field
value, it requires only 2 additional field evaluations per attempted step, in place of 10 field evaluations of ClassicalRK4
(which uses the general midpoint method for estimating the step error.)

G4Mag_UsualEgRhs*
pMagFldEquation = new G4Mag_UsualEgRhs (fMagneticField) ;
pStepper = new G4NystromRK4 (pMagFldEquation) ;

It is proposed as an alternative stepper in the case of a pure magnetic field. It is not applicable for the simulation of
electric or full electromagnetic or other types of field. For a pure magnetic field, results should be fully compatible
with the results of ClassicalRK4 in nearly all cases. (The only potential exceptions are large steps for tracks with small
momenta - which cannot be integrated well by any RK method except the Helical extended methods.)

You can choose an alternative stepper either when the field manager is constructed or later. At the construction of the
ChordFinder it is an optional argument:

G4ChordFinder (G4MagneticFieldx itsMagField,
G4double stepMinimum = 1.0e-2 * mm,
G4MagIntegratorStepper* pItsStepper = 0);

To change the stepper at a later time use

pChordFinder->GetIntegrationDriver ()
—>RenewStepperAndAdjust (newStepper);

Increasing efficiency with interpolation and FSAL stepper

Often a significant fraction of CPU time is spent in integrating the motion of charged particles in field. This is
particularly the case when the cost of evaluating the field at a location (and possibly time) is significant. To improve
on this developments over the past years have introduced methods that require fewer field evaluations for the same
overall accuracy.

New in GEANT4 10.6 is the ability to full use of the newest RK methods, which have an interpolation capability.
Such Runge-Kutta methods provide an interpolation polynomial which can be evaluated to estimate the values of all
integrated variables at an arbitrary intermediate length in the integration interval.

Both these interpolation capabilities are harnessed by the new type of integration driver
G4InterpolationDriver. Currently this combination is available only with the G4DormandPrince745
stepper.

using InterpolationDriverType = G4InterpolationDriver<G4DormandPrince745>;
auto dopribstepper = G4DormandPrince745(pEquation, nvar);

auto interpDriver= new InterpolationDriver (stepMinimum, dopriS5Sstepper,
dopriSstepper->GetNumberOfVariables ());

auto pChordFinder = new G4ChordFinder (interpDriver);

fieldManager->SetChordFinder (pChordFinder);

4.3. Electromagnetic Field 173

Book For Application Developers, Release 11.2

GEANT4 10.4 introduced the capability to use RK methods with the ‘First Same as Last” (FSAL) property. Embedded
steppers with this property evaluate the field and the derivative in the equation of motion at the endpoint of each step,
as an intrinsic part of the method. As a result, after a successful integration step, (one in which the estimated error was
acceptable) the derivative at the start of the next step is already available. So one evaluation of the field is saved for
every successive integration interval after the first one in each tracking/physical step.

Since GEANT4 10.6 an FSAL capable stepper can be selected for magnetic fields simply by requesting it when con-
structing a G4ChordFinder:

G4MagneticField » pMagField;

G4double stepMinimum = 0.03 * millimeter;

G4int useFSALstp= 1;

auto pChordFinder= new G4ChordFinder (pMagField, stepMinimum, nullptr, useFSALstp);
fieldManager->SetChordFinder (pChordFinder);

Handling very long steps by switching to helix based stepper
Very long steps of lower energy charged particles can cause excessive simulation time when regular Runge-Kutta
methods are used — as these can integrate only a limited angle of a helical track in a single integration step.

This can be a problem for setups in which there is a significant fraction of tracks of low-energy charged particles in a
volume with vaccum or a thin gas. In addition integration slowdown or abandoned tracks can occur when muons are
tracked in a large air volume with even a fringe magnetic field.

For these setups an alternative type of driver specialised for pure magnetic fields was created. It combines an Interpo-
lation stepper / driver for ‘shorter’ steps, and a helix-based method for ‘long’ steps.

It samples the magnetic field at the start of a step, and selects the ‘long’ step integration method if the helix angle
exceed the threshold, currently fixed at 2 p1i.

This type of driver G4BFieldIntegrationDriver was the default driver created by GAChordFinder in
Geant4 10.6 for pure magnetic fields.

G4MagneticField * pMagField;

G4double stepMinimum = 0.03 % millimeter;

G4bool useFSALstp= false;

auto pChordFinder= new G4ChordFinder (pMagField, stepMinimum, nullptr, useFSALstp);
fieldManager->SetChordFinder (pChordFinder);

In Geant4 10.7 the default has changed to use an interpolation driver with templated steppers (see next subsection).
As aresult, to select it G4BFieldIntegrationDriver in Geant4 10.7 a user must use:
G4int driverId = 3; // B-Field driver = 3

auto pChordFinder= new G4ChordFinder (pMagField, stepMinimum, nullptr, driverId);
fieldManager—>SetChordFinder (pChordFinder) ;

It can also be created directly

using SmallStepDriver = G4InterpolationDriver<G4DormandPrince745>;
using LargeStepDriver = G4IntegrationDriver<G4HelixHeum>;

auto regularStepper = new G4DormandPrince745 (pEquation);
int numVar = regularStepper->GetNumberOfVariables();

auto longStepper = std::unique_ptr<G4HelixHeum> (new G4HelixHeum (pEquation)) ;

G4VIntegrationDriver driver =
new G4BFieldIntegrationDriver (

(continues on next page)

174 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.2

(continued from previous page)

std: :unique_ptr<SmallStepDriver> (new SmallStepDriver (stepMinimum,

regularStepper, numVar))
std: :unique_ptr<LargeStepDriver> (new LargeStepDriver (stepMinimum,
longStepper.get (), numVar)));

Speeding up using steppers templated on equation
To reduce the CPU time of field propagation in Geant4 10.7 an equation class for magnetic fields and some templated
stepper classes were created.

The first optimisation is that the templated equation knows the type of the field class:

using Equation_t = G4TMagFieldEquation<Field_class_type>;
Equation_t* equation= new Equation_t (field_object) ;

Given the field class’ type, the equation will invoke the field without a virtual call. The relevant include files are:

#include "G4TMagFieldEquation.hh"
#include "G4TDormandPrince45.hh"

// For field definition
#include "G4SystemOfUnits.hh
#include "G4QuadrupoleMagField.hh"

"

To create the templated equation it is simpler to declare each class’ type first:

using Field t = G4QuadrupoleMagField;
using Equation_t = G4TMagFieldEquation<Field_t>;

Field_t=+ quadMagField = new G4QuadrupoleMagField(l.xtesla/ (l.+meter));

Equation_t* equation= new Equation_t (quadMagField) ;

but it can also be created directly such as

auto equation= new G4TMagFieldEquation<G4QuadrupoleMagField> (quadMagField);

The second optimisation makes the type of the equation known to the templated stepper. This avoid a virtual call from
the stepper to the equation.

using TemplatedStepper_t = G4TDormandPrince45<Equation_t>;

TemplatedStepper_t+* dopri5_stepper=
new G4TDormandPrince45<Equation_t>(equation);

Here G4TDormandPrince45 is the templated version of the recommended G4DormandPrince745 stepper that
implements the well known 4th/5th order embedded Runge-Kutta method of Dormand and Prince.

Alternative methods which have a templated stepper from Geant4 10.7 include the embedded method of Cash and Karp
(G4TCashKarpRKF45), and a number of methods which use bisection for error estimatios: the original method of
Runge and Kutta (G4TClassicalRK4) which used to be the default before Geant4 release 10.4, and two lower
order methods, the 2nd order GATSimpleRunge and the third order G4TSimpleHeum.

As a further optimisation, it can also be used with a templated driver
double stepMin= 0.1 * CLHEP::millimeter;

auto dp45driver =
new G4IntegrationDriver<TemplatedStepper_t> (stepMin, dopri5_stepper) ;

(continues on next page)

4.3. Electromagnetic Field 175

Book For Application Developers, Release 11.2

(continued from previous page)

auto interpolatingDrv =
new G4InterpolationDriver<TemplatedStepper_t> (stepMin, dopri5_stepper);

which is simplified greatly by using a name for the type of the templated stepper.

Note that the templated stepper class also can be used without using an equation templated on the type of field. This
could be preferable in the case of complex field classes in which a large amount of code calculates the value of the
field.

A templated stepper also using an alternative type of field. We demonstrate using a full electromagnetic field (which
in practice will be a derived class for a user’s application) and its equation G4EqMagElectricField:

#include "G4EqMagElectricField.hh"

using Equation_t = G4EgMagElectricField;
constexpr nvar= 8; // Equation integrates over x, p, t

using TemplatedDoPri5_t = G4TDormandPrince45<Equation_t,nvar>;
MyElectroMagneticField xemField= ...; // deriving from

auto emEquation= new G4EgMagElectricField(emField) ;

TemplatedDoPri5_t* pStepperTDP45 = new TemplatedDoPri5_t (emEquation, nvar);

auto ck45Stepper = new G4TCashKarpRKF45<Equation_t,nvar>(emEquation, nvar);

Using different FSAL steppers — without interpolation

A different method which only has the FSAL property can be used for a magnetic field by adding a flag to the
constructor of G4ChordFinder:

G4MagneticField * pMagField;

G4double stepMinimum = 0.03 * millimeter;

G4bool useFSALstp= true;

auto pChordF= new G4ChordFinder (pMagField, stepMinimum, nullptr, useFSALstp);

This uses the constructor:

G4ChordFinder: :G4ChordFinder (G4MagneticFieldx theMagField,
G4double stepMinimum,
G4MagIntegratorStepper* pltsStepper,
G4bool useFSALstepper);

Steppers of this type can also be created directly:

Listing 4.14: How to create an ‘FSAL’-type stepper

#include "G4RK547FEql.hh"
#include "G4SystemsOfUnits.hh"

using FsalStepperType = G4RK547FEql;
G4double stepMinimum= 0.1 % millimeter; // Minimum size of step (for driver)
int nvar= 6; // or 8 to include time, Energy

auto fsalStepper= new FsalStepperType (pEquation, nvar);

They must then be coupled to a new type of driver GAFSALIntegrationDriver in order to be used in integration.
(This is a derived class of the new base class for drivers G4VIntegrationDriver.)

176 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.2

auto intgrDriver = new
G4FSALIntegrationDriver<NewFsalStepperType> (stepMinimum,
fsalStepper,
fsalStepper->GetNumberOfVariables ());

This also demonstrates one of a new family of (FSAL) steppers G4RK547FEql (others are GARK547FEg2 and
G4RK547FEg3) which were created to provide an improved equilibrium in integration. When a integration step fails
due to an error above threshold, for some setups there can be oscillations in step size that cause multiple bounces be-
tween a successful and a failed step. The coefficients of these steppers were optimised to reduce these oscillations, and
thus increase the success rate of steps. Initial tests demonstrated a small potential (1.0-2.5%) performance advantage.

Further reducing the number of field calls to speed-up simulation
An additional method to reduce the number of field evaluations is to avoid recalculating the field value inside a sphere
of a given radius distConst from the previously evaluated location.

This can be done by utilising the class G4CachedMagneticField class, for the case of pure magnetic fields which do
not vary with time.

G4MagneticField » pMagField; // Your field - Defined elsewhere

G4double distConst = 2.5 * millimeter;
G4MagneticField * pCachedMagField= new G4CachedMagneticField(pMagField, distConst);

This is not recommended if there are locations in the setup in which large variations occur in the field vector. In those
cases it is best to rely on advanced integration method. In particular the Interpolation capabilities introduced in Geant4
10.6 greatly reduced the number of field calls already.

Choosing different accuracies for the same volume

It is possible to create a G4FieldManager which has different properties for particles of different momenta (or
depending on other parameters of a track). This is useful, for example, in obtaining high accuracy for ‘important’
tracks (e.g. muons) and accept less accuracy in tracking other tracks (e.g. electrons). To use this, you must create your
own field manager class, derived from G4FieldManager which implements the method

void ConfigureForTrack(const G4Track *) override final;

and uses it to configure itself using the parameters of the current track.

For example to choose different values for the relative accuracy of integration for particles with energy below or above
2.5 MeV, this could be achieve as follows:

class MyFieldManager : G4FieldManager
{

MyFieldManager () = default;
~MyFieldManager () = default;
void ConfigureForTrack(const G4Track *) override final;

bi

void MyFieldManager::ConfigureForTrack (const G4Track =*pTrack)

{
const G4double lowEepsMin= 1.0e-5, lowEepsMax= 1.0e-4;
const G4double hiEepsMin= 2.5e-6, hiEepsMax= 1.0e-5;

if (pTrack->GetKineticEnergy () < 2.5 * MeV) {
SetMinimumEpsilonStep (lowEepsMin);
SetMaximumEpsilonStep (lowEepsMax); // Max relative accuracy

(continues on next page)

4.3. Electromagnetic Field 177

Book For Application Developers, Release 11.2

(continued from previous page)

} else {
SetMinimumEpsilonStep(hiEepsMin);
SetMaximumEpsilonStep(hiEepsMax); // Max relative accuracy

Parameters that must scale with problem size

The default settings of this module are for problems with the physical size of a typical high energy physics setup,
that is, distances smaller than about one kilometer. A few parameters are necessary to carry this information to the
magnetic field module, and must typically be rescaled for problems of vastly different sizes in order to get reasonable
performance and robustness. Two of these parameters are the maximum acceptable step and the minimum step size.

The maximum acceptable step should be set to a distance larger than the biggest reasonable step. If the apparatus in
a setup has a diameter of two meters, a likely maximum acceptable steplength would be 10 meters. A particle could
then take large spiral steps, but would not attempt to take, for example, a 1000-meter-long step in the case of a very
low-density material. Similarly, for problems of a planetary scale, such as the earth with its radius of roughly 6400
km, a maximum acceptable steplength of a few times this value would be reasonable.

An upper limit for the size of a step is a parameter of G4PropagatorInField, and can be set by calling its
SetLargestAcceptableStep method.

The minimum step size is used during integration to limit the amount of work in difficult cases. It is possible that
strong fields or integration problems can force the integrator to try very small steps; this parameter stops them from
becoming unnecessarily small.

Trial steps smaller than this parameter will be treated with less accuracy, and may even be ignored, depending on the
situation.

The minimum step size is a parameter of the MagInt_Driver, but can be set in the constructor of G4ChordFinder, as in
the source listing above.

Known Issues

For most integration method it is computationally expensive to change the miss distance to very small values, as it
causes tracks to be limited to curved sections whose ‘sagitta’ is smaller than this value. (The sagitta is the distance of
the mid-point from the chord between endpoints see e.g. <https://en.wikipedia.org/wiki/Sagitta_%?28geometry%29>
.) For tracks with small curvature (typically low momentum particles in strong fields) this can cause a large number of
steps

 even in areas where there are no volumes to intersect (where the safety could be utilized to partially alleviate
this limitation)

* especially in a region near a volume boundary (in which case it is necessary in order to discover whether a track
might intersect a volume for only a short distance.)

