Suricata User Guide
Release 7.0.4

OISF

Mar 19, 2024

CONTENTS

What is Suricata 3
1.1 About the Open Information Security Foundation 3
Quickstart guide 5
2.1 Installation L. L e e e e e 5
22 BasicSetup L e e e 5
2.3 SIgNAtUres oo i e e e e e e e e e e e e 6
24 Running Suricatao e e e e e e 6
2.5 ALRTting L e e e e e e e e e 7
2.6 EVEIJson e 7
Installation 9
3.1 SOUICE . v v v e e e e e e e e e e 9
3.2 Binary packages e e e e e e e e e e e e e e e 12
3.3 Advanced Installation L. e e e e e e e e 16
Upgrading 17
4.1 General inStructions e e e e 17
42 Upgrading 6.0t0 7.0 L L e e e e e e e e 17
43 Upgrading 5.0t06.0 L e e e e e e e 20
44 Upgrading4.1t05.0 o oL 20
Security Considerations 23
5.1 RunningasaUser Other ThanRoot 23
52 ContainerS v vt e e e e e e e e e e e e 25
Support Status 27
6.1 Levelsof Support. o e e e 27
6.2 Distributions e e e 28
6.3 Architecture SUPPOTt L L e e e e e e e e e e e 29
Command Line Options 31
T UnitTests . . . oo v o e e e e e e e e e e e e e e e 35
Suricata Rules 37
8.1 RulesFormat e e e 37
82 MetaKeywords o e e e e e e e 43
83 IPKeywords e e e e e e 47
8.4 TCPkeywords e e 52
85 UDPkeywords e 55
8.6 ICMPkeywords e e 56

8.7

8.8

8.9

8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20
8.21
8.22
8.23
8.24
8.25
8.26
8.27
8.28
8.29
8.30
8.31
8.32
8.33
8.34
8.35
8.36
8.37
8.38
8.39
8.40
8.41
8.42
8.43
8.44
8.45

Payload Keywords o e e e e e e e e e e
Changes from PCREI toPCRE2 e e e
Transformations e e
Prefiltering Keywords e
Flow Keywords o L e e e e e
Bypass Keyword e e
HTTP Keywords o ot e
File Keywords e e e e e

SSL/TLS Keywords o o o e e e e e e e e e e e e e e
SSH Keywords e e e e e e
JABKeywords o o e e e e e e e e e e
Modbus Keyword L e e e e e e e e e
DCERPC Keywords o o e e e e e e e
DHCP keywords o o e e e e e e e e e
DNP3 Keywords o o e e e e e e
ENIP/CIP Keywords o o o e e e e e e e
FTP/FTP-DATA Keywords o v v o e
Kerberos Keywords o e
SMB Keywords e e
SNMP keywords o e e e e e e e e e e
Base6d keywords e e
SIPKeywords o o o e e e e e e e e e e e e e e e
RFB Keywords e e e e e e e
MQTT Keywords o o o e e e e e e e e e e e e e
IKE Keywords o e e e e e e
HTTP2 Keywords o o e e e e e e e
Quic Keywords e e e e e e e e
Generic App Layer Keywords 0 e e e e e
Xbits Keyword L e e e e
Thresholding Keywords o . e e
IP Reputation Keyword oL e
IP Addresses Match L
ConfigRules e e e e
Datasets e e
Lua Scripting for Detection e
Differences From Snort oL e
Multiple Buffer Matching e
Tag . . e e e e e e

Rule Management

9.1
9.2
9.3
9.4

Rule Management with Suricata-Update
Adding Your Own Rules o e e e e e
RuleReloads e
Rules Profiling e

10 Making sense out of Alerts

11 Performance

11.1
11.2
11.3
11.4
11.5

Runmodes e
Packet Capture o L e e e e e e e e e e
Tuning Considerations e e e
Hyperscan L e e e
High Performance Configuration e

136

147

166

189
189
191
192
193

195

12

13

14

15

16

17

18

19

20

21

11.6 Statistics o o e e e e
11.7 Ignoring Traffic 0 e e e e
11.8 Packet Profiling e
11.9 RuleProfiling L e
1110 Temalloc . . . o o o o e e e e e e e e e e
11.11 Performance Analysis i i i e e e e e

Configuration

12.1 Suricata.yaml L L e e e e e e e e e e e
12.2 Global-Thresholds e e
12.3 Exception Policies e e e e e e
12.4 Snort.conf to Suricata.yaml oL e
125 MultiTenancy o oo it e e e e e
12.6 Dropping Privileges After Startup e
12.7 Using Landlock LSM L L o e e
12.8 systemd notification L. L e e e e e e e e e e e
129 Includes. L

Reputation
13.1 TPReputation o o v e e e e e e e e e e e e e e

Init Scripts

Setting up IPS/inline for Linux
15.1 Setting up IPS with Netfilter
152 SettingupIPSatLayer2 e e

Setting up IPS/inline for Windows

Output

17.1 EVE . .
17.2 LuaOutput o o o e e e e e e e e e e e e e e
17.3 Syslog Alerting Compatibility e
17.4 Custom http logging o e e
17.5 Customtlslogging o o e e e e e e e e
17.6 LogRotation e e e e e e