Requiring such precision for the intersection of all potential volumes is clearly expensive, and in some cases it is not
possible to reduce expense greatly.

By contrast, changing the intersection parameter delta intersection is less computationally expensive. It causes further
calculation for only a fraction of the steps, those that intersect a volume boundary.

178 Chapter 4. Detector Definition and Response

https://en.wikipedia.org/wiki/Sagitta_%28geometry%29

Book For Application Developers, Release 11.2

4.3.3 Spin Tracking

The effects of a particle’s motion on the precession of its spin angular momentum in slowly varying external fields are
simulated. The relativistic equation of motion for spin is known as the BMT equation. The equation demonstrates a
remarkable property; in a purely magnetic field, in vacuum, and neglecting small anomalous magnetic moments, the
particle’s spin precesses in such a manner that the longitudinal polarization remains a constant, whatever the motion
of the particle. But when the particle interacts with electric fields of the medium and multiple scatters, the spin, which
is related to the particle’s magnetic moment, does not participate, and the need thus arises to propagate it independent
of the momentum vector. In the case of a polarized muon beam, for example, it is important to predict the muon’s spin
direction at decay-time in order to simulate the decay electron (Michel) distribution correctly.

In order to track the spin of a particle in a magnetic field, you need to code the following:
1. in your DetectorConstruction:
#include "G4Mag_SpinEqRhs.hh"
G4Mag_EgRhs* pEquation = new G4Mag_SpinEgRhs (magField);
G4MagIntegratorStepper* pStepper = new G4ClassicalRK4 (pEquation, 12);
// notice the 12
2. in your PrimaryGenerator:
particleGun->SetParticlePolarization (G4ThreeVector p)

for example:

particleGun—>
SetParticlePolarization (- (particleGun->GetParticleMomentumDirection()));

// or

particleGun—>

SetParticlePolarization (particleGun->GetParticleMomentumDirection ()
.cross (G4ThreeVector (0.,1.,0.)));

where you set the initial spin direction.

While the G4Mag_SpinEqRhs class constructor:

G4Mag_SpinEgRhs: :G4Mag_SpinEgRhs (G4MagneticFieldx MagField)
: G4Mag_EgRhs (MagField)

{
anomaly = 1.165923e-3;

}

sets the muon anomaly by default, the class also comes with the public method:

inline void SetAnomaly (G4double a) { anomaly = a; }

with which you can set the magnetic anomaly to any value you require.

The code has been rewritten (in Release 9.5) such that field tracking of the spin can now be done for charged and
neutral particles with a magnetic moment, for example spin tracking of ultra cold neutrons. This requires the user
to set EnableUseMagneticMoment, a method of the G4Transportation process. The force resulting from
the term, MUSDOTNABLAB, is not yet implemented in GEANT4 (for example, simulated trajectory of a neutral
hydrogen atom trapped by its magnetic moment in a gradient B-field.)

4.3. Electromagnetic Field 179

Book For Application Developers, Release 11.2

4.3.4 Alternative Integration Methods

There are three alternative integration methods available in Geant4. One is general, can be applied for any equation of
motion.

The final, Symplectic Integration, aims to preserve phase space volume and energy exactly — and its implementations
achieve this to the order of the method used (currently 2nd order.)

4.3.5 Quantum State Simulation

The Quantum State Simulation method is a general integration method which uses polynomial approximation of the
solutions of ODEs. In Geant4 its implementation is currently specialised for pure magnetic fields only. It is of potential
interest to applications with a large number of volume boundary crossings per track.

Listing 4.15: The simplest way to enable the Quantum State Simulation
(QSS) integration method

#include "G4ChordFinder.hh"
#include "G40Q0SSDriverCreator.hh"

{
G4MagneticField* magField = ...
G4double stepMinimum= 0.01 % CLHEP: :mm

auto chordFnd = new G4ChordFinder (magField, stepMinimum, nullptr, kQss2DriverType);

Listing 4.16: How to create a driver for the Quantum State Simulation
(QSS) integration method

#include "G4Q0SSDriverCreator.hh"
#include "G4ChordFinder.hh"

{
auto gssStepper2 = G4QSSDriverCreator::CreateQss2Stepper (pEquation) ;
fIntgrDriver = G4QSSDriverCreator::CreateDriver (gssStepper2) ;

G4cout << "-- Created QSS driver for B-field integration" << G4endl;

auto chordFinder= new G4ChordFinder (driver);

4.3.6 Bulirsch-Stoer

The Bulirsch-Stoer method is an alternative to Runge-Kutta methods, and uses a midpoint method to obtain an estimate
of the trajectory solution. It can be used with any equation of motion. One key use is to cross check results obtained
with Runge-Kutta methods.

The current method is fourth order. (tbc)

Listing 4.17: How to create a driver for the Bulirsch Stoer midpoint
method

#include "G4BulirschStoer.hh"
#include "G4BulirschStoerDriver.hh"

(continues on next page)

180 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.2

(continued from previous page)

void DetectorConstruction::ConstructSDandField ()

{
G4MagneticField +smagField = new G4UniformMagField(G4ThreeVector(0, 0, 3.8xtesla);
G4EquationOfMotion pEquation= new G4Mag_UsualEgRhs (pMyMagField) ;

G4BulirschStoer * pBSstepper = new G4BulirschStoer (pEquation, nVar, epsilon);

G4VIntegrationDriverx driver = new G4IntegrationDriver<G4BulirschStoer>(stepMinimum,
—pBSstepper, nVar);

G4cout << "Using Bulirsch Stoer method (and driver) - alternative to RK" << G4endl;

G4ChordFinder« chordFinder= new G4ChordFinder (driver);

// Use this for the global field

G4FieldMananger* globalFieldMgr= G4TransportationManager::GetTransportationManager () >
—GetFieldManager () ;

globalFieldMgr->SetChordFinder (chordFinder);

4.3.7 Symplectic Integration

Some accelerator applications require long-term stability in the integration of energy and/or the preservation of phase-
space volume. These are not well served by (medium order) Runge-Kutta method, and even high-order Runge-Kutta
methods typically are not able to provide the required accuracy.

To address such applications Geant4 release 11.1 introduces a new integration method, the symplectic 2nd order
Boris integration method. This method is implemented by the integration driver G4BorisDriver.

Listing 4.18: How to create a symplectic 2nd-order Boris integration
driver

#include "G4BorisScheme.hh"
#include "G4BorisDriver.hh"

void

CreateBorisDriver (G4EquationOfMotionx equation,
G4FieldManager* fieldManager,
G4double minimumStep

)

// 1. Create Scheme and Driver
auto borisScheme = new G4BorisScheme (equation) ;
auto driver = new G4BorisDriver (minimumStep, borisScheme) ;

// 2. Create ChordFinder
auto chordFinder = new G4ChordFinder (driver);

// 3. Updating Field Manager (with ChordFinder, field)
fieldManager->SetChordFinder (chordFinder);

Recall that in a pure magnetic field the transportation process, e.g. G4Transportation, will conserve energy by
ignoring integration errors. The field manager stores a property ‘FieldChangesEnergy’ which recalls this, and whose
default behaviour must be overriden. If investigating energy conservation for a pure magnetic field, you must switch
this off by calling the method SetFieldChangesEnergy (G4bool) ; with the argnument t rue for the relevant
field manager.

This is demonstrated in the £ie1d01 extended example for the global field manager using:

4.3. Electromagnetic Field 181

Book For Application Developers, Release 11.2

GetGlobalFieldManager () —>SetFieldChangesEnergy (true);

This enables you to test the level of energy conservation in the integration.

Note in a combined electro-magnetic field this property is automatically false, and changes due to integration
already affect the particle energy.

4.4 Hits

4.4.1 Hit

A hit is a snapshot of the physical interaction of a track in the sensitive region of a detector. In it you can store
information associated with a G4 Step object. This information can be

* the position and time of the step,

¢ the momentum and energy of the track,
* the energy deposition of the step,

* geometrical information,

or any combination of the above.

G4VHit

GAVHit is an abstract base class which represents a hit. You must inherit this base class and derive your own concrete
hit class(es). The member data of your concrete hit class can be, and should be, your choice.

As with G4THitsCollection, authors of subclasses must declare templated G4A1locat ors for their class. They
must also implement operator new() and operator delete() which use these allocators.

GAVHit has two virtual methods, Draw () and Print (). To draw or print out your concrete hits, these methods
should be implemented. How to define the drawing method is described in Polylines, Markers and Text.

G4THitsCollection

GAVHit is an abstract class from which you derive your own concrete classes. During the processing of a given
event, represented by a G4Event object, many objects of the hit class will be produced, collected and associ-
ated with the event. Therefore, for each concrete hit class you must also prepare a concrete class derived from
G4VHitsCollection, an abstract class which represents a vector collection of user defined hits.

GATHitsCollection is a template class derived from G4VHitsCollection, and the concrete hit collection
class of a particular G4VHit concrete class can be instantiated from this template class. Each object of a hit collection
must have a unique name for each event.

G4Event has a G4HCofThisEvent class object, that is a container class of collections of hits. Hit collections are
stored by their pointers, whose type is that of the base class.

182 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.2

An example of a concrete hit class

Listing 4.19 shows an example of a concrete hit class.

4.4. Hits 183

Book For Application Developers, Release 11.2

Listing 4.19: An example of a concrete hit class.

continues on next page

Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.2

(continued from previous page)

inline voidx TrackerHit::operator new(size_t)
{
if (!TrackerHitAllocator)
TrackerHitAllocator = new G4Allocator<TrackerHit>;
return (void) TrackerHitAllocator->MallocSingle();
}

//....00000000000. 00000000000. 00000000000. 00000000000.

inline void TrackerHit::operator delete (void xhit)

{
TrackerHitAllocator->FreeSingle ((TrackerHit«+) hit);

}

//....00000000000. 00000000000. 00000000000. 00000000000.
}

#endif

//============ source file

#include "TrackerHit.hh"

namespace B2

{
G4ThreadLocal G4Allocator<TrackerHit>+* TrackerHit::TrackerHitAllocator = 0;

snipped ...

G4Allocator is a class for fast allocation of objects to the heap through the paging mechanism. For details of
G4Allocator, refer to General management classes. Use of G4Allocator is not mandatory, but it is recom-
mended, especially for users who are not familiar with the C++ memory allocation mechanism or alternative tools of
memory allocation. On the other hand, note that G4A1llocator is to be used only for the concrete class that is not
used as a base class of any other classes. For example, do not use the G4Trajectory class as a base class for a
customized trajectory class, since G4Trajectory uses G4Allocator.

G4THitsMap

G4ATHitsMap is an alternative to G4THitsCollection. G4THitsMap does not demand G4VHit, but in-
stead any variable which can be mapped with an integer key. Typically the key is a copy number of the volume,
and the mapped value could for example be a double, such as the energy deposition in a volume. G4THitsMap
is convenient for applications which do not need to output event-by-event data but instead just accumulate them.
All the G4VPrimitiveScorer classes discussed in G4MultiFunctionalDetector and G4VPrimitiveScorer use
G4THitsMap.

G4THitsMap is derived from the G4VHitsCollection abstract base class and all objects of this class are also
stored in G4HCofThisEvent at the end of an event. How to access a G4THit sMap object is discussed in the
following section (G4MultiFunctionalDetector and G4VPrimitiveScorer).

4.4. Hits 185

Book For Application Developers, Release 11.2

4.4.2 Sensitive detector
G4VSensitiveDetector

G4vSensitiveDetector is an abstract base class which represents a detector. The principal mandate of
a sensitive detector is the construction of hit objects using information from steps along a particle track. The
ProcessHits () method of G4VSensitiveDetector performs this task using G4Step objects as input. The
second argument of ProcessHits () method, i.e. G4TouchableHistory, is obsolete and not used. If user
needs to define an artificial second geometry, use Parallel Geometries.

ProcessHits () method has a return type of G4bool. This return value is not used by Geant4 kernel. This
return value may be used by the user’s use-case where one sensitive detector dispatches ProcessHits () to some
subsequent (i.e. child) sensitive detectors, and to avoid double-counting, one of these child detector may return true or
false.

Your concrete detector class should be instantiated with the unique name of your detector. The name can be associated
with one or more global names with *“/”” as a delimiter for categorizing your detectors. For example

myEMcal = new MyEMcal ("/myDet/myCal/myEMcal") ;

where myEMcal is the name of your detector. The detector must be constructed in
G4AVUserDetectorConstruction: :ConstructSDandField () method. It must be assigned to one
or more G4LogicalVolume objects to set the sensitivity of these volumes. Such assignment must be made in the
same G4VUserDetectorConstruction: :ConstructSDandField () method. The pointer should also be
registered to G4 SDManager, as described in G4SDManager.

G4VSensitiveDetector has three major virtual methods.

ProcessHits () This method is invoked by G4SteppingManager when a step is composed in the
G4LogicalVolume which has the pointer to this sensitive detector. The first argument of this method is
a G4Step object of the current step. The second argument is a G4TouchableHistory object for the
Readout geometry described in the next section. The second argument is NULL if Readout geometry
is not assigned to this sensitive detector. In this method, one or more G4VHit objects should be constructed if
the current step is meaningful for your detector.

Initialize () This method is invoked at the beginning of each event. The argument of this method is an object
of the G4HCofThisEvent class. Hit collections, where hits produced in this particular event are stored,
can be associated with the GAHCofThisEvent object in this method. The hit collections associated with
the GAHCofThisEvent object during this method can be used for during the event processing
digitization.

EndOfEvent () This method is invoked at the end of each event. The argument of this method is the same object as
the previous method. Hit collections occasionally created in your sensitive detector can be associated with the
G4HCofThisEvent object.

186 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.2

4.4.3 G4SDManager

G4SDManager is the singleton manager class for sensitive detectors.

Activation/inactivation of sensitive detectors

The user interface commands activate and inactivate are available to control your sensitive detectors. For
example:

/hits/activate detector_name
/hits/inactivate detector_name

where detector_name can be the detector name or the category name.
For example, if your EM calorimeter is named

/myDet /myCal/myEMcal
/hits/inactivate myCal

will inactivate all detectors belonging to the myCal category.

Access to the hit collections

Hit collections are accessed for various cases.

* Digitization

» Event filtering in G4VUserStackingAction
* “End of event” simple analysis

¢ Drawing / printing hits

The following is an example of how to access the hit collection of a particular concrete type:

G4SDManager* fSDM = G4SDManager: :GetSDMpointer () ;

G4RunManager* fRM = G4RunManager: :GetRunManager () ;

G4int collectionID = fSDM->GetCollectionID ("collection_name");

const G4Event* currentEvent = fRM->GetCurrentEvent ();

G4HCofThisEvent+ HCofEvent = currentEvent->GetHCofThisEvent () ;

MyHitsCollection* myCollection = (MyHitsCollectionx) (HCOfEvent->GetHC (collectionID)) ;

4.4.4 G4AMultiFunctionalDetector and G4VPrimitiveScorer

G4MultiFunctionalDetector is a concrete class derived from G4VSensitiveDetector. Instead
of implementing a user-specific detector class, G4MultiFunctionalDetector allows the user to register
G4VPrimitiveScorer classes to build up the sensitivity, G4MultiFunctionalDetector should be
instantiated in the users detector construction with its unique name and should be assigned to one or more
G4LogicalVolumes.

G4VPrimitiveScorer is an abstract base class representing a class to be registered to
G4MultiFunctionalDetector that creates a G4THitsMap object of one physics quantity for an event.
GEANT4 provides many concrete primitive scorer classes listed in Concrete classes of G4VPrimitiveScorer, and the
user can also implement his/her own primitive scorers. Each primitive scorer object must be instantiated with a name
that must be unique among primitive scorers registered in a G4MultiFunctionalDetector. Please note that a
primitive scorer object must not be shared by more than one G4MultiFunctionalDetector object.

As mentioned in Hif, each G4VPrimitiveScorer generates one G4THitsMap object per event. The name of
the map object is the same as the name of the primitive scorer. Each of the concrete primitive scorers listed in

4.4. Hits 187

Book For Application Developers, Release 11.2

Concrete classes of G4VPrimitiveScorer generates a G4THitsMap<G4double> that maps a G4double value
to its key integer number. By default, the key is taken as the copy number of the G4LogicalVolume to which
G4MultiFunctionalDetector is assigned. In case the logical volume is uniquely placed in its mother volume
and the mother is replicated, the copy number of its mother volume can be taken by setting the second argument of
the G4VPrimitiveScorer constructor, “depth” to 1, i.e. one level up. Furthermore, in case the key must consider
more than one copy number of a different geometry hierarchy, the user can derive his/her own primitive scorer from
the provided concrete class and implement the Get Index (G4Step~) virtual method to return the unique key.

Listing 4.20 shows an example of primitive sensitivity class definitions.

Listing 4.20: An example of defining primitive sensitivity classes taken
from REO6DetectorConstruction.

void RE(O6DetectorConstruction: :SetupDetectors ()

{
G4String filterName, particleName;

G4SDParticleFilterx gammaFilter =

new G4SDParticleFilter (filterName="gammaFilter",particleName="gamma") ;
G4SDParticleFilter* electronFilter =

new G4SDParticleFilter (filterName="electronFilter",particleName="e-");
G4SDParticleFilter+ positronFilter =

new G4SDParticleFilter (filterName="positronFilter",particleName="e+");
G4SDParticleFilter+ epFilter = new G4SDParticleFilter (filterName="epFilter");
epFilter->add(particleName="e-") ;
epFilter->add(particleName="e+") ;

for (G4int 1i=0;1<3;i++)
{

for (G4int j=0; j<2; j++)
{

// Loop counter j = 0 : absorber
// =1 : gap
G4String detName = fCalName[i];
if (3==0)

{ detName += "_abs"; }

else

{ detName += "_gap"; }

G4MultiFunctionalDetector* det = new G4MultiFunctionalDetector (detName) ;

// The second argument in each primitive means the "level" of geometrical hierarchy,
// the copy number of that level is used as the key of the G4THitsMap.
// For absorber (j = 0), the copy number of its own physical volume is used.
// For gap (j = 1), the copy number of its mother physical volume is used, since there
// 1is only one physical volume of gap is placed with respect to its mother.
G4VPrimitiveScorer+ primitive;
primitive = new G4PSEnergyDeposit ("eDep", j);
det->RegisterPrimitive (primitive) ;
primitive = new G4PSNofSecondary ("nGamma", j);
primitive->SetFilter (gammaFilter);
det->RegisterPrimitive (primitive);
primitive = new G4PSNofSecondary ("nElectron", j);
primitive->SetFilter (electronFilter);
det->RegisterPrimitive (primitive);
primitive = new G4PSNofSecondary ("nPositron", j);
primitive->SetFilter (positronFilter);
det->RegisterPrimitive (primitive) ;
primitive = new G4PSMinKinEAtGeneration ("minEkinGamma", j);
primitive->SetFilter (gammaFilter);
det->RegisterPrimitive (primitive);
primitive = new G4PSMinKinEAtGeneration ("minEkinElectron", j);
primitive->SetFilter (electronFilter);
det->RegisterPrimitive (primitive);
primitive = new G4PSMinKinEAtGeneration ("minEkinPositron", j);
(continues on next page)

188 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.2

(continued from previous page)

primitive->SetFilter (positronFilter);
det->RegisterPrimitive (primitive);

primitive = new G4PSTrackLength ("trackLength", j);
primitive->SetFilter (epFilter);
det->RegisterPrimitive (primitive) ;

primitive = new G4PSNofStep ("nStep", J);
primitive->SetFilter (epFilter) ;
det->RegisterPrimitive (primitive);

G4SDManager: :GetSDMpointer () ~>AddNewDetector (det) ;

if (j==0)
{ layerLogical[i]->SetSensitiveDetector (det); }
else

{ gapLogical[i]->SetSensitiveDetector (det); }
}
}

Each G4THitsMap object can be accessed from G4HCofThisEvent with a unique collection ID num-
ber. This ID number can be obtained from G4SDManager::GetCollectionID () with a name of
G4MultiFunctionalDetector and G4VPrimitiveScorer connected with a slush (“/’). G4THitsMap
has a [] operator taking the key value as an argument and returning the pointer of the value. Please note that the []
operator returns the pointer of the value. If you get zero from the [] operator, it does not mean the value is zero, but
that the provided key does not exist. The value itself is accessible with an asterisk ("*”). It is advised to check the va-
lidity of the returned pointer before accessing the value. GATHit sMap also has a += operator in order to accumulate
event data into run data. Listing 4.21 shows the use of G4THit sMap.

Listing 4.21: An example of accessing to GATHit sMap objects.

#include "Run.hh"

#include "G4RunManager.hh"
#include "G4Event.hh"

#include "G4SDManager.hh"
#include "G4HCofThisEvent.hh"
#include "G4THitsMap.hh"
#include "G4SystemOfUnits.hh"

namespace B3b

{

//....00000000000........ 00000000000 « « v v v .. 00000000000 « v v oo .. 00000000000.
Run: :Run ()

{3}

//....00000000000........ 00000000000. 00000000000 « v« v ... 00000000000.

Run: : ~Run ()

//....00000000000........ 00000000000. 00000000000 « o« v ... 00000000000.

void Run::RecordEvent (const G4Event* event)
{
if (£CollID_cryst < 0) {
fCollID_cryst
= G4SDManager: :GetSDMpointer () —>GetCollectionID ("crystal/edep") ;
//G4cout << " fCollID _cryst: " << fCollID cryst << G4endl;

}

if (fCollID_patient < 0) {

(continues on next page)

4.4. Hits 189

Book For Application Developers, Release 11.2

(continued from previous page)

Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.2

4.4.5 Concrete classes of G4VPrimitiveScorer

With GEANT4 version 8.0, several concrete primitive scorer classes are provided, all of which are derived from the
G4VPrimitiveScorer abstract base class and which are to be registered to G4MultiFunctionalDetector.
Each of them contains one G4TH1it sMap object and scores a simple double value for each key.

Track length scorers

G4PSTrackLength The track length is defined as the sum of step lengths of the particles inside the cell. By
default, the track weight is not taken into account, but could be used as a multiplier of each step length if the
Weighted () method of this class object is invoked.

G4PSPassageTrackLength The passage track length is the same as the track length in GAPSTrackLength,
except that only tracks which pass through the volume are taken into account. It means newly-generated or
stopped tracks inside the cell are excluded from the calculation. By default, the track weight is not taken into
account, but could be used as a multiplier of each step length if the Weighted () method of this class object
is invoked.

Deposited energy scorers

G4PSEnergyDeposit This scorer stores a sum of particles’ energy deposits at each step in the cell. The particle
weight is multiplied at each step.

G4PSDoseDeposit In some cases, dose is a more convenient way to evaluate the effect of energy deposit in a cell
than simple deposited energy. The dose deposit is defined by the sum of energy deposits at each step in a cell
divided by the mass of the cell. The mass is calculated from the density and volume of the cell taken from the
methods of G4VSolid and G4LogicalVolume. The particle weight is multiplied at each step.

G4PSDoseDeposit3D In the case of replica or nested geometries it is necessary to determine voxel numbers from
within the replica hierarchy. For example if the z-axis is parameterised and y is replica of x then the voxel
number needs to be calculated accordingly:

G4PSDoseDeposit3D (("DoseDeposit", fNoVoxelsZ, fNoVoxelsY, fNoVoxelsX, 0, 2, 1);

The last three arguments are optional, however required to determine the depth according to each axis (or replica
direction). The class creates instances of G4PSDoseDeposit according to:

i » £Nj » fNk + j = fNk + k;

where i, j and k correspond to the 3 arguments for number of voxels and replica depth in the declaration.

Current and flux scorers

There are two different definitions of a particle’s flow for a given geometry. One is a current and the other is a flux.
In our scorers, the current is simply defined as the number of particles (with the particle’s weight) at a certain surface
or volume, while the flux takes the particle’s injection angle to the geometry into account. The current and flux are
usually defined at a surface, but volume current and volume flux are also provided.

G4PSFlatSurfaceCurrent Flat surface current is a surface based scorer. The present implementation is limited
to scoring only at the -Z surface of a G4Box solid. The quantity is defined by the number of tracks that
reach the surface. The user must choose a direction of the particle to be scored. The choices are fCurrent_In,
fCurrent_Out, or fCurrent_InOut, one of which must be entered as the second argument of the constructor. Here,
fCurrent_In scores incoming particles to the cell, while fCurrent_Out scores only outgoing particles from the
cell. fCurrent_InOut scores both directions. The current is multiplied by particle weight and is normalized for a
unit area.

4.4. Hits 191

Book For Application Developers, Release 11.2

G4PSSphereSurfaceCurrent Sphere surface current is a surface based scorer, and similar to the
G4PSFlatSurfaceCurrent. The only difference is that the surface is defined at the inner surface of a G4Sphere
solid.

G4PSPassageCurrent Passage current is a volume-based scorer. The current is defined by the number of tracks
that pass through the volume. A particle weight is applied at the exit point. A passage current is defined for a
volume.

G4PSFlatSurfaceFlux Flat surface flux is a surface based flux scorer. The surface flux is defined by the number
of tracks that reach the surface. The expression of surface flux is given by the sum of W/cos(t)/A, where W,
t and A represent particle weight, injection angle of particle with respect to the surface normal, and area of
the surface. The user must enter one of the particle directions, fFlux_In, fFlux_Out, or fFlux_InOut in the
constructor. Here, fFlux_In scores incoming particles to the cell, while fFlux_Out scores outgoing particles
from the cell. fFlux_InOut scores both directions.

G4PSCellFlux Cell flux is a volume based flux scorer. The cell flux is defined by a track length (L) of the particle
inside a volume divided by the volume (V) of this cell. The track length is calculated by a sum of the step
lengths in the cell. The expression for cell flux is given by the sum of (W*L)/V, where W is a particle weight,
and is multiplied by the track length at each step.

G4PSPassageCellFlux Passage cell flux is a volume based scorer similar to G4PSCellFlux. The only differ-
ence is that tracks which pass through a cell are taken into account. It means generated or stopped tracks inside
the volume are excluded from the calculation.

Other scorers

G4PSMinKinEAtGeneration This scorer records the minimum kinetic energy of secondary particles at their
production point in the volume in an event. This primitive scorer does not integrate the quantity, but records the
minimum quantity.

G4PSNofSecondary This class scores the number of secondary particles generated in the volume. The weight of
the secondary track is taken into account.

G4PSNofStep This class scores the number of steps in the cell. A particle weight is not applied.

G4PSCellCharge This class scored the total charge of particles which has stopped in the volume.

4.4.6 G4vsDFilter and its derived classes

G4VSDFilter is an abstract class that represents a track filter to be associated with G4VSensitiveDetector
or G4VPrimitiveScorer. It defines a virtual method

G4bool Accept (const G4Stepx)

that should return true if this particular step should be scored by the G4VSensitiveDetector or
G4VPrimitiveScorer.

While the user can implement his/her own filter class, GEANT4 version 8.0 provides the following concrete filter
classes:

G4SDChargedFilter All charged particles are accepted.

G4SDNeutralFilter All neutral particles are accepted.

G4SDParticleFilter Particle species which are registered to this filter object by Add ("particle_name") are
accepted. More than one species can be registered.

G4SDKineticEnergyFilter A track with kinetic energy greater than or equal to EKmin and smaller than EKmin is
accepted. EKmin and EKmax should be defined as arguments of the constructor. The default values of EKmin
and EKmax are zero and DBL_MAX.

G4SDParticleWithEnergyFilter Combination of G4SDParticleFilter and
G4SDParticleWithEnergyFilter.

192 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.2

The use of the G4SDParticleFilter class is demonstrated in Listing 4.20, where filters which accept gamma,
electron, positron and electron/positron are defined.

4.4.7 Multiple sensitive detectors associated to a single logical-volume

From GEANT4 Version 10.3 it is possible to attach multiple sensitive detectors to a single geometrical element.
This is achieved via the use of a special proxy class, to which multiple child sensitive detectors are attached:
G4AMultiSensitiveDetector. The kernel still sees a single sensitive detector associated to any given logical-
volume, but the proxy will dispatch the calls from kernel to all the attached child sensitive detectors.

When using the G4VUserDetectorConstruction: :SetSensitiveDetector (...) utility method the
handling of multiple sensitive detectors is done automatically. Multiple calls to the method passing the same logical
volume will trigger the creation and setup of an instance of G4MultiSensitiveDetector.

For more complex use cases it may be necessary to manually instantiate and setup an instance of
G4MultiSensitiveDetector. For this advanced use case you can refer to the implementation
of the G4VUserDetectorConstruction: :SetSensitiveDetector (G4LogicalVolume* logVol,
G4VSensitiveDetector* aSD) utility method.

Listing 4.22: An example of the use of
G4MultiSensitiveDetector.

void MyDetectorConstruction::ConstructSDandField ()

{
auto sdman = G4SDManager::GetSDMpointer () ;
VI
auto mySD = new mySD1("/SD1");
sdman->AddNewDetector (mySD) ; //Note we explicitly add the SD to the manager
SetSensitiveDetector ("LogVolName",mySD) ;
auto mySD2 = new MySD2 ("/SD2");
sdman->AddNewDetector (mySD2) ;
//This will trigger automatic creation and setup of proxy
SetSensitiveDetector ("LogVolName",mySD2) ;
V/ATE

4.4.8 Utilities
Ul-command base scoring

Command-based scoring functionality offers the user a possibility to define a scoring-mesh and various scorers for
commonly-used physics quantities such as dose, flux, etc. via Ul commands.

Due to small performance overhead, it does not come by default. To use this functionality, G4ScoringManager
has to be activated after the instantiation of G4RunManager in the main () function, see Listing 4.23. This will create
the UI commands in /score directory.