Lua support
18.1 Luausagein Suricata. i i v i i e e e e e e e e e e e
182 Luafunctions o o i i e e e e e e e e e

File Extraction

19.1 Architecture o e e e e e e e e e e e e e
192 Settings o v o i e e e e e e e e e e e e e e
193 0Output L e e
19.4 Rules o e e e e e e e e
195 MDS . o o e e e
19.6 Updating Filestore Configuration ittt e

Public Data Sets

Using Capture Hardware

21.1 Endace DAG e e e e
21.2 Napatech L e e
213 MYTIiCOM . . o o vt o e
21.4 eBPFand XDP e

225
225
281
284
287
292
296
296
297
298

301
301

305

307
307
311

317

319
319
390
391
393
394
394

397
397
397

417
417
417
418
419
419
422

425

427
427
428
437
438

215 NEMAP . . . o o o e
21.6 AF_XDP e
21.7 DPDK . . e

22 Interacting via Unix Socket
22,1 Introduction e e
22.2 Commands in standard runningmode oL Lo
223 Commandsonthecmd prompt. L L L e e e e e e e e e e
224 PCAPprocessing modeo e e e e e e e e e e e
22,5 Buildyourownclient L e

23 3rd Party Integration
23.1 Symantec SSL Visibility (BlueCoat) e

24 Man Pages
241 Suricata e e e e e e e e e e e e e e e
24.2 Suricata Socket Control L. e
24.3 Suricata Control e e e e
24.4 Suricata Control Filestore e e

25 Acknowledgements

26 Licenses
26.1 GNU General Public License e e e e e
26.2 Creative Commons Attribution-NonCommercial 4.0 International Public License
26.3 Suricata Source Code e e
26.4 Suricata Documentation e e e e e e e e e e e e e

27 Suricata Developer Guide
27.1 Working with the Codebase i i i e e e e e e e
27.2 Suricatalnternals L L L e e e e e e e
27.3 Extending Suricata L Lo e e e e e e e e e e

Bibliography

Index

461
461
462
463
463
465

467
467

469
469
475
477
478

481

483
483
487
491
491

493
493
523
524

543

545

Suricata User Guide, Release 7.0.4

This is the documentation for Suricata 7.0.4.

CONTENTS 1

Suricata User Guide, Release 7.0.4

2 CONTENTS

CHAPTER
ONE

WHAT IS SURICATA

Suricata is a high performance Network IDS, IPS and Network Security Monitoring engine. It is open source and owned
by a community-run non-profit foundation, the Open Information Security Foundation (OISF). Suricata is developed
by the OISF.

1.1 About the Open Information Security Foundation

The Open Information Security Foundation is a non-profit foundation organized to build community and to support
open-source security technologies like Suricata, the world-class IDS/IPS engine.

1.1.1 License

The Suricata source code is licensed under version 2 of the GNU General Public License.

This documentation is licensed under the Creative Commons Attribution-NonCommercial 4.0 International Public
License.

https://oisf.net

Suricata User Guide, Release 7.0.4

4 Chapter 1. What is Suricata

CHAPTER
TWO

QUICKSTART GUIDE

This guide will give you a quick start to run Suricata and will focus only on the basics. For more details, read through
the more specific chapters.

2.1 Installation

It's assumed that you run a recent Ubuntu release as the official PPA can then be used for the installation. To install the
latest stable Suricata version, follow the steps:

sudo apt-get install software-properties-common
sudo add-apt-repository ppa:oisf/suricata-stable
sudo apt update

sudo apt install suricata jq

The dedicated PPA repository is added, and after updating the index, Suricata can be installed. We recommend installing
the jq tool at this time as it will help with displaying information from Suricata's EVE JSON output (described later
in this guide).

For the installation on other systems or to use specific compile options see Installation.

After installing Suricata, you can check which version of Suricata you have running and with what options, as well as
the service state:

sudo suricata --build-info
sudo systemctl status suricata

2.2 Basic setup

First, determine the interface(s) and IP address(es) on which Suricata should be inspecting network packets:

$ ip addr

2: enpls®: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 gdisc fq_codel state UP group..
—.default glen 1000

link/ether 00:11:22:33:44:55 brd ff:ff:ff:ff:ff:ff

inet 10.0.0.23/24 brd 10.23.0.255 scope global noprefixroute enpls®

Use that information to configure Suricata:

Suricata User Guide, Release 7.0.4

sudo vim /etc/suricata/suricata.yaml

There are many possible configuration options, we focus on the setup of the HOME_NET variable and the network inter-
face configuration. The HOME_NET variable should include, in most scenarios, the IP address of the monitored interface
and all the local networks in use. The default already includes the RFC 1918 networks. In this example 10.0.0.23 is
already included within 10.0.0.0/8. If no other networks are used the other predefined values can be removed.

In this example the interface name is enp1s® so the interface name in the af-packet section needs to match. An
example interface config might look like this:

Capture settings:

af-packet:

- interface: enpls®
cluster-id: 99
cluster-type: cluster_flow
defrag: yes
use-mmap: yes
tpacket-v3: yes

This configuration uses the most recent recommended settings for the IDS runmode for basic setups. There are many
of possible configuration options which are described in dedicated chapters and are especially relevant for high perfor-
mance setups.

2.3 Signatures

Suricata uses Signatures to trigger alerts so it's necessary to install those and keep them updated. Signatures are also
called rules, thus the name rule-files. With the tool suricata-update rules can be fetched, updated and managed to
be provided for Suricata.

In this guide we just run the default mode which fetches the ET Open ruleset:

sudo suricata-update

Afterwards the rules are installed at /var/lib/suricata/rules which is also the default at the config and uses the
sole suricata.rules file.

2.4 Running Suricata

With the rules installed, Suricata can run properly and thus we restart it:

sudo systemctl restart suricata

To make sure Suricata is running check the Suricata log:

sudo tail /var/log/suricata/suricata.log

The last line will be similar to this:

<Notice> - all 4 packet processing threads, 4 management threads initialized, engine.
< started.

6 Chapter 2. Quickstart guide

Suricata User Guide, Release 7.0.4

The actual thread count will depend on the system and the configuration.

To see statistics, check the stats.log file:

sudo tail -f /var/log/suricata/stats.log

By default, it is updated every 8 seconds to show updated values with the current state, like how many packets have
been processed and what type of traffic was decoded.

2.5 Alerting

To test the IDS functionality of Suricata it's best to test with a signature. The signature with ID 2100498 from the ET
Open ruleset is written specific for such test cases.

2100498:

alert ip any any -> any any (msg:"GPL ATTACK_RESPONSE id check returned root"; content:
~"uid=0|28|root|29|"; classtype:bad-unknown; sid:2100498; rev:7; metadata:created_at.
—2010_09_23, updated_at 2010_09_23;)

The syntax and logic behind those signatures is covered in other chapters. This will alert on any IP traffic that has the
content within its payload. This rule can be triggered quite easy. Before we trigger it, start tail to see updates to
fast.log.

Rule trigger:

sudo tail -f /var/log/suricata/fast.log
curl http://testmynids.org/uid/index.html

The following output should now be seen in the log:

[1:2100498:7] GPL ATTACK_RESPONSE id check returned root [**] [Classification:..
—Potentially Bad Traffic] [Priority: 2] {TCP} 217.160.0.187:80 -> 10.0.0.23:41618

This should include the timestamp and the IP of your system.

2.6 EVE Json

The more advanced output is the EVE JSON output which is explained in detail in Eve JSON Output. To see what this
looks like it's recommended to use jq to parse the JSON output.

Alerts:

sudo tail -f /var/log/suricata/eve.json | jq 'select(.event_type=="alert")'

This will display more detail about each alert, including meta-data.

Stats:

sudo tail -f /var/log/suricata/eve.json | jq 'select(.event_type=="stats")|.stats.
—capture.kernel_packets'
sudo tail -f /var/log/suricata/eve.json | jq 'select(.event_type=="stats")'

The first example displays the number of packets captured by the kernel; the second examples shows all of the statistics.

2.5. Alerting 7

Suricata User Guide, Release 7.0.4

8 Chapter 2. Quickstart guide

CHAPTER
THREE

INSTALLATION

Before Suricata can be used it has to be installed. Suricata can be installed on various distributions using binary
packages: Binary packages.

For people familiar with compiling their own software, the Source method is recommended.

Advanced users can check the advanced guides, see Arch Based.

3.1 Source

Installing from the source distribution files gives the most control over the Suricata installation.

Basic steps:

tar xzvf suricata-6.0.0.tar.gz
cd suricata-6.0.0

./configure

make

make install

This will install Suricata into /usr/local/bin/, use the default configuration in /usr/local/etc/suricata/ and
will output to /usr/local/var/log/suricata

3.1.1 Common configure options

--disable-gccmarch-native
Do not optimize the binary for the hardware it is built on. Add this flag if the binary is meant to be portable or
if Suricata is to be used in a VM.
--prefix=/usr/
Installs the Suricata binary into /usr/bin/. Default /usr/local/
--sysconfdir=/etc
Installs the Suricata configuration files into /etc/suricata/. Default /usr/local/etc/
--localstatedir=/var

Setups Suricata for logging into /var/log/suricata/. Default /usr/local/var/log/suricata

--enable-lua

Enables Lua support for detection and output.

Suricata User Guide, Release 7.0.4

--enable-geoip
Enables GeolP support for detection.

--enable-dpdk
Enables DPDK packet capture method.

3.1.2 Dependencies

For Suricata's compilation you'll need the following libraries and their development headers installed:

libjansson, libpcap, libpcre2, libyaml, zlib

The following tools are required:

make gcc (or clang) pkg-config rustc cargo

Rust support:

rustc, cargo

Some distros don't provide or provide outdated Rust packages.
Rust can also be installed directly from the Rust project itself::

1) Install Rust https://www.rust-lang.org/en-US/install.html

2) Install cbindgen - if the cbindgen is not found in the repository
or the cbindgen version is lower than required, it can be
alternatively installed as: cargo install --force cbindgen

3) Make sure the cargo path is within your PATH environment

e.g. echo 'export PATH="$§ :~/.cargo/bin”"' >> ~/.bashrc
e.g. export PATH="§ :/root/.cargo/bin"
Ubuntu/Debian

Note: The following instructions require sudo to be installed.