Listing 4.23: Activation of Ul-command base scoring inmain ()

#include "G4ScoringManager.hh"
int main()

{

7/ oo

G4RunManager* runManager = new G4RunManager;
G4ScoringManager: :GetScoringManager () ;

Y ooo

}

4.4. Hits 193

Book For Application Developers, Release 11.2

An example of a macro creating a scoring mesh of box type with two scorers and a filter is given below:

Define scoring mesh
/score/create/boxMesh boxMesh_1
/score/mesh/boxSize 100. 100. 100. cm
/score/mesh/nBin 30 30 30

Define scoring quantity
/score/quantity/energyDeposit boxMash keV

Define a filter
/score/filter/charged

Close mesh
/score/close

Detailed usage of command-based scoring is given in the section Command-based scoring.

G4ScoringManager provides also a default score writer which dumps every entry of one quantity of a mesh for
all quantities of the mesh one by one in CSV format. To alternate the file format the user can implement his/her own
score writer deriving from G4VUserScoreWriter base class and set it to G4ScoringManager. To demonstrate
this, REO3UserScoreWriter is included in the extended REO3 example in the runAndEvent category.

Score Ntuple Writer

It is also possible to save the scorers hits using Geant4 analysis tools. This functionality is as-
sured by the G4VScoreNtupleWriter interface (since 10.5) and the G4TScoreNtupleWriter and
G4TScoreNtupleWriterMessenger classses (since 10.6).

This feature is demonstrated in the basic examples B3 and B4d. The example of activating the score ntuple writer is
given below:

#include "G4AnalysisManager.hh"
#include "G4TScoreNtupleWriter.hh"

// Activate score ntuple writer
G4TScoreNtupleWriter<G4AnalysisManager> scoreNtupleWriter;
scoreNtupleWriter.SetVerboselevel (1) ;

The Geant4 Ul commands defined in G4TScoreNtupleWriterMessenger can be used to choose the output file
name and the level of verbosity:

/score/ntuple/writerFileName name
/score/ntuple/writerVerbose 1

4.5 Digitization

4.5.1 Digi

A hit is created by a sensitive detector when a step goes through it. Thus, the sensitive detector is associated to the
corresponding G4LogicalVolume object(s). On the other hand, a digit is created using information of hits and/or
other digits by a digitizer module. The digitizer module is not associated with any volume, and you have to implicitly
invoke the Digitize () method of your concrete G4VDigitizerModule class.

Typical usages of digitizer module include:

¢ simulate ADC and/or TDC
¢ simulate readout scheme

194 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.2

* generate raw data
* simulate trigger logics
* simulate pile up

G4VDigi

G4VvDigi is an abstract base class which represents a digit. You have to inherit this base class and derive your own
concrete digit class(es). The member data of your concrete digit class should be defined by yourself. G4VDigi has
two virtual methods, Draw () and Print ().

As with G4VHit, authors of subclasses must declare templated G4A11locators for their digit class. They must also
implement operator new() and operator delete() which use these allocators.

G4TDigiCollection

G4TDigiCollection is a template class for digits collections, which is derived from the abstract base class
G4AVvDigiCollection. G4Event has a GADCofThisEvent object, which is a container class of collec-
tions of digits. The usages of G4VDigi and G4TDigiCollection are almost the same as G4VHit and
G4THitsCollection, respectively, explained in the previous section.

As with G4ATHitsCollection, authors of subclasses must declare templated G4A1locators for their collection
class. They must also implement operator new() and operator delete() which use these allocators.

4.5.2 Digitizer module
G4vDigitizerModule

GAvDigitizerModule is an abstract base class which represents a digitizer module. It has a pure virtual method,
Digitize (). A concrete digitizer module must have an implementation of this virtual method. The GEANT4 kernel
classes do not have a “built-in” invocation to the Digitize () method. You have to implement your code to invoke
this method of your digitizer module.

In the Digitize () method, you construct your G4VDigi concrete class objects and store them to
your G4TDigiCollection concrete class object(s). Your collection(s) should be associated with the
G4DCofThisEvent object.

G4DigiManager

GADigiManager is the singleton manager class of the digitizer modules. All of your concrete digitizer modules
should be registered to G4ADigiManager with their unique names.

G4DigiManager * fDM = G4DigiManager::GetDMpointer () ;

MyDigitizer * myDM = new MyDigitizer ("/myDet/myCal/myEMdigiMod") ;
fDM->AddNewModule (myDM) ;

Your concrete digitizer module can be accessed from your code using the unique module name.
G4DigiManager * fDM = G4DigiManager: :GetDMpointer () ;

MyDigitizer » myDM = fDM->FindDigitizerModule("/myDet/myCal/myEMdigiMod");
myDM->Digitize () ;

Also, G4DigiManager hasaDigitize () method which takes the unique module name.

4.5. Digitization 195

Book For Application Developers, Release 11.2

G4DigiManager » fDM = G4DigiManager: :GetDMpointer () ;
MyDigitizer * myDM = fDM->Digitize("/myDet/myCal/myEMdigiMod");

How to get hitsCollection and/or digiCollection

G4DigiManager has the following methods to access to the hits or digi collections of the currently processing event
or of previous events.

First, you have to get the collection ID number of the hits or digits collection.

G4DigiManager * fDM = G4DigiManager::GetDMpointer () ;

G4int myHitsCollID = fDM->GetHitsCollectionID("hits_collection_name");
G4int myDigiCollID = fDM->GetDigiCollectionID("digi_collection_name");

Then, you can get the pointer to your concrete G4THitsCollection object or G4TDigiCollection object of
the currently processing event.

MyHitsCollection * HC fDM->GetHitsCollection(myHitsCollID) ;
MyDigiCollection » DC = fDM->GetDigiCollection(myDigiCollID);

In case you want to access to the hits or digits collection of previous events, add the second argument.

MyHitsCollection » HC = fDM->GetHitsCollection(myHitsCollID, n);
MyDigiCollection * DC = fDM->GetDigiCollection(myDigiCollID, n);

where, n indicates the hits or digits collection of the n™ previous event.

4.6 Birks Quenching

The current versions of hadronic string models (FTF & QGS) produce hadronic showers with (a few percent) higher
energy response than the stable released (as used in LHC productions) version of these models. Test-beam and collider
data seem to indicate lower energy response in hadronic showers than currently provided by Geant4 simulations. This
is the main reason why the development versions of the string models were not released in two previous public versions
of Geant4 (10.3 and 10.4), in spite of providing an overall better description of thin-target data. We think that the main
reason why the simulation overshot the data regarding the energy response of hadronic showers is in fact due to an
incorrect treatment of the quenching of the signal - the conversion from the energy deposited by ionizing particles in
a sensitive detector to the observed electronic (readout) signal is not linear, with proportionally less signal for higher
densities of deposited energy, for both scintillation light and ionization electron-hole/ion pairs. This quenching effect is
traditionally described by the simple, phenomenological “law” suggested many years ago by Birks. Its main parameter
is fitted from experimental data under the assumption that the observed energy is related to the incident particle energy
loss. This does not consider delta-ray production which will result in lower energy deposit (density). As a result of this
approximation, the density of deposited energy is overestimated, which implies that the Birks coefficient, as fitted from
the experimental data, gets underestimated. Using this Birks coefficient in simulations where delta rays are emitted
(and considered discretely), as in practice for all simulations of high-energy experiments, results in underestimating
the quenching effect, and therefore predicting larger signals than in reality. The correct Birks coefficient to be used in
a simulation depends on the production threshold which is chosen in the simulation, with lower thresholds producing
a larger delta-ray component and therefore reducing the density of the energy deposition along the ionizing track, and
hence requiring an even higher Birks coefficient. We suggest the following pragmatic approach to incorporating Birks
quenching: The calibration of a calorimeter - i.e. the conversion from the electronic signal produced by a shower and
the energy of the primary particle that initiates the shower - is typically done for test beam data with an electron of
a given energy, e.g. 20 GeV. We suggest to add an extra step to this calibration, in which the Birks coefficient used
in the simulation is tuned to reproduce the ratio of the energy response of a hadron (typically a charged pion or a
proton) and the energy response of an electron of the same energy (this ratio is indicated as “h/e”). It is natural to

196 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.2

consider the same beam energy used for the calibration, e.g. 20 GeV, but in principle it could be a different one; note
also that the tuning of the Birks coefficient is idependent from the calibration constant, given that the latter cancels
out from the ratio h/e. Of course, with the tuning of the Birks coefficient as suggested above we compensate also for
some of the intrinsic inaccuracies in the modelling of hadronic interactions; however, this effect is valid uniquely at
the energy where the tuning is done (e.g. 20 GeV), and limited only to the energy response. For other observables
(energy resolution, longitudinal and lateral shower shapes), and for all other energies, this procedure has a minimal
impact, i.e. should not reduce the prediction-power of the simulation.

4.7 Object Persistency

4.7.1 Persistency in GEANT4

Object persistency is provided by GEANT4 as an optional functionality.

When a usual (transient) object is created in C++, the object is placed onto the application heap and it ceases to exist
when the application terminates. Persistent objects, on the other hand, live beyond the termination of the application
process and may then be accessed by other processes (in some cases, by processes on other machines).

i Databta se Envwirorrmert
persistent ohiec

‘ mnstrudnr

destridor

Fig. 4.8: Persistent object.

C++ does not have, as an intrinsic part of the language, the ability to store and retrieve persistent objects. GEANT4
provides an abstract framework for persistency of hits, digits and events.

Two examples demonstrating an implementation of object persistency using one of the tools accessible through the
available interface, is provided in examples/extended/persistency.

4.7.2 Using Root-I/O for persistency of GEANT4 objects

Object persistency of GEANT4 objects is also possible by using the Root-I/O features through Root (since release
v6.04/08).

The basic steps that one needs to do in order to use Root-1/O for arbitrary C++ classes is:

1. Generate the dictionary for the given classes from Root (this usually is done by adding the appropriate command
to the makefile)

2. Add initialization of Root-I/O and loading of the generated dictionary for the given classes in the appropriate
part of the code

3. Whenever the objects to be persistified are available, call the WriteObject method of TF1i1e with the pointer
to the appropriate object as argument (usually it is some sort of container, like std: : vector containing the
collection of objects to be persistified)

4.7. Object Persistency 197

https://root.cern.ch/

Book For Application Developers, Release 11.2

The two examples (P01 and P02) provided in examples/extended/persistency demonstrate how to per-
form object persistency using the Root-I/O mechanism for storing hits and geometry description.

4.8 Parallel Geometries

4.8.1 A parallel world

Occasionally, it is not straightforward to define geometries for sensitive detectors, importance geometries or en-
velopes for shower parameterization to be coherently assigned to volumes in the tracking (mass) geometry. The
parallel navigation functionality introduced since release 8.2 of GEANT4, allows the user to define more than one
world simultaneously. The G4CoupledTransportation process will see all worlds simultaneously; steps will
be limited by every boundaries of the mass and parallel geometries. GATransportation is automatically replaced
G4CoupledTransportation.

In a parallel world, the user can define volumes in arbitrary manner with sensitivity, regions, shower parameterization
setups, and/or importance weight for biasing. Volumes in different worlds may overlap.

Any kind of G4VSensitiveDetector object can be defined in volumes in a parallel world, exactly at the same
manner for the mass geometry. G4 Step object given as an argument of ProcessHit () method contains geomet-
rical information of the associated world.

Here are restrictions to be considered for the parallel geometry:

¢ Production thresholds and EM field are used only from the mass geometry. Even if such physical quantities are
defined in a parallel world, they do not affect to the simulation.

* Although all worlds will be comprehensively taken care by the G4CoupledTransportation process for
the navigation, each parallel world must have its own unique object of G4ParallelWorldProcess process
(for instance created with G4ParallelWorldPhysics constructor registered to a modular physics list).

e Volumes in a parallel world may have materials. Such materials overwrite the materials defined in the mass
geometry if the "layered mass geometry" switch of the G4ParallelWorldProcess constructor is
set.

4.8.2 Defining a parallel world

A parallel world should be defined in the Construct () virtual method of the user’s class derived from the abstract
base class G4VUserParallelWorld. If needed, sensitive detectors must be defined in the ConstructSD ()
method of the same derived class. Please note that EM field cannot be defined in a parallel world.

Listing 4.24: An example header file of a concrete user parallel world
class.

#ifndef MyParallelWorld_h
#define MyParallelWorld h 1

#include "globals.hh"
#include "G4VUserParallelWorld.hh"

class MyParallelWorld : public G4VUserParallelWorld
{
public:
MyParallelWorld (G4String worldName) ;
virtual ~MyParallelWorld() ;

public:
virtual void Construct();
virtual void ConstructSD();

(continues on next page)

198 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.2

(continued from previous page)

bi

#endif

A parallel world must have its unique name, which should be set to the G4VUserParallelWorld base class as an
argument of the base class constructor.

The world physical volume of the parallel world is provided by the G4RunManager as a clone of the mass ge-
ometry. In the Construct () virtual method of the user’s class, the pointer to this cloned world physical volume
is available through the GetWorld () method defined in the base class. The user should fill the volumes in the
parallel world by using this provided world volume. For a logical volume in a parallel world, the material pointer
can be nullptr. Even if specified a valid material pointer, unless "layered mass geometry" switch of the
G4ParallelWorldProcess constructor is set, it will not be taken into account by any physics process.

Listing 4.25: An example source code of a concrete user parallel world
class.

#include "MyParallelWorld.hh"
#include "G4LogicalVolume.hh"
#include "G4VPhysicalVolume.hh"
#include "G4Box.hh"

#include "G4PVPlacement.hh"

MyParallelWorld: :MyParallelWorld (G4String worldName)
:G4VUserParallelWorld (worldName)
{i}

MyParallelWorld: :~MyParallelWorld ()
{;}

void MyParallelWorld: :Construct ()

{
G4VPhysicalVolumex ghostWorld = GetWorld() ;
G4LogicalVolume* worldLogical = ghostWorld->GetLogicalVolume () ;

// place volumes in the parallel world here. For example
//
G4Box * ghostSolid = new G4Box ("GhostdBox", 60.xcm, 60.xcm, 60.*cm);
G4LogicalVolume x ghostLogical
= new G4LogicalVolume (ghostSolid, 0, "GhostLogical", 0, 0, 0);
new G4PVPlacement (0, G4ThreeVector (), ghostLogical,
"GhostPhysical", worldLogical, 0, 0);

In case the user needs to define more than one parallel worlds, each of them must be implemented through
its dedicated class. Each parallel world should be registered to the mass geometry class using the method
RegisterParallelWorld () available through the class G4VUserDetectorConstruction. The regis-
tration must be done before the mass world is registered to the G4ARunManager. Each parallel world should
also have its own G4ParallelWorldPhysics constructor registered to the physics list using the method
RegisterPhysics () available through the class G4VModularPhysicsList.

Listing 4.26: Typical implementation in the main () to define a parallel
world.