Minimal:

Installed Rust and cargo as indicated above

sudo apt-get install build-essential git libjansson-dev libpcap-dev \
libpcre2-dev libtool libyaml-dev make pkg-config zliblg-dev

On most distros installing cbindgen with package manager should be enough

sudo apt-get install cbindgen # alternative: cargo install --force cbindgen

Recommended:

Installed Rust and cargo as indicated above

sudo apt-get install autoconf automake build-essential ccache clang curl git \
gosu jq libbpf-dev libcap-ng® libcap-ng-dev libelf-dev \
libevent-dev libgeoip-dev libhiredis-dev libjansson-dev \
liblua5.1-dev libmagic-dev libnetl-dev libpcap-dev \
libpcre2-dev libtool libyaml-0-2 libyaml-dev m4 make \

(continues on next page)

10 Chapter 3. Installation

https://www.dpdk.org/

Suricata User Guide, Release 7.0.4

(continued from previous page)

pkg-config python3 python3-dev python3-yaml sudo zliblg \
zliblg-dev
cargo install --force cbindgen

Extra for iptables/nftables IPS integration:

sudo apt-get install libnetfilter-queue-dev libnetfilter-queuel \
libnetfilter-log-dev libnetfilter-logl \
libnfnetlink-dev libnfnetlink®

CentOS, AlmaLinux, RockyLinux, Fedora, etc

Note: The following instructions require sudo to be installed.

To install all minimal dependencies, it is required to enable extra package repository in most distros. You can enable it
possibly by one of the following ways:

sudo dnf -y update

sudo dnf -y install dnf-plugins-core

Almalinux 8

sudo dnf config-manager --set-enabled powertools

AlmaLinux 9

sudo dnf config-manager --set-enable crb

Oracle Linux 8

sudo dnf config-manager --set-enable 0l8_codeready_builder
Oracle Linux 9

sudo dnf config-manager --set-enable 0l9_codeready_builder

Minimal:

Installed Rust and cargo as indicated above

sudo dnf install -y gcc gcc-c++ git jansson-devel libpcap-devel libtool \
libyaml-devel make pcre2-devel which zlib-devel

cargo install --force cbindgen

Recommended:

Installed Rust and cargo as indicated above

sudo dnf install -y autoconf automake diffutils file-devel gcc gcc-c++ git \
jansson-devel jg libcap-ng-devel libevent-devel \
libmaxminddb-devel libnet-devel libnetfilter_queue-devel \
libnfnetlink-devel libpcap-devel libtool libyaml-devel \
lua-devel 1z4-devel make nss-devel pcre2-devel pkgconfig \
python3-devel python3-sphinx python3-yaml sudo which \
zlib-devel

cargo install --force cbindgen

3.1. Source 11

Suricata User Guide, Release 7.0.4

3.1.3 Compilation

Follow these steps from your Suricata directory:

./scripts/bundle.sh

./autogen.sh

./configure # you may want to add additional parameters here

./configure --help to get all available parameters

make -j8 # j is for paralleling, you may de/increase depending on your CPU
make install # to install your Suricata compiled binary

3.1.4 Auto-Setup

You can also use the available auto-setup features of Suricata:

./configure && make && sudo make install-conf

make install-conf would do the regular "make install" and then it would automatically create/setup all the necessary
directories and suricata.yaml for you.

./configure && make && sudo make install-rules

make install-rules would do the regular "make install" and then it would automatically download and set up the latest
ruleset from Emerging Threats available for Suricata.

./configure && make && sudo make install-full

make install-full would combine everything mentioned above (install-conf and install-rules) and will present you with
a ready-to-run (configured and set-up) Suricata.

3.2 Binary packages

3.2.1 Ubuntu from Personal Package Archives (PPA)

For Ubuntu, OISF maintains a PPA suricata-stable that always contains the latest stable release.

Note: The following instructions require sudo to be installed.

Setup to install the latest stable Suricata:

sudo apt-get install software-properties-common
sudo add-apt-repository ppa:oisf/suricata-stable
sudo apt-get update

Then, you can install the latest stable with:

sudo apt-get install suricata

After installing you can proceed to the Basic setup.

OISF launchpad: suricata-stable.

12 Chapter 3. Installation

https://launchpad.net/~oisf/+archive/suricata-stable

Suricata User Guide, Release 7.0.4

Upgrading

To upgrade:

sudo apt-get update
sudo apt-get upgrade suricata

Remove

To remove Suricata from your system:

sudo apt-get remove suricata

Getting Debug or Pre-release Versions

Note: The following instructions require sudo to be installed.

If you want Suricata with built-in (enabled) debugging, you can install the debug package:

sudo apt-get install suricata-dbg

If you would like to help test the Release Candidate (RC) packages, the same procedures apply, just using another PPA:
suricata-beta:

sudo add-apt-repository ppa:oisf/suricata-beta
sudo apt-get update
sudo apt-get upgrade

You can use both the suricata-stable and suricata-beta repositories together. Suricata will then always be the latest
release, stable or beta.

OISF launchpad: suricata-beta.

Daily Releases

Note: The following instructions require sudo to be installed.

If you would like to help test the daily build packages from our latest git(dev) repository, the same procedures as above
apply, just using another PPA, suricata-daily:

sudo add-apt-repository ppa:oisf/suricata-daily-allarch
sudo apt-get update
sudo apt-get upgrade

Note: Please have in mind that this is packaged from our latest development git master and is therefore potentially
unstable.

3.2. Binary packages 13

https://launchpad.net/~oisf/+archive/suricata-beta

Suricata User Guide, Release 7.0.4

We do our best to make others aware of continuing development and items within the engine that are not yet complete
or optimal. With this in mind, please refer to Suricata's issue tracker on Redmine for an up-to-date list of what we are
working on, planned roadmap, and to report issues.

OISF launchpad: suricata-daily.

3.2.2 Debian

Note: The following instructions require sudo to be installed.

In Debian 9 (stretch) and later do:

sudo apt-get install suricata

In the "stable" version of Debian, Suricata is usually not available in the latest version. A more recent version is often
available from Debian backports, if it can be built there.

To use backports, the backports repository for the current stable distribution needs to be added to the system-wide
sources list. For Debian 10 (buster), for instance, run the following as root:

echo "deb http://http.debian.net/debian buster-backports main" > \
/etc/apt/sources.list.d/backports.list

apt-get update

apt-get install suricata -t buster-backports

3.2.3 CentOS, AlmaLinux, RockyLinux, Fedora, etc

RPMs are provided for the latest release of Enterprise Linux. This includes CentOS Linux and rebuilds such as Alma-
Linux and RockyLinux. Additionally, RPMs are provided for the latest supported versions of Fedora.

RPMs specifically for CentOS Stream are not provided, however the RPMs for their related version may work fine.

Installing From Package Repositories

CentOS, RHEL, AlmaLinux, RockyLinux, etc Version 8+

Note: The following instructions require sudo to be installed.

sudo dnf install epel-release dnf-plugins-core
sudo dnf copr enable @oisf/suricata-7.0
sudo dnf install suricata

14 Chapter 3. Installation

http://redmine.openinfosecfoundation.org/projects/suricata/issues
https://launchpad.net/~oisf/+archive/suricata-daily

Suricata User Guide, Release 7.0.4

CentOS 7

sudo yum install epel-release yum-plugin-copr
sudo yum copr enable @oisf/suricata-7.0
sudo yum install suricata

Fedora

sudo dnf install dnf-plugins-core
sudo dnf copr enable @oisf/suricata-7.0
sudo dnf install suricata

Additional Notes for RPM Installations

e Suricata is pre-configured to run as the suricata user.

e Command line parameters such as providing the interface names can be configured in /etc/sysconfig/
suricata.

» Users can run suricata-update without being root provided they are added to the suricata group.
* Directories:

— /etc/suricata: Configuration directory

— /var/log/suricata: Log directory

— /var/lib/suricata: State directory rules, datasets.

Starting Suricata On-Boot

The Suricata RPMs are configured to run from Systemd.

Note: The following instructions require sudo to be installed.

To start Suricata:

sudo systemctl start suricata

To stop Suricata:

sudo systemctl stop suricata

To have Suricata start on-boot:

sudo systemctl enable suricata

To reload rules:

sudo systemctl reload suricata

3.2. Binary packages 15

Suricata User Guide, Release 7.0.4

3.2.4 Arch Based

The ArchLinux AUR contains Suricata and suricata-nfqueue packages, with commonly used configurations for compi-
lation (may also be edited to your liking). You may use makepkg, yay (sample below), or other AUR helpers to compile
and build Suricata packages.

yay -S suricata

3.3 Advanced Installation

If you are using Ubuntu, you can follow Installation from GIT .

For other various installation guides for installing from GIT and for other operating systems, please check (bear in mind
that those may be somewhat outdated): https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Suricata_
Installation

16 Chapter 3. Installation

https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Suricata_Installation
https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Suricata_Installation

CHAPTER
FOUR

UPGRADING

4.1 General instructions

Suricata can be upgraded by simply installing the new version to the same locations as the already installed ver-
sion. When installing from source, this means passing the same --prefix, --sysconfdir, --localstatedir and
--datadir options to configure.

$ suricata --build-info|grep -A 3 '\-\-prefix'

--prefix /usr
--sysconfdir /etc
--localstatedir /var
--datarootdir /usr/share

4.1.1 Configuration Updates

New versions of Suricata will occasionally include updated config files: classification.config and reference.
config. Since the Suricata installation will not overwrite these if they exist, they must be manually updated. If there
are no local modifications they can simply be overwritten by the ones Suricata supplies.

Major updates include new features, new default settings and often also remove features. This upgrade guide covers
the changes that might have an impact of migrating from an older version and keeping the config. We encourage you
to also check all the new features that have been added but are not covered by this guide. Those features are either not
enabled by default or require dedicated new configuration.

4.2 Upgrading 6.0 to 7.0

4.2.1 Major changes

» Upgrade of PCREI to PCRE2. See Changes from PCREI to PCRE? for more details.

* IPS users: by default various new "exception policies" are set to DROP traffic. Please see Exception Policies for
details on the settings and their scope. For trouble shooting, please check My traffic gets blocked after upgrading
to Suricata 7.