// RunManager construction
//

G4RunManager* runManager = new G4RunManager;

// mass world
//
MyDetectorConstruction* massWorld = new MyDetectorConstruction;
(continues on next page)

4.8. Parallel Geometries 199

Book For Application Developers, Release 11.2

(continued from previous page)

// parallel world

//

G4String paraWorldName = "ParallelWorld";
massWorld->RegisterParallelWorld (new MyParallelWorld (paraWorldName)) ;

// set mass world to run manager
//
runManager—>SetUserInitialization (massWorld) ;

// physics list

//

G4VModularPhysicsList+ physicsList = new FTFP_BERT;
physicsList->RegisterPhysics (new G4ParallelWorldPhysics (paraWorldName)) ;
runManager—>SetUserInitialization (physicsList);

4.8.3 Layered mass geometry

If "layered mass geometry" switch of the GAParallelWorldProcess constructor is set, that parallel
world is conceptually layered on top of the mass geometry. If more than one parallel worlds are defined, later-defined
world comes on top of others. A track will see the material of the top layer, if it is nullptr, then one layer beneath.
Thus, user has to make sure volumes in a parallel world should have nullptr as their materials except for volumes
he/she really wants to overwrite.

Listing 4.27: Typical implementation in the main () to define a layered
mass geometry.

// RunManager construction
//
G4RunManager* runManager = new G4RunManager;

// mass world
//

MyDetectorConstruction* massWorld = new MyDetectorConstruction;

// parallel world

//

G4String paraWorldName = "ParallelWorld";
massWorld->RegisterParallelWorld (new MyParallelWorld (paraWorldName)) ;

// set mass world to run manager
//

runManager—>SetUserInitialization (massWorld) ;

// physics list

//

G4VModularPhysicsList+ physicsList = new FTFP_BERT;
physicsList->RegisterPhysics (new G4ParallelWorldPhysics (paraWorldName, true)) ;
runManager—>SetUserInitialization (physicsList) ;

For an information to advanced users, instead of using G4ParallelWorldPhysics physics constructor, once can
define G4ParallelWorldProcess in his/her physics list and assign it only to some selected kind of particle types.
In this case, this parallel world will be seen only by these kinds of particles.

200 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.2

4.9 Command-based scoring

4.9.1 Introduction

Command-based scoring in GEANT4 defines GAMultiFunctionalDetector to a volume that is either defined
in the tracking volume or created in a dedicated parallel world utilizing parallel navigation as described in the previous
sections. The parallel world volume can be a scoring mesh or a scoring probe.

Once a scoring volume is defined, through interactive commands, the user can define arbitrary number of primitive
scorers to score physics quantities and filters to be associated to each primitive scorer.

After scoring (i.e. a run), the user can dump scores into a file. Scores are automatically merged over worker threads.
Also, for scoring mesh, scores can be visualized as well. All available Ul commands are listed in List of built-in
commands.

Command-based scoring is an optional functionality and the user has to explicitly define its use in the main (). To do
this, the method G4ScoringManager: :GetScoringManager () must be invoked right after the instantiation
of G4ARunManager. The scoring manager is a singleton object, and the pointer accessed above should not be deleted
by the user.

Listing 4.28: A user main () to use the command-based scoring

#include "G4RunManager.hh"
#include "G4ScoringManager.hh"

int main(int argc,charx* argv)

{

// Construct the run manager

G4RunManager * runManager = new G4RunManager;

// Activate command-based scorer
G4ScoringManager: :GetScoringManager () ;

4.9.2 Defining a scoring volume in the tracking world

Scoring volume can be declared as a logical volume that is already defined as a part of the mass geometry through
/score/create/realWorldLogVol <LV_name> <anc_lv1> command, where <LV_name> is the name
of G4LogicalVolume defined in the tracking world. If there are more than one physical volumes that share the
same logical volume, scores are made for each individual physical volumes separately. Copy number of the physical
volume is the index. If the physical volume is placed only once in its mother volume, but its (grand-)mother volume
is duplicated, use the <anc_1v1> parameter to indicate the ancestor level where the copy number should be taken as
the index of the score.

4.9. Command-based scoring 201

AllResources/Control/UIcommands/_score_.html
AllResources/Control/UIcommands/_score_.html

Book For Application Developers, Release 11.2

4.9.3 Defining a scoring mesh

To define a scoring mesh, the user has to specify the following.

 Shape and name of the 3D scoring mesh. Currently, box and cylinder are the only available shapes.

* Size of the scoring mesh. Mesh size must be specified as “half width” similar to the arguments of G4Box or
G4Tubs, respectively .

* Number of bins for each axes. Note that too high number causes immense memory consumption.

* Optionally, position and rotation of the mesh. If not specified, the mesh is positioned at the center of the world
volume without rotation.

The following sample Ul commands define a scoring mesh named boxMesh_1, size of whichis 2 m * 2 m * 2 m,
and sliced into 30 cells along each axes.

Listing 4.29: UI commands to define a scoring mesh

#

define scoring mesh

#

/score/create/boxMesh boxMesh_1
/score/mesh/boxSize 100. 100. 100. cm
/score/mesh/nBin 30 30 30

4.9.4 Defining a scoring probe

User may locate scoring “probes” at arbitrary locations. A “probe” is a virtual cube, the size of which has to be
specfied as “half width”. Given probes are located in an artificial “parallel world”, probes may overlap to the volumes
defined in the mass geometry, as long as probes themselves are not overlapping to each other or protruding from the
world volume.

In addition, the user may optionally set a material to the probe. Once a material is set to the probe, it overwrites
the material(s) defined in the tracking geometry when a track enters the probe cube. This material has to be already
instantiated in user’s detector construction class or defined in G4NISTmanager.

Because of this overwriting, physics quantities that depend on material or density, e.g. energy deposition or dose,
would be measured according to the specified material. Please note that this overwriting material obviously affects to
the simulation results, so the size and number of probes should be reasonably small to avoid significant side effects.

If probes are placed more than once, all probes have the same scorers but score individually.

The following sample UI commands define a scoring probe named Probes, size of which is 10 cm * 10 cm * 10 cm,
filled by G4_Water, and located at three positions.

202 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.2

Listing 4.30
#

define scoring probe

#

/score/create/probe Probes 5. cm
/score/probe/material G4_WATER
/score/probe/locate 0. 0. 0. cm
/score/probe/locate 25. 0. 0. cm
/score/probe/locate 0. 25. 0. cm

: UI commands to define a scoring probe

4.9.5 Defining primitive scorers to a scoring volume

Once the scoring volume is defined, the user can define arbitrary scoring quantities and filters.

For a scoring volume the user may define arbitrary number primitive scorers to score for each physical volume (each
cell for scoring mesh and each probe for scoring probe). For each scoring quantity, the use can set one filter. Please

note that /score/filter commad affect:

s on the immediately preceding scorer.

Names of scorers and filters must be unique for the scoring volume. It is possible to define more than one scorers of
same kind with different names and, likely, with different filters. The list of available primitive scorers can be found

at Table 4.1.

Defining a scoring volume and primitive scores should terminate with the /score/close command. The following
sample Ul commands define a scoring mesh named boxMesh_ 1, size of which is 2 m * 2 m * 2 m, and sliced into
30 cells along each axes. For each cell energy deposition, number of steps of gamma, number of steps of electron and

number of steps of positron are scored.

Listing 4.31: UI commands to define a scoring mesh and scorers

#

define scoring mesh

#

/score/create/boxMesh boxMesh_1
/score/mesh/boxSize 100. 100. 100. cm
/score/mesh/nBin 30 30 30

#

define scorers and filters

#

/score/quantity/energyDeposit eDep
/score/quantity/nOfStep nOfStepGamma

/score/filter/particle gammaFilter gamma

/score/quantity/nOfStep nOfStepEMinus
/score/filter/particle eMinusFilter e
/score/quantity/nOfStep nOfStepEPlus
/score/filter/particle ePlusFilter e+
#

/score/close

#

4.9. Command-based scoring

203

Book For Application Developers, Release 11.2

4.9.6 Drawing scores for a scoring mesh

Once scores assigned to a scoring mesh are filled, it is possible to visualize these scores. The score is drawn on top of
the mass geometry with the current visualization settings.

Fig. 4.9: Drawing scores in slices (left) and projection (right).

Scored data can be visualized using the commands /score/drawProjection and /score/drawColumn. For
details, see examples/extended/runAndEvent/REQ3.

By default, entries are linearly mapped to colors (gray - blue - green - red). This color mapping is imple-
mented in G4DefaultLinearColorMap class, and registered to G4 ScoringManager with the color map name
"defaultLinearColorMap". The user may alternate color map by implementing a customised color map class
derived from G4VScoreColorMap and register it to G4ScoringManager. Then, for each draw command, one
can specify the preferred color map.

This drawing funactionality is available only for scoring mesh.

4.9.7 Writing scores to a file

It is possible to dump a score in a mesh (/score/dumpQuantityToFile command) or all scores in a mesh (/
score/dumpAllQuantitiesToFile command) to a file. The default file format is the simple CSV. To alternate
the file format, one should overwrite G4VScoreWriter class and register it to G4ScoringManager. The scoring
manager takes ownership of the registered writer, and will delete it at the end of the job.

Please refer to /examples/extended/runAndEvent /REQ3 for details.

4.9.8 Filling 1-D histogram

Through the template interface class G4TScoreHistFiller a primitive scorer can directly fill a 1-D histogram
defined by G4Analysis module. Track-by-track or step-by-step filling allows command-based histogram such
as energy spectrum. G4TScoreHistFiller template class must be instantiated in the user’s code (e.g. in the
constructor of user run action) with his/her choice of analysis data format.

Listing 4.32: Instantiation of G4TScoreHistFiller

#include "G4AnalysisManager.hh"
#include “G4TScoreHistFiller.hh”

auto histFiller = new G4TScoreHistFiller<G4AnalysisManager>;

/score/fill1lD <histID> <volName> <primName> <copNo> command defines the histogram
<histID> to be filled by <primName> primitive scorer assigned to <volName> scoring volume. If scoring
volume in tracking world or probe is placed more than once, filllD command should be issued for each individual

204 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.2

copy number <copNo>.. Histogram <histID> must be defined through /analysis/hl/create command
in advance to setting it to a primitive scorer. Scoring volume <volName> (either tracking world scorer or probe
scorer) as well as the primitive scorer <primName> must be defined in advance, as well. This ifilling 1-D histogram
functionality is not available for mesh scorer due to memory consumption concern. The list of primitive scorers
available for 1-D histogram can be found at Table 4.1.

The following Ul commands define a scoring probe named Probes, size of which is 10 cm * 10 cm * 10 cm, with
two volume flux primitive scorers (one for total flux and the other for proton flux), and fill 1-D histograms of these
two fluxes.

Listing 4.33: Filling 1-D histograms
#

define scoring probe

#

/score/create/probe Probes 5. cm
/score/probe/locate 0. 0. 0. cm

#

define flux scorers and filter

#

/score/quantity/volumeFlux volFlux
/score/quantity/volumeFlux protonFlux
/score/filter/particle protonFilter proton
/score/close

#

define histograms

#

/analysis/hl/create volFlux Probes_volFlux 100 0.01 2000. MeV ! log
/analysis/hl/create protonFlux Probes_protonFlux 100 0.01 2000. MeV ! log
#

filling histograms

#

/score/filllD 1 Probes volFlux
/score/fil111D 2 Probes protonFlux

4.9.9 List of available primitive scorers

A primitive scorer is assigned to the scoring volume by /score/quantity/xxxxx <primName> <unit>
where xxxxx is the name of primitive scorer listed below. Some of these primitive scorers can fill 1-D histogram
described in the previous section.

4.9. Command-based scoring 205

Book For Application Developers, Release 11.2

Entries 32700
Mean 70.5846
M5 92 4956

Frobes _wolFTx_0

B817
13.968
95.7345

Fig. 4.10: Histograms of total flux (top) and proton flux (bottom)

206 Chapter 4. Detector Definition and Response

Book For Application Developers, Release 11.2

Table 4.1: List of primitive scorers.

Name of primitive | Description Default unit x-axis of 1-D | y-axis of 1-D
scorer histogram histogram
cellCharge deposited charge in | e+ n/a n/a
the volume
cellFlux sum of track length | cm™2 Ek in MeV weighted cell
divided by the vol- flux
ume
doseDeposit deposited dose in the | Gy dose per step | track weight
volume in Gy
energyDeposit deposited energy in | MeV eDep per step | track weight
the volume in MeV
flatSurfaceCurrent surface current on - | cm ™2 Ek in MeV weighted cur-
z surface to be used rent
only for Box
flatSurfaceFlux surface flux | em™?2 Ek in MeV weighted flux
(1/cos(theta)) on
-z surface to be used
only for Box
nOfCollision number of steps | n/a n/a n/a
made by physics
interaction
nOfSecondary number od secondary | n/a Ek in MeV track weight
tracks generated in
the volume
nOfStep number of steps in | n/a step length in | entry (un-
the volume mm weighted)
nOfTerminatedTrack | numver of tracks | n/a n/a n/a
terminated in the
volume (due to de-
cay, interaction, stop,
etc.)
nOfTrack number of tracks in | n/a Ek in MeV track weight
the volume (includ-
ing both passing and
terminated tracks)
passageCellCurrent number of tracks that | n/a Ek in MeV track weight
pass through the vol-
ume
passageCellFlux sum of track length | cm ™2 Ek in MeV weighted cell
divided by the vol- flux
ume counted only
for tracks that pass
through the volume
passageTrackLength | sum of track length | mm track lengthin | entry (un-
in the volume for mm weighted)
tracks that pass
through the volume
population number of tracks in | n/a n/a n/a
the volume that are
unique in an event
trackLength total track length in | mm n/a n/a
the volume (includ-
ing both passing and
4.9. C¢ _ . }g:rrmnated tracks) 207
volumeFlux fiumber of tracks get- | n/a Ek in MeV track weight

ting into the volume

Book For Application Developers, Release 11.2

208 Chapter 4. Detector Definition and Response

CHAPTER
FIVE

TRACKING AND PHYSICS

5.1 Tracking

5.1.1 Basic Concepts

Philosophy of Tracking

All GEANT4 processes, including the transportation of particles, are treated generically. In spite of the name “track-
ing”, particles are not transported in the tracking category. G4TrackingManager is an interface class which
brokers transactions between the event, track and tracking categories. An instance of this class handles the mes-
sage passing between the upper hierarchical object, which is the event manager, and lower hierarchical objects in the
tracking category. The event manager is a singleton instance of the G4EventManager class.

The tracking manager receives a track from the event manager and takes the actions required to finish track-
ing it. G4TrackingManager aggregates the pointers to G4SteppingManager, G4Trajectory and
G4UserTrackingAction. Also there is a “use” relation to G4Track and G4Step.

G4SteppingManager plays an essential role in tracking the particle. It takes care of all message passing between
objects in the different categories relevant to transporting a particle (for example, geometry and interactions in matter).
Its public method Stepping () steers the stepping of the particle. The algorithm to handle one step is given below.

1. If the particle stop (i.e. zero kinetic energy), each active AtRest process proposes a step length in time based on
the interaction it describes. And the process proposing the smallest step length will be invoked.