* New protocols enabled by default: bittorrent-dht, quic, http2.

* The telnet protocol is also enabled by default, but only for the app-layer.

17

https://forum.suricata.io/t/my-traffic-gets-blocked-after-upgrading-to-suricata-7
https://forum.suricata.io/t/my-traffic-gets-blocked-after-upgrading-to-suricata-7

Suricata User Guide, Release 7.0.4

4.2.2 Security changes

* suricata.yaml now prevents process creation by Suricata by default with security.limit-noproc. The suricata.yaml

configuration file needs to be updated to enable this feature. For more info, see Configuration hardening.

* Absolute filenames and filenames containing parent directory traversal are no longer allowed by default for

datasets when the filename is specified as part of a rule. See Datasets Security and Datasets File Locations
for more information.

* Lua rules are now disabled by default (change also introduced in 6.0.13), see Lua Scripting for Detection.

4.2.3 Removals

* The libprelude output plugin has been removed.

* EVE DNS vl logging support has been removed. If still using EVE DNS v1 logging, see the manual section on

DNS logging configuration for the current configuration options: DNS EVE Configuration

4.2.4 Logging changes

» IKEv2 Eve logging changed, the event_type has become ike which covers both protocol versions. The fields

errors and notify have moved to ike.ikev2.errors and ike.ikev2.notify.
FTP DATA metadata for alerts are now logged in ftp_data instead of root.
Alert x££ field is now logged as alert.xff for alerts instead of at the root.

Protocol values and their names are built into Suricata instead of using the system's /etc/protocols file. Some
names and casing may have changed in the values proto in eve. json log entries and other logs containing
protocol names and values. See https://redmine.openinfosecfoundation.org/issues/4267 for more information.

Logging of additional HTTP headers configured through the EVE http.custom option will now be logged in
the request_headers and/or response_headers respectively instead of merged into the existing http object.
In Suricata 6.0, a configuration like:

http:
custom: [Server]

would result in a log entry like:

"http": {
"hostname": "suricata.io",
"http_method": "GET",
"protocol™: "HTTP/1/1",
"server": "nginx",

}

This merging of custom headers in the http object could result in custom headers overwriting standard fields in
the http object, or a response header overwriting request header.

To prevent the possibility of fields being overwritten, all custom headers are now logged into the
request_headers and response_headers arrays to avoid any chance of collision. This also facilitates the
logging of headers that may appear multiple times, with each occurrence being logged in future releases (see
note below).

18

Chapter 4. Upgrading

https://redmine.openinfosecfoundation.org/issues/4267

Suricata User Guide, Release 7.0.4

While these arrays are not new in Suricata 7.0, they had previously been used exclusively for the
dump-all-headers option.

As of Suricata 7.0, the above configuration example will now be logged like:

"http": {
"hostname": "suricata.io",
"http_method": "GET",
"protocol": "HTTP/1/1",
"response_headers": [

{ "name": "Server", "value": "nginx" }

]

}

Effectively making the custom option a subset of the dump-all-headers option.

If you've been using the custom option, this may represent a breaking change. However, if you haven't used it,
there will be no change in the output.

Note: Currently, if the same HTTP header is seen multiple times, the values are concatenated into a comma-
separated value.

For more information, refer to: https://redmine.openinfosecfoundation.org/issues/1275.

4.2.5 Deprecations

e Multiple "include" fields in the configuration file will now issue a warning and in Suricata 8.0 will not be sup-
ported. See Includes for documentation on including multiple files.

e For AF-Packet, the cluster_rollover setting is no longer supported. Configuration settings using
cluster_rollover will cause a warning message and act as though cluster_flow * was specified. Please update
your configuration settings.

4.2.6 Other changes

» Experimental keyword http2.header is removed. http.header, http.request_header, and http.response_header
are to be used.

* NSS is no longer required. File hashing and JA3 can now be used without the NSS compile time dependency.

« If installing Suricata without the bundled Suricata-Update, the default-rule-path has been changed from
/etc/suricata/rules to /var/lib/suricata/rules to be consistent with Suricata when installed with
Suricata-Update.

* FTP has been updated with a maximum command request and response line length of 4096 bytes. To change the
default see F'TP.

e SWF decompression in http has been disabled by default. To change the default see Configure HTTP (libhtp).
Users with configurations from previous releases may want to modify their config to match the new default. See
https://redmine.openinfosecfoundation.org/issues/5632 for more information.

» The new option livedev is enabled by default with use-for-tracking being set to true. This should be disabled if
multiple live devices are used to capture traffic from the same network.

4.2. Upgrading 6.0 to 7.0 19

https://redmine.openinfosecfoundation.org/issues/1275
https://redmine.openinfosecfoundation.org/issues/5632

Suricata User Guide, Release 7.0.4

4.3 Upgrading 5.0 to 6.0

» SIP now enabled by default
* RDP now enabled by default
* ERSPAN Type I enabled by default.

4.3.1 Major changes

* New protocols enabled by default: mqtt, rfb
* SSH Client fingerprinting for SSH clients

* Conditional logging

e Initial HTTP/2 support

DCERPC logging

* Improved EVE logging performance

4.3.2 Removals
* File-store v1 has been removed. If using file extraction, the file-store configuration will need to be updated to
version 2. See Update File-store vl Configuration to V2.

¢ Individual Eve (JSON) loggers have been removed. For example, stats-json, dns-json, etc. Use multiple
Eve logger instances if this behavior is still required. See Multiple Logger Instances.

¢ Unified2 has been removed. See unified2-removed.

4.4 Upgrading 4.1 t0 5.0

4.4.1 Major changes

* New protocols enabled by default: snmp (new config only)

» New protocols disabled by default: rdp, sip

* New defaults for protocols: nfs, smb, tftp, krb5 ntp are all enabled by default (new config only)
* VXLAN decoder enabled by default. To disable, set decoder.vxlan.enabled to false.

* HTTP LZMA support enabled by default. To disable, set 1zma-enabled to false in each of the 1libhtp
configurations in use.

* classification.config updated. ET 5.0 ruleset will use this.

* decoder event counters use 'decoder.event' as prefix now. This can be controlled using the stats.
decoder-events-prefix setting.

20 Chapter 4. Upgrading

Suricata User Guide, Release 7.0.4

4.4.2 Removals

* dns-log, the text dns log. Use EVE.dns instead.
e file-log, the non-EVE JSON file log. Use EVE files instead.
* drop-log, the non-EVE JSON drop log.

See https://suricata.io/about/deprecation-policy/

4.4. Upgrading 4.1 t0 5.0 21

https://suricata.io/about/deprecation-policy/

Suricata User Guide, Release 7.0.4

22 Chapter 4. Upgrading

CHAPTER
FIVE

SECURITY CONSIDERATIONS

Suricata is a security tool that processes untrusted network data, as well as requiring elevated system privileges to
acquire that data. This combination deserves extra security precautions that we discuss below.

Additionally, supply chain attacks, particularly around rule distribution, could potentially target Suricata installations.

5.1 Running as a User Other Than Root

Note: If using the Suricata RPMs, either from the OISF COPR repo, or the EPEL repo, the following is already
configured for you. The only thing you might want to do is add your management user to the suricata group.

Many Suricata examples and guides will show Suricata running as the root user, particularly when running on live
traffic. As Suricata generally needs low level read (and in IPS write) access to network traffic, it is required that
Suricata starts as root, however Suricata does have the ability to drop down to a non-root user after startup, which could
limit the impact of a security vulnerability in Suricata itself.

Note: Currently the ability to drop root privileges after startup is only available on Linux systems.

5.1.1 Create User

Before running as a non-root user, you need to choose and possibly create the user and group that will Suricata will run
as. Typically this user would be a sytem user with the name suricata. Such a user can be created with the following
command:

useradd --no-create-home --system --shell /sbin/nologin suricata

This will create a user and group with the name suricata.

23

Suricata User Guide, Release 7.0.4

5.1.2 File System Permissions

Before running Suricata as the user suricata, some directory permissions will need to be updated to allow the

suricata read and write access.

Assuming your Suricata was installed from source using the recommended configuration of:

./configure --prefix=/usr/ --sysconfdir=/etc/ --localstatedir=/var/

the following directories will need their permissions updated:

Directory Permissions

/etc/suricata Read

/var/log/suricata | Read, Write

/var/lib/suricata | Read, Write

/var/run/suricata | Read, Write

The following commands will setup the correct permissions:

e /etc/suricata:

chgrp -R suricata /etc/suricata
chmod -R g+r /etc/suricata

e /var/log/suricata:

chgrp -R suricata /var/log/suricata
chmod -R g+rw /var/log/suricata

e /var/lib/suricata:

chgrp -R suricata /var/lib/suricata
chmod -R g+srw /var/lib/suricata

e /var/lib/suricata:

chgrp -R suricata /var/run/suricata
chmod -R g+srw /var/run/suricata

5.1.3 Configure Suricata to Run as Suricata

Suricata can be configured to run as an alternate user by updating the configuration file or using command line argu-

ments.

» Using the configuration file, update the run-as section to look like:

run-as:
user: suricata
group: suricata

* Or if using command line arguments, add the following to your command:

--user suricata --group suricata

24

Chapter 5. Security Considerations

Suricata User Guide, Release 7.0.4

5.1.4 Starting Suricata

It is important to note that Suricata still needs to be started with root permissions in most cases. Starting as root allows
Suricata to get access to the network interfaces and set the capabilities required during runtime before it switches down
to the configured user.

5.1.5 Other Commands: Suricata-Update, SuricataSC

With the previous permissions setup, suricata-update and suricatasc can also be run without root or sudo. To
allow a user to access these commands, add them to the suricata group.

5.2 Containers

Containers such as Docker and Podman are other methods to provide isolation between Suricata and the host machine
running Suricata. However, we still recommend running as a non-root user, even in containers.

5.2.1 Capabilities

For both Docker and Podman the following capabilities should be provided to the container running Suricata for proper
operation:

--cap-add=net_admin --cap-add=net_raw --cap-add=sys_nice

5.2.2 Podman

Unfortunately Suricata will not work with rootless Podman, this is due to Suricata's requirement to start with root
privileges to gain access to the network interfaces. However, if started with the above capabilities, and configured to
run as a non-root user, it will drop root privileges before processing network data.