2. Each active discrete or continuous process must propose a step length based on the interaction it describes. The
smallest of these step lengths is taken.

3. The geometry navigator calculates “Safety”, the distance to the next volume boundary. If the minimum physical-
step-length from the processes is shorter than “Safety”, the physical-step-length is selected as the next step
length. In this case, no further geometrical calculations will be performed.

4. If the minimum physical-step-length from the processes is longer than “Safety”, the distance to the next bound-
ary is re-calculated.

5. The smaller of the minimum physical-step-length and the geometric step length is taken.

6. All active continuous processes are invoked. Note that the particle’s kinetic energy will be updated only after
all invoked processes have completed. The change in kinetic energy will be the sum of the contributions from
these processes.

7. The current track properties are updated before discrete processes are invoked. In the same time, the secondary
particles created by processes are stored in SecondaryList. The updated properties are:

« the kinetic energy of the current track particle (note that ‘sumEnergyChange’ is the sum of the energy
difference before and after each process invocation)
e position and time

8. The kinetic energy of the particle is checked to see whether or not it has been terminated by a continuous process.
If the kinetic energy goes down to zero, AtRest processes will be applied at the next step if applicable.

9. The discrete process is invoked. After the invocation,

« the energy, position and time of the current track particle are updated, and

209

Book For Application Developers, Release 11.2

* the secondaries are stored in SecondaryList.
10. The track is checked to see whether or not it has been terminated by the discrete process.
11. “Safety” is updated.
12. If the step was limited by the volume boundary, push the particle into the next volume.
13. Handle hit information.
14. Invoke the user intervention G4UserSteppingAction.
15. Save data to Trajectory.
16. Update the mean free paths of the discrete processes.
17. If the parent particle is still alive, reset the maximum interaction length of the discrete process which has oc-
curred.
18. One step completed.

What is a Process?

Only processes can change information of G4Track and add secondary tracks via ParticleChange.
G4VProcess is a base class of all processes and it has 3 kinds of DoIt and GetPhysicalInteraction meth-
ods in order to describe interactions generically. If a user want to modify information of G4Track, he (or she)
SHOULD create a special process for the purpose and register the process to the particle.

What is a Track?

G4Track keeps ‘current’ information of the particle. (i.e. energy,momentum, position ,time and so on) and has ‘static’
information (i.e. mass, charge, life and so on) also. Note that G4Track keeps information at the beginning of the
step while the AlongStepDoIts are being invoked for the step in progress.After finishing all AlongStepDoIts,
G4Track is updated. On the other hand, G4Track is updated after each invocation of a Post StepDoIt.

What is a Step?

G4 Step stores the transient information of a step. This includes the two endpoints of the step, PreStepPoint and
PostStepPoint, which contain the points’ coordinates and the volumes containing the points. G4 Step also stores
the change in track properties between the two points. These properties, such as energy and momentum, are updated
as the various active processes are invoked.

What is a ParticleChange?

Processes do NOT change any information of G4 Track directly in their DoIt. Instead, they proposes changes as a re-
sult of interactions by using Part icleChange. AftereachDoIt,ParticleChange updates PostStepPoint
based on proposed changes. Then, G4Track is updated after finishing all AlongStepDoIts and after each
PostStepDolt.

5.1.2 Access to Track and Step Information

How to Get Track Information

Track information may be accessed by invoking various Get methods provided in the G4Track class. For details,
see the G4Track.hh header file in $G4 INCLUDE. Typical information available includes:

.« (xy.2)
¢ Global time (time since the event was created)

¢ Local time (time since the track was created)

* Proper time (time in its rest frame since the track was created)
¢ Momentum direction (unit vector)

* Kinetic energy

* Accumulated geometrical track length

¢ Accumulated true track length

* Pointer to dynamic particle

* Pointer to physical volume

* Track ID number

210 Chapter 5. Tracking and Physics

http://www-geant4.kek.jp/lxr/source/track/include/G4Track.hh

Book For Application Developers, Release 11.2

* Track ID number of the parent

e Current step number

* Track status

* (x,y,z) at the start point (vertex position) of the track

¢ Momentum direction at the start point (vertex position) of the track
* Kinetic energy at the start point (vertex position) of the track

* Pointer to the process which created the current track

How to Get Step Information

Step and step-point information can be retrieved by invoking various Get methods provided in the
G4Step/G4StepPoint classes..

Information in G4Step includes:

¢ Pointers to PreStep and PostStepPoint
* Geometrical step length (step length before the correction of multiple scattering)
* True step length (step length after the correction of multiple scattering)
* Increment of position and time between PreStepPoint and PostStepPoint
¢ Increment of momentum and energy between PreStepPoint and PostStepPoint. (Note: to get the
energy deposited in the step, you cannot use this ‘Delta energy’. You have to use ‘Total energy deposit’ as
below.)
¢ Pointer to G4Track
* Total energy deposited during the step - this is the sum of
— the energy deposited by the energy loss process, and
— the energy lost by secondaries which have NOT been generated because each of their energies was below
the cut threshold
 Energy deposited not by ionization during the step
* Secondary tracks created during tracking for the current track.
— NOTE: all secondaries are included. NOT only secondaries created in the CURRENT step.

Information in G4StepPoint (PreStepPoint and PostStepPoint) includes:

* (Xy.2z1

* (px, py, pz, Ek)

¢ Momentum direction (unit vector)

* Pointers to physical volumes

o Safety

* Beta, gamma

* Polarization

* Step status

* Pointer to the physics process which defined the current step and its DoIt type
* Pointer to the physics process which defined the previous step and its DoIt type
* Total track length

* Global time (time since the current event began)

* Local time (time since the current track began)

* Proper time

How to Get “particle change”

Particle change information can be accessed by invoking various Get methods provided in the G4ParticleChange
class. Typical information available includes:

* final momentum direction of the parent particle
* final kinetic energy of the parent particle

* final position of the parent particle

* final global time of the parent particle

* final proper time of the parent particle

5.1. Tracking 211

http://www-geant4.kek.jp/lxr/source/track/include/G4Step.hh
http://www-geant4.kek.jp/lxr/source/track/include/G4StepPoint.hh
http://www-geant4.kek.jp/lxr/source/track/include/G4ParticleChange.hh

Book For Application Developers, Release 11.2

* final polarization of the parent particle
* status of the parent particle (G4TrackStatus)
* true step length (this is used by multiple scattering to store the result of the transformation from the geometrical
step length to the true step length)
* local energy deposited - this consists of either
— energy deposited by the energy loss process, or
— the energy lost by secondaries which have NOT been generated because each of their energies was below
the cut threshold.
* number of secondaries particles
* list of secondary particles (list of G4Track)

5.1.3 Handling of Secondary Particles

Secondary particles are passed as G4Tracks from a physics process to tracking. G4ParticleChange provides
the following four methods for a physics process:

* AddSecondary
¢ AddSecondary
e AddSecondary
¢ AddSecondary

G4Track* aSecondary)

G4DynamicParticlex aSecondary)

G4DynamicParticlex aSecondary, G4ThreeVector position)
G4DynamicParticlex aSecondary, G4double time)

(
(
(
(
In all but the first, the construction of G4Track is done in the methods using information given by the arguments.

5.1.4 User Actions

There are two classes which allow the user to intervene in the tracking. These are:

e G4UserTrackingAction, and
* G4UserSteppingAction.

Each provides methods which allow the user access to the GEANT4 kernel at specific points in the tracking.

Note: Users SHOULD NOT (and CAN NOT) change G4Track in UserSteppingAction. The only exception
is the TrackStatus.

Note: Users have to be cautious to implement an unnatural/unphysical action in these user actions. See the section
Killing Tracks in User Actions and Energy Conservation for more details.

5.1.5 Verbose Outputs

The verbose information output flag can be turned on or off. The amount of information printed about the track/step,
from brief to very detailed, can be controlled by the value of the verbose flag, for example,

G4UImanager* UI = G4UImanager::GetUIpointer();

UI->ApplyCommand ("/tracking/verbose 1");

212 Chapter 5. Tracking and Physics

Book For Application Developers, Release 11.2

5.1.6 Trajectory and Trajectory Point
G4Trajectory and G4TrajectoryPoint

G4Trajectory and G4TrajectoryPoint are default concrete classes provided by GEANT4, which are de-
rived from the G4VTrajectory and G4VTrajectoryPoint base classes, respectively. A G4Trajectory
class object is created by G4TrackingManager when a G4Track is passed from the G4EventManager.
GATrajectory has the following data members:

 ID numbers of the track and the track’s parent
e particle name, charge, and PDG code
* acollection of G4TrajectoryPoint pointers

GATrajectoryPoint corresponds to a step point along the path followed by the track. Its position is given
by a G4ThreeVector. A G4TrajectoryPoint class object is created in the AppendStep () method of
G4Trajectory and this method is invoked by G4TrackingManager at the end of each step. The first point
is created when the G4Trajectory is created, thus the first point is the original vertex.

The creation of a trajectory can be controlled by invoking G4TrackingManager: :SetStoreTrajectory (G4bool).
The UI command /tracking/storeTrajectory _bool_ does the same. The user can set this flag for each individual track
from his/her G4UserTrackingAction: :PreUserTrackingAction () method.

Note: The user should not create trajectories for secondaries in a shower due to the large amount of memory con-
sumed.

All the created trajectories in an event are stored in G4TrajectoryContainer class object and this ob-
ject will be kept by G4Event. To draw or print trajectories generated in an event, the user may invoke
the DrawTrajectory () or ShowTrajectory () methods of G4VTrajectory, respectively, from his/her
G4UserEventAction: :EndOfEventAction (). The geometry must be drawn before the trajectory drawing.
The color of the drawn trajectory depends on the particle charge:

* negative: red
* neutral: green
* positive: blue

Note: Due to improvements in G4Navigator, a track can execute more than one turn of its spiral trajectory without
being broken into smaller steps as long as the trajectory does not cross a geometrical boundary. Thus a drawn trajectory
may not be circular.

Customizing trajectory and trajectory point

G4Track and G4 Step are transient classes; they are not available at the end of the event. Thus, the concrete classes
G4VTrajectory and G4VTrajectoryPoint are the only ones a user may employ for end-of-event analysis
or for persistency. As mentioned above, the default classes which GEANT4 provides, i.e. G4Trajectory and
GATrajectoryPoint, have only very primitive quantities. The user can customize his/her own trajectory and
trajectory point classes by deriving directly from the respective base classes.

To use the customized trajectory, the user must construct a concrete trajectory class object in the
G4UserTrackingAction: :PreUserTrackingAction () method and make its pointer available to
G4TrackingManager by using the SetTrajectory () method. The customized trajectory point class ob-
ject must be constructed in the AppendStep () method of the user’s implementation of the trajectory class. This
AppendStep () method will be invoked by G4TrackingManager.

5.1. Tracking 213

Book For Application Developers, Release 11.2

To customize trajectory drawing, the user can override the DrawTrajectory () method in his/her own trajectory
class.

When a customized version of G4Trajectory declares any new class variables, operator new and operator delete must
be provided. It is also useful to check that the allocation size in operator new is equal to sizeof (G4Trajectory).
These two points do not apply to G4VTra jectory because it has no operator new or operator delete.

5.2 Physics Processes

5.2.1 Overview

Physics processes describe how particles interact with a material. Seven major categories of processes are provided by
GEANT4:

electromagnetic,
hadronic,

decay,
photolepton-hadron,
optical,
parameterization, and
transportation.

Nk D=

The generalization and abstraction of physics processes is a key issue in the design of GEANT4. All physics processes
are treated in the same manner from the tracking point of view. The GEANT4 approach enables anyone to create a
process and assign it to a particle type. This openness should allow the creation of processes for novel, domain-specific
or customised purposes by individuals or groups of users.

Each process has two groups of methods which play an important role in tracking,
GetPhysicalInteractionLength (GPIL) and DoIt. The GPIL method gives the step length from the
current space-time point to the next space-time point. It does this by calculating the probability of interaction based
on the process’s cross section information. At the end of this step the DoIt method should be invoked. The DoIt
method implements the details of the interaction, changing the particle’s energy, momentum, direction and position,
and producing secondary tracks if required. These changes are recorded as G4VParticleChange objects (see
Particle change).

G4VProcess

G4VProcess is the base class for all physics processes. Each physics process must implement virtual methods of
G4VProcess which describe the interaction (Dolt) and determine when an interaction should occur (GPIL). In order
to accommodate various types of interactions G4VProcess provides three DoIt methods:

* G4VParticleChangex AlongStepDolIt (const G4Track& track, const G4Steps
stepData)
This method is invoked while G4SteppingManager is transporting a particle through one step. The cor-
responding AlongStepDoIt for each defined process is applied for every step regardless of which process
produces the minimum step length. Each resulting change to the track information is recorded and accumulated
in G4Step. After all processes have been invoked, changes due to AlongStepDoIt are applied to G4Track,
including the particle relocation and the safety update. Note that after the invocation of AlongStepDoIt, the
endpoint of the G4Track object is in a new volume if the step was limited by a geometric boundary. In or-
der to obtain information about both the old and new volumes, G4Step must be accessed, since it contains
information about both pre-step and post-step points of a step.

* G4VParticleChange* PostStepDolt (const G4Tracké& track, const G4Stepé&
stepData)

214 Chapter 5. Tracking and Physics

Book For Application Developers, Release 11.2

This method is invoked at the end point of a step, only if its process limit the step, or if the process is forced to
occur at each step. G4Track will be updated after each invocation of Post StepDoIt.

* G4VParticleChangex AtRestDoIt(const G4Tracké& track, const G4Stepé&
stepData)
This method is invoked only for stopped particles, and only if its process limit the step in time, or if the process
is forced to occur.

For each of the above DoIt methods G4VProcess provides a corresponding pure virtual GPIL method:
* PostStepGetPhysicallnteractionLength

G4double PostStepGetPhysicallInteractionLength (const G4Tracké& track,
G4double previousStepSize,
G4ForceCondition* condition)

This method generates the step length allowed by its process. It also provides a flag to force the interaction to
occur regardless of its step length.
* AlongStepGetPhysicallInteractionLength

G4double AlongStepGetPhysicallInteractionLength (const G4Tracké& track,
G4double previousStepSize,
G4double currentMinimumStep,
G4double& proposedSafety,
G4GPILSelection* selection)

This method generates the step length allowed by its process.
* AtRestGetPhysicalInteractionLength

G4double AtRestGetPhysicalInteractionLength (const G4Tracks track,
G4ForceCondition+ condition)

This method generates the step length in time proposed by this process. It also provides a flag to force the
interaction to occur regardless of its step length.

Other pure virtual methods in G4VProcess follow:

e virtual G4bool IsApplicable(const G4ParticleDefinitioné)
returns true if this process object is applicable to the particle type.
* virtual void PreparePhysicsTable (const G4ParticleDefinitioné&) and
e virtual void BuildPhysicsTable (const G4ParticleDefinitionég)
is messaged by the process manager, whenever cross section tables should be prepared and rebuilt due to chang-
ing cut-off values. It is not mandatory if the process is not affected by cut-off values.
e virtual void StartTracking () and
e virtual void EndTracking()
are messaged by the tracking manager at the beginning and end of tracking the current track.
e virtual const G4VProcess* GetCreatorProcess () const
returns the sub-process pointer to be used as CreatorProcess for secondaries produced at the given step. It is
needed for combined processes like G4GammaGeneralProcess or G4NeutronGeneralProcess. Other methods:
e virtual const G4Stringé& GetProcessName () const
e virtual G4ProcessType GetProcessType () const
e virtual G4int GetProcessSubType () const
are useful for control on MC truth in an application and debugging.

5.2. Physics Processes 215

Book For Application Developers, Release 11.2

Other base classes for processes

Specialized processes may be derived from seven additional virtual base classes which are themselves derived from
G4VProcess. Three of these classes are used for simple processes:

G4VRestProcess Processes using only the AtRestDoIt method.
example: neutron capture

G4VDiscreteProcess Processes using only the Post StepDoIt method.
example: Compton scattering, hadron inelastic interaction. There are virtual methods, which are needed for
more accurate tracking of charged particles:

e virtual G4double GetCrossSection (const G4double kinE, const
G4MaterialCutsCouplex)

* virtual G4double MinPrimaryEnergy (const G4ParticleDefinitionx, const
G4Materialx)

The other four classes are provided for rather complex processes:

G4VContinuousDiscreteProcess Processes using both AlongStepDoIt and PostStepDoIt methods.
example: transportation, ionisation(energy loss and delta ray)

G4VRestDiscreteProcess Processes using both AtRestDoIt and PostStepDoIt methods.
example: positron annihilation, decay (both in flight and at rest)

G4VRestContinuousProcess Processes using both AtRestDoIt and AlongStepDoIt methods.

G4VRestContinuousDiscreteProcess Processes using AtRestDoIt,AlongStepDolt and PostStep-
Dolt methods.

Particle change

G4VParticleChange and its descendants are used to store the final state information of the track, including sec-
ondary tracks, which has been generated by the DoIt methods. The instance of G4VParticleChange is the only
object whose information is updated by the physics processes, hence it is responsible for updating the step. The
stepping manager collects secondary tracks and only sends requests via particle change to update G4Step.

GAVParticleChange is introduced as an abstract class. It has a minimal set of methods for updating
G4Step and handling secondaries. A physics process can therefore define its own particle change derived from
G4VParticleChange. Three pure virtual methods are provided,

e virtual G4Stepx UpdateStepForAtRest (G4Stepx step),
e virtual G4Step* UpdateStepForAlongStep(G4Stepx step),and
* virtual G4Stepx UpdateStepForPostStep(G4Step* step),

which correspond to the three DoIt methods of G4VProcess. Each derived class should implement these methods.
There are specialized derived classes

* G4ParticleChange - used in hadronic physics processes,

* G4ParticleChangeForTransport - used for transportation processes,

e G4ParticleChangeForDecay - used for G4Decay and G4RadiocactiveDecay,
* G4ParticleChangeForLoss - used for energy loss processes,

* G4ParticleChangeForMSC - used for multiple scattering processes,

* G4ParticleChangeForGamma - used for discrete electromagnetic processes.

216 Chapter 5. Tracking and Physics

Book For Application Developers, Release 11.2

5.2.2 Electromagnetic Interactions

This section summarizes the electromagnetic (EM) physics processes which are provided with GEANT4. Extended
information are available at EM web pages. For details on the implementation of these processes please refer to the
Physics Reference Manual.

To use the electromagnetic physics data files are needed. The user should set the environment variable G4ALEDATA
to the directory with this files. These files are distributed together with GEANT4 and can be obtained via the GEANT4
download web page.

Electromagnetic Processes

The following is a summary of the electromagnetic processes available in GEANT4.

* Photon processes

Gamma conversion (also called pair production, class name G4GammaConversion)
Photo-electric effect (class name G4PhotoElectricEffect)

Compton scattering (class name G4ComptonScattering)

Rayleigh scattering (class name G4RayleighScattering)

Muon pair production (class name G4GammaConversionToMuons)

X-ray reflection (class name G4XrayReflection)

General gamma process (class name G4GeneralGammaProcess)

¢ Electron/positron processes

Tonisation and delta ray production (class name G4deIonisation)

Bremsstrahlung (class name G4eBremsstrahlung)

e+e- pair production (class name G4ePairProduction)

Multiple scattering (class name G4eMultipleScattering)

Positron annihilation into two gammas (class name G4eplusAnnihilation)

Positron annihilation into two muons (class name G4AnnihiToMuPair)

Positron annihilation into hadrons (class name G4deeToHadrons)

Combined process for multiple scattering and transportation (class
G4TransportationWithMsc)

* Muon processes

Ionisation and delta ray production (class name G4MuIonisation)
Bremsstrahlung (class name G4MuBremsstrahlung)

e+e- pair production (class name G4MuPairProduction)

mu+mu- pair production (class name G4MuonToMuonPairProduction)
Multiple scattering (class name GAMuMultipleScattering)

* Hadron/ion processes

ITonisation (class name G4hIonisation)

Tonisation for ions (class name G4ionIonisation)

Ionisation for heavy exotic particles (class name G4hhIonisation)
Ionisation for classical magnetic monopole (class name G4mplIonisation)
Multiple scattering (class name G4hMultipleScattering)
Bremsstrahlung (class name G4hBremsstrahlung)

e+e- pair production (class name G4hPairProduction)

* Coulomb scattering processes
— Alternative process for simulation of single Coulomb scattering of all charged particles (class name

G4CoulombScattering)
Alternative process for simulation of single Coulomb scattering of ions (class
G4ScreenedNuclearRecoil)

* Processes for simulation of polarized electron and gamma beams
Compton scattering of circularly polarized gamma beam on polarized target (class name

G4PolarizedCompton)

name

name

5.2. Physics Processes

217

https://geant4.web.cern.ch/collaboration/working_groups/electromagnetic
http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/PhysicsReferenceManual/html/index.html
https://geant4.web.cern.ch/download

Book For Application Developers, Release 11.2

Pair production induced by circularly polarized ~gamma beam (class

G4PolarizedGammaConversion)

Photo-electric effect induced by circularly polarized gamma beam (class

G4PolarizedPhotoElectricEffect)

name

name

Bremsstrahlung of polarized electrons and positrons (class name G4ePolarizedBremsstrahlung)

Tonisation of polarized electron and positron beam (class name G4ePolarizedIonisation)

Annihilation of polarized positrons (class name G4deplusPolarizedAnnihilation)

* Processes for simulation of X-rays and optical protons production by charged particles

Synchrotron radiation (class name G4SynchrotronRadiation)
Transition radiation (class name G4TransitionRadiation)
Cerenkov radiation (class name G4Cerenkov)

Scintillations (class name G4Scintillation)

» The processes described above use physics model classes, which may be combined according to particle energy.
It is possible to change the energy range over which different models are valid, and to apply other models
specific to particle type, energy range, and G4Region. Models, which are used in the default EM Physics List,
are mainly from the standard EM sub-library:

Photoelectric effect (class name G4LivermorePhotoElectricModel)
Compton scattering (class name G4KleinNishinaCompton)

Electron/positron pair production (class name G4PairProductionRelModel)
Rayleigh scattering (class name G4LivermoreRayleighModel)

Multiple scattering (class name G4UrbanMscModel)

Multiple scattering (class name G4WentzelVIModel)

Single Coulomb scattering (class name G4deCoulombScatteringModel)
Electron ionisation (class name G4MollerBhabhaModel)

Electron/positron bremsstrahlung (class name G4SeltzerBergerModel)
Electron/positron bremsstrahlung (class name G4eBremsstrahlungRelModel)
Positron annihilation into 2 gamma (class name G4eeToTwoGammaModel)
Muon and hadron low-energy ionisation (class name G4BraggModel)

Ton low-energy ionisation (class name G4BraggIonModel)

Tonisation of ions (class name G4LindhardSorensenIonModel)
Anti-particle low-energy ionisation (class name G4ICRU73Q0Model)

Muon and hadron ionisation (class name G4BetheBlochModel)

Muon ionisation (class name G4MuBetheBlochModel)

Muon bremsstrahlung (class name G4MuBremsstrahlungModel)

Muon pair production by muons (class name G4MuonToMuonPairProductionModel)
Hadron bremsstrahlung (class name G4hBremsstrahlungModel)

Muon e+e- pair production (class name G4MuPairProductionModel)
Hadron e+e- pair production (class name G4hPairProductionModel)

The following alternative models are available in the standard EM sub-library:

Tonisation in thin absorbers (class name G4PAIModel)

Tonisation in thin absorbers (class name G4PATPhotModel)

Ionisation in low-density media (class name G4BraggIonGasModel)
Ionisation in low-density media (class name G4BetheBlochIonGasModel)
Tonisation of relativistic ions (class name G4At imaEnergyLossModel)
Electron/positron pair production (class name G4BetheHeitlerModel)
Electron/positron pair production (class name G4BetheHeitler5DModel)
Positron annihilation into 2 or 3 gamma (class name G4eplusTo2GammaOKVIModel)
Multiple scattering (class name G4GoudsmitSaundersonMscModel)
Multiple scattering (class name G4LowEWent zelVIModel)

Single scattering (class name G4deSingleCoulombScatteringModel)
Single scattering (class name G4hCoulombScatteringModel)

Single scattering (class name G4IonCoulombScatteringModel)

In the low-energy sub-library there are alternative models (more detailes see below):

Photoelectric effect (class name G4PenelopePhotoElectricModel)

218

Chapter 5. Tracking and Physics

Book For Application Developers, Release 11.2

— Compton scattering (class name G4PenelopeComptonModel)

— Compton scattering (class name G4LivermoreComptonModel)

— Compton scattering (class name G4LivermorePolarizedComptonModel)

— Compton scattering (class name G4LowEPComptonModel)

— Compton scattering (class name G4LowEPPolarizedComptonModel)

— Gamma conversion to e+e- pair (class name G4LivermoreGammaConversionModel)

— Gamma conversion to e+e- pair (class name G4LivermoreGammaConversion5DModel)
— Gamma conversion to e+e- pair (class name G4PenelopeGammaConversionModel)

— Rayleigh scattering (class name G4 JAEAElasticScatteringModel)

— Rayleigh scattering (class name G4JAEAPolarizedElasticScatteringModel)

— Rayleigh scattering (class name G4LivermorePolarizedRayleighModel)

— Rayleigh scattering (class name G4PenelopeRayleighModel)

— Electron ionisation (class name G4LivermoreIonisationModel)

— Electron and positron ionisation (class name G4PositronIonisationModel)

— Ion ionisation (class name G4IonParametrisedLossModel)

— Electron, proton, alpha, and ion ionisation (class name G4MicroElecInelastic)

— Electron, proton, alpha, and ion elastic scattering (class name G4MicroElecElastic)

— Electron, proton, alpha, and ion ionisation (class name G4MicroElecInelastic_new)

— Electron, proton, alpha, and ion elastic scattering (class name G4MicroElecElastic_new)

It is recommended to use physics constructor classes provided with reference physics lists (in subdirectory source/
physics_lists/constructors/electromagnetic of the GEANT4 source distribution):

default EM physics, multiple scattering is simulated with “UseSafety” type of step limitation by combined
G4WentzelVIModel and G4eCoulombScatteringModel for all particle types, for of e+- below 100
MeV G4UrbanMscModel is used, RangeFactor = 0.04, G4LivermorePhotoElectricModel
is used for simulation of the photo-electric effect, the Rayleigh scattering process is enabled below 1 MeV,
G4GammaGeneralProcess is enabled, physics tables are built from 100 eV to 100 TeV, 7 bins per energy
decade of physics tables are used (class name G4EmStandardPhysics),

optional EM physics providing fast but less accurate electron transport due to “Minimal” method of step limita-
tion by multiple scattering, RangeFactor = 0.2, Rayleigh scattering is disabled, photo-electric effect is us-
ing G4PEEffectFluoModel, enabled “ApplyCuts” option, and enabled G4TransportationWithMsc
combined process (class name G4EmStandardPhysics_optionl),

optional EM physics providing fast but less accurate electron transport due to “Minimal” method of step limi-
tation by multiple scattering, RangeFactor = 0.2, “Simple” method of step limitation by multiple scatter-
ing, Rayleigh scattering is disabled, and photo-electric effect is using G4PEEffectFluoModel (class name
G4EmStandardPhysics_option2)

EM physics for simulation with high accuracy due to “UseDistanceToBoundary” multiple scattering
step limitation and usage of G4UrbanMscModel for all charged particles, RangeFactor = 0.
03, reduced finalRange parameter of stepping function optimized per particle type, alternative model
G4KleinNishinaModel for Compton scattering, enabled fluorescence, enabled nuclear stopping,
G4Generator2BS angular generator for bremsstrahlung, G4LindhardSorensenIonModel for ion ion-
isation, G4ePairProduction for electron/positron, 20 bins energy decade of physics tables, and 10 eV
low-energy limit for tables (class name GAEmStandardPhysics_option3)

Combination of EM models for simulation with high accuracy includes multiple scattering with “UseSafety-
Plus” type of step limitation by combined G4Went ze1VIModel and G4deCoulombScatteringModel for
all particle types, for of e+- below 100 MeV G4GoudsmitSaundersonMscModel is used, RangeFactor
= 0.08,Scin = 3 (error free stepping near geometry boundaries), reduced finalRange parameter of stepping
function optimized per particle type, enabled fluorescence, enabled nuclear stopping, enable accurate angular
generator for ionisation models, GALowEPComptonModel below 20 MeV and G4KleinNishinaModel
above, G4BetheHeitler5DModel for gamma conversion, G4PenelopelonisationModel for
electrons and positrons below 100 keV, G4LindhardSorensenIonModel for ion ionisation,
G4Generator2BS angular generator for bremsstrahlung, G4ePairProduction for electron/positron, and
20 bins per energy decade of physics tables, (class name G4EmStandardPhysics_option4)

Models based on Livermore data bases for electrons and gamma, enabled Rayleigh scattering, enabled fluores-

5.2. Physics Processes 219

Book For Application Developers, Release 11.2

cence, G4BetheHeitler5DModel is used for gamma conversion, enabled nuclear stopping, enable accu-
rate angular generator for ionisation models, G4ITonParameterisedLossModel for ion ionisation, for of
e+- below 100 MeV G4Goudsmit SaundersonMscModel is used with “UseSafetyPlus” multiple scatter-
ing step limitation, RangeFactor = 0.08, Scin = 3 (error free stepping near geometry boundaries),
G4Generator2BS angular generator for bremsstrahlung, G4ePairProduction for electron/positron,
G4LindhardSorensenIonModel for ion ionisation, and 20 bins per energy decade of physics tables,
(G4EmLivermorePhysics);

Models based on Livermore data bases and new model for Compton scattering G4LowEPComptonModel,
G4BetheHeitler5DModel is used for gamma conversion, low-energy model of multiple scatter-
ing G4LowEWenzelMscModel, and G4LindhardSorensenIonModel, G4AhBremsstrahlung and
G4hPairProduction forions (G4EmLowEPPhysics);

Penelope2008 models for electrons, positrons and gamma, enabled Rayleigh scattering, en-
abled fluorescence, enabled nuclear stopping, enable accurate angular generator for ionisation
models, G4LindhardSorensenIonModel for ion ionisation, for of e+- below 100 MeV
G4GoudsmitSaundersonMscModel is used with “UseSafetyPlus” multiple scattering step limita-
tion, RangeFactor = 0.08, Scin = 3 (error free stepping near geometry boundaries), and 20 bins per
energy decade of physics tables, (G4EmPenelopePhysics);

Experimental physics with multiple scattering of e+ below 100 MeV simulated by
G4GoudsmitSaundersonMscModel is done on top of the default EM physics
(G4EmStandardPhysicsGS);

Experimental physics is done on top of the default EM physics with multiple scattering of e+- below 100
MeV simulated by a combination of G4UrbanMscModel below 1 MeV and G4WentzelVIModel,
G4eCoulombScatteringModel, and for ions G4LindhardSorensenIonModel
(G4EmStandardPhysicsWVI);

Experimental physics with single scattering models instead of multiple scattering is done on top of the
default EM physics, for all leptons and hadrons G4eCoulombScatteringModel is used, for ions -
G4IonCoulombScatteringModel (G4EmStandardPhysicsSS);

Low-energy GEANT4-DNA physics (G4EmDNAPhysics).

Alternative low-energy GEANT4-DNA physics constructors (G4EmDNAPhysics_optionX, where X is 1 to
8). Refer to GEANT4-DNA section. The default upper energy applicability limit is 300 MeV. For particles or
processes where DNA physics is not available the standard models are used.

Examples of the registration of these physics constructor and construction of alternative combinations of options
are shown in basic, extended and advanced examples, which can be found in the subdirectories examples/
basic,examples/extended/electromagnetic, examples/medical, examples/advanced, and of
the GEANT4 source distribution. Examples illustrating the use of electromagnetic processes are available as part of
the GEANT4 release.

Options are available for steering of electromagnetic processes. These options may be invoked either by Ul commands
or by the new C++ interface class G4EmParameters. The interface G4EmParameters: : Instance () isthread
safe, EM parameters are shared between threads, and parameters are shared between all EM processes. Parameters
may be modified at G4State_Prelnit or G4State_Idle states of GEANT4. Note, that when any of EM physics constructor
is instantiated a default set of EM parameters for this EM physics configuration is defined. So, parameters modification
should be applied only after. This class has the following public methods:

Dump()

StreamInfo(std::ostream&)

SetDefaults()

SetLossFluctuations(G4bool)
SetBuildCSDARange(G4bool)
SetLPM(G4bool)
SetUseCutAsFinalRange(G4bool)
SetApplyCuts(G4bool)

SetFluo(G4bool val)
SetFluoDirectory(G4EmFluoDirectory type)

220

Chapter 5. Tracking and Physics

https://geant4.web.cern.ch/download

Book For Application Developers, Release 11.2

* SetAuger(G4bool val)

¢ SetPixe(G4bool val)
 SetDeexcitationIgnoreCut(G4bool val)

* SetLateralDisplacement(G4bool val)

* SetLateralDisplacementAlg96(G4bool val)
» SetMuHadLateralDisplacement(G4bool val)
* ActivateAngularGeneratorForlonisation(G4bool val)
¢ SetUseMottCorrection(G4bool val)

* Setlntegral(G4bool val)

* SetBirksActive(G4bool val)

¢ SetUseICRU90Data(G4bool val)

¢ SetFluctuationType(G4EmFluctuationType type)
¢ SetDNAFast(G4bool val)

* SetDNAStationary(G4bool val)

* SetDNAElectronMsc(G4bool val)

¢ SetGeneralProcessActive(G4bool val)

* SetEnableSamplingTable(G4bool val)

» SetEnablePolarisation(G4bool val)

* SetDirectionalSplitting(G4bool val)

* SetQuantumEntanglement(G4bool val)

¢ SetRetrieveMuDataFromFile(G4bool val)

¢ SetPhotoeffectBelowKShell(G4bool val)

» SetMscPositronCorrection(G4bool v)

¢ SetOnlsolated(G4bool val)

¢ ActivateDNA(G4bool val)

* SetlsPrintedFlag(G4bool val);

* SetMinEnergy(G4double)

» SetMaxEnergy(G4double)

* SetMaxEnergyForCSDARange(G4double)
» SetLowestElectronEnergy(G4double)

» SetLowestMuHadEnergy(G4double)
 SetLowestTripletEnergy(G4double)

¢ SetLinearLossLimit(G4double)

* SetBremsstrahlungTh(G4double)

* SetMuHadBremsstrahlungTh(G4double val)
¢ SetLambdaFactor(G4double)

¢ SetFactorForAngleLimit(G4double)

¢ SetMscThetaLimit(G4double)

* SetMscEnergyLimit(G4double)

* SetMscRangeFactor(G4double)

* SetMscMuHadRangeFactor(G4double)

¢ SetMscGeomFactor(G4double)
 SetMscSafetyFactor(G4double)

¢ SetMscLambdaLimit(G4double)

¢ SetMscSkin(G4double)

* SetScreeningFactor(G4double)

» SetMaxNIELEnergy(G4double)

* SetMaxEnergyForSDMuPair(G4double)

* SetStepFunction(G4double, G4double)
 SetStepFunctionMuHad(G4double, G4double)
* SetStepFunctionLightlons(G4double, G4double);
* SetStepFunctionlons(G4double, G4double);
* SetDirectionalSplittingRadius(G4double)

* SetDirectionalSplittingTarget(const G4Three Vector&)

5.2. Physics Processes 221

Book For Application Developers, Release 11.2

¢ SetNumberOfBinsPerDecade(G4int)

¢ SetVerbose(G4int)

¢ SetWorkerVerbose(G4int)

* SetTransportationWithMsc(G4TransportationWithMscType type)

* SetMscStepLimitType(G4MscStepLimitType val)

* SetMscMuHadStepLimitType(G4MscStepLimitType val)

* SetSingleScatteringType(G4eSingleScatteringType val)

* SetNuclearFormFactorType(G4NuclearFormFactorType val)

» SetDNAeSolvationSubType(G4DNAModelSubType val)

 SetConversionType(G4int val)

* SetPIXECrossSectionModel(const G4String&)
 SetPIXEElectronCrossSectionModel(const G4String&)

 SetLivermoreDataDir(const G4String&)

* AddPAIModel(const G4String& particle, const G4String& region, const G4String& type)
* AddMicroElec(const G4String& region)

* AddDNA(const G4String& region, const G4String& type)

* AddPhysics(const G4String& region, const G4String& physics_type)
 SetSubCutRegion(const G4String& region)

» SetDeexActiveRegion(const G4String& region, G4bool, G4bool, G4bool)

* SetProcessBiasingFactor(const G4String& process, G4double, G4bool)

¢ ActivateForcedInteraction(const G4String& process, const G4String& region, G4double, G4bool)
 ActivateSecondaryBiasing(const G4String& process, const G4String& region, G4double, G4double)
* SetEmSaturation(G4EmSaturation*)

The corresponding Ul command can be accessed in the UI subdirectories “/process/eLoss”, “/process/em”, and *“/pro-
cess/msc”. The following types of step limitation by multiple scattering are available:

» fMinimal - simplified step limitation (used in _EMYV and _ EMX Physics Lists)

 fUseSafety - default

 fUseDistanceToBoundary - advance method of step limitation used in EM examples, required parameter skin >
0, should be used for setup without magnetic field

» fUseSafetyPlus - advanced method may be used with magnetic field

G4EmCalculator is a class which provides access to cross sections and stopping powers. This class can be used
anywhere in the user code provided the physics list has already been initialised (G4State_Idle). G4EmCalculator
has “Get” methods which can be applied to materials for which physics tables are already built, and “Compute”
methods which can be applied to any material defined in the application or existing in the GEANT4 internal database.
The public methods of this class are:

* GetDEDX(kinEnergy,particle,material,const G4Region* r=nullptr)

* GetRangeFromRestricted DEDX (kinEnergy,particle,material,const G4Region* r=nullptr)
* GetCSDARange(kinEnergy,particle,material,const G4Region* r=nullptr)

* GetRange(kinEnergy,particle,material,const G4Region* r=nullptr)

* GetKinEnergy(range,particle,material,const G4Region* r=nullptr)

* GetCrossSectionPerVolume(kinEnergy,particle,material,const G4Region* r=nullptr)
* GetShelllonisationCrossSectionPerAtom(particle,Z,shellkinEnergy)

* GetMeanFreePath(kinEnergy,particle,material,const G4Region* r=nullptr)

* PrintDEDXTable(particle)

 PrintRangeTable(particle)

¢ PrintInverseRangeTable(particle)

* ComputeDEDX(kinEnergy,particle,process,material,cut=DBL_MAX)

e ComputeElectronicDEDX (kinEnergy,particle,material,cut=DBL_MAX)

e ComputeDEDXForCutInRange(kinEnergy,particle,material,cut=DBL_MAX)

* ComputeNuclearDEDX (kinEnergy,particle, material,cut=DBL_MAX)

¢ ComputeTotalDEDX (kinEnergy,particle,material,cut=DBL_MAX)

* ComputeCrossSectionPer Volume(kinEnergy,particle,process,material,cut=nullptr)

222 Chapter 5. Tracking and Physics

Book For Application Developers, Release 11.2

* ComputeCrossSectionPerAtom(kinEnergy,particle,process,Z,A,cut=nullptr)
* ComputeCrossSectionPerShell(kinEnergy,particle,process,Z,shellldx,cut=nullptr)
* ComputeGammaAttenuationLength(kinEnergy,material)

* ComputeShelllonisationCrossSectionPerAtom(particle,Z,shell kinEnergy)
* ComputeMeanFreePath(kinEnergy,particle,process,material,cut=nullptr)

¢ ComputeEnergyCutFromRangeCut(range,particle,material)

* FindParticle(const G4String&)

¢ Findlon(G4int Z, G4int A)

* FindMaterial(const G4String&)

 FindRegion(const G4String&)

* FindCouple(const G4Material*, const const G4Region* r=nullptr)

* FindProcess(particle, const G4String& processName)

¢ SetVerbose(G4int)

For these interfaces, particles, materials, or processes may be pointers (const G4ParticleDefinitionx,
const G4Material«) or strings with names (const G4Stringé).

GA4NIELCalculator is a class which provides computation of NIEL energy loss at a step independently on cuts and
tracking. GANIELCalculator has follow methods:

* ComputeNIEL(const G4Step™)
* RecoilEnergy(const G4Step*)
¢ AddEmModel(G4VEmModel*)

the last method allows customisation of NIEL model.

Low Energy Electromagnetic Library

A physical interaction is described by a process class which can handle physics models, described by model classes.
The following is a summary of the Low Energy Electromagnetic physics models available in GEANT4. Further infor-
mation is available in the web pages of the GEANT4 Low Energy Electromagnetic Physics Working Group, accessible
from the GEANT4 web site, “who we are” section, then “working groups”.

The physics content of these models is documented in the GEANT4 Physics Reference Manual. They are based on the
Livermore data library, on the ICRU73 data tables or on the Penelope2008 Monte Carlo code. They adopt the same
software design as the “standard” GEANT4 electromagnetic models.

Examples of the registration of physics constructor with low-energy electromagnetic models are shown in GEANT4 ex-
tended examples (examples/extended/electromagnetic and examples/extended/medical in the
GEANT4 source distribution). Advanced examples (examples/advanced in the GEANT4 source distribution) il-
lustrate alternative instantiation of these processes. Both are available as part of the GEANT4 release.

Production Cuts

Remember that production cuts for secondaries can be specified as range cuts, which are converted at initialisation
time into energy thresholds for secondary gamma, electron, positron and proton production. The cut for proton is
applied by elastic scattering processes to all recoil ions.

A range cut value is set by default to 0.7 mm in GEANT4 reference physics lists. This value can be specified in the
optional SetCuts() method of the user Physics list or via Ul commands. For e.g. to set a range cut of 10 micrometers,
one can use

/run/setCut 0.01 mm

or, for a given particle type (for e.g. electron),

5.2. Physics Processes 223

https://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/PhysicsReferenceManual/html/index.html

Book For Application Developers, Release 11.2

/run/setCutForAGivenParticle e-— 0.01 mm

If a range cut equivalent to an energy lower than 990 eV is specified, the energy cut is still set to 990 eV. In order
to decrease this value (for e.g. down to 250 eV, in order to simulate low energy emission lines of the fluorescence
spectrum), one may use the following Ul command before the *“/run/initialize” command

/cuts/setLowEdge 100 eV

or alternatively directly in the user Physics list, in the optional SetCuts() method, using:

G4ProductionCutsTable: :GetProductionCutsTable () —>SetEnergyRange (100xeV, 1xGeV) ;

A command is also available in order to disable usage of production threshold for fluorescence and Auger electron
production

/process/em/deexcitationIgnoreCut true

Angular Generators

For part of EM processes it is possible to factorise out sampling of secondary energy and direction. Using an interface
G4VEmModel base class SetAngularDistribution (G4A4VEmAngularDistribution«) it is possible to
substitute default angular generator of a model. Angular generators in standard and lowenergy sub-packages follow
the same abstract interface.

For photoelectric models several angular generators are available:

* G4SauterGavrilaAngularDistribution (default);
* G4PhotoElectricAngularGeneratorSauterGavrila;
¢ G4PhotoElectricAngularGeneratorPolarized.

For bremsstrahlung and pair production models following angular generators are available:

* G4ModifiedTsai (default for electrons and positrons);

* G4ModifiedMephi (default for muons and hadrons);

* G4DipBustGenerator;

* G4Generator2BS (recommended for electrons and positrons);
¢ G4Generator2BN;

* G4PenelopeBremsstrahlungAngular.

For gamma conversion models following angular generators are available:

¢ G4ModifiedTsai (default);
* G4DipBustGenerator.

For models of ionisation a new optional angular generator is available:

* G4DeltaAngle.

224 Chapter 5. Tracking and Physics

Book For Application Developers, Release 11.2

Electromagnetics secondary biasing

It may be useful to create more than one secondary at an interaction. For example, electrons incident on a target in a
medical linac produce photons through bremsstrahlung. The variance reduction technique of bremsstrahlung splitting
involves choosing N photons from the expected distribution, and assigning each a weight of 1/N.

Similarly, if the secondaries are not important, one can kill them with a survival probability of 1/N. The weight of the
survivors is increased by a factor N. This is known as Russian roulette.

Neither biasing technique is applied if the resulting daughter particles would have a weight below 1/N, in the case of
brem splitting, or above 1, in the case of Russian roulette.

These techniques can be enabled i