5.2. Containers 25

Suricata User Guide, Release 7.0.4

26 Chapter 5. Security Considerations

CHAPTER
SIX

SUPPORT STATUS

6.1 Levels of Support

The support tiers detailed below do not represent a binding commitment. Instead, they serve as a framework that the
OISF employs to prioritize features and functionality.

6.1.1 Tier 1

Tier 1 supported items are developed and supported by the Suricata team. These items receive full CI (continuous
integration) coverage, and functional failures block git merges and releases. Tier 1 features are enabled by default on
platforms that support the feature.

6.1.2 Tier 2

Tier 2 supported items are developed and supported by the Suricata team, sometimes with help from community mem-
bers. Major functional failures block git merges and releases, however less major issues may be documented as "known
issues" and may go into a release. Tier 2 features and functionality may be disabled by default.

6.1.3 Community
When a feature of Suricata is community supported, it means the OISF/Suricata development team won’t directly
support it. This is to avoid overloading the team.
When accepting a feature into the code base anyway, it will come with a number of limits and conditions:
* submitter must commit to maintaining it:
— make sure code compiles and correctly functions after Suricata and/or external (e.g. library) changes.
— support users when they encounter problems on forum and redmine tickets.

¢ the code will be disabled by default and will not become part of the QA setup. This means it will be enabled
only by an --enable configure flag.

¢ the code may not have CI coverage by the OISF infrastructure.

If the feature gets lots of traction, and/or if the team just considers it very useful, it may get ‘promoted’ to being officially
supported.

On the other hand, the feature will be removed if the submitter stops maintaining it and no-one steps up to take over.

27

Suricata User Guide, Release 7.0.4

6.1.4 Vendor

Vendor supported features are features specific to a certain vendor and usually require software and/or hardware from
that vendor. While these features may exist in the main Suricata code, they rely on support from the vendor to keep the
feature in a functional state.

Vendor supported functionality will generally not have CI or QA coverage by the OISF.

6.1.5 Unmaintained

When a feature is unmaintained it is very likely broken and may be (partially) removed during cleanups and code
refactoring. No end-user support is done by the core team. If someone wants to help maintain and support such a
feature, we recommend talking to the core team before spending a lot of time on it.

Please see Contributing to Suricata for more information if you wish to contribute.

6.2 Distributions

6.2.1 Tier 1

These tier 1 supported Linux distributions and operating systems receive full CI and QA, as well as documentation.

Distribution Version Support QA Notes

RHEL/CentOS 7 OISF

RHEL/Alma/Rocky | 8 OISF

RHEL/Alma/Rocky | 9 OISF

Ubuntu 20.04 OISF

Ubuntu 22.04 OISF

Debian 10 (Buster) OISF

Debian 11 (Bullseye) OISF Foundation of SELKS

Debian 12 (Book- | OISF

worm)

FreeBSD 12 OISF Foundation of OPNsense, pfSense

FreeBSD 13 OISF Foundation of OPNSense
6.2.2 Tier 2

These tier 2 supported Linux distributions and operating systems receive CI but not full QA (functional testing).

Distribution Version Support QA Notes
CentOS Stream OISF

Fedora Active OISF

OpenBSD 7.2 OISF

OpenBSD 7.1 OISF

0OSX/macOS 7? OISF

Win- OISF

dows/MinGW 64

28 Chapter 6. Support Status

Suricata User Guide, Release 7.0.4

6.3 Architecture Support

6.3.1 Tier 1
Architecture | Support QA Notes
x86_64 OISF
ARMS-64bit | OISF
6.3.2 Tier 2
Architecture | Support QA Notes
ARM7-32bit | OISF
i386 OISF
6.3.3 Community
Architecture | Support QA Notes
PPCo64el Part of Fedora automated QA Access can be arranged through IBM dev
cloud
PPC64 No access to working hardware
PPC32 No access to working hardware
RISC-V

6.3.4 High Level Features

Capture support

Tier 1

Tier 2

Capture Type Maintainer | QA | Notes
AF_PACKET OISF Used by Security Onion, SELKS
NETMAP (FreeBSD) | OISF Used by OPNsense, PFsense
NFQUEUE OISF
libpcap OISF
Capture Type Maintainer | QA | Notes
PF_RING OISF
NETMAP (Linux) OISF
DPDK OISF
AF_PACKET (eBPF/XDP) | OISF

6.3. Architecture Support

29

Suricata User Guide, Release 7.0.4

Community
Capture Type | Maintainer | QA | Notes
NFLOG Community
AF_XDP Community
Vendor
Capture Type | Maintainer QA | Notes
Napatech Napatech / Community
Unmaintained
Capture Type | Maintainer | QA | Notes
IPFW
Endace/DAG
Operation modes
Tier 1
Mode Maintainer QA Notes
IDS (passive) OISF
IPS (active) OISF
Offline pcap file OISF
Tier 2
Mode Maintainer QA Notes
Unix socket mode OISF
IDS (active) OISF Active responses, reject keyword

30

Chapter 6. Support Status

CHAPTER
SEVEN

COMMAND LINE OPTIONS

Suricata's command line options:

-h

Display a brief usage overview.
-V

Displays the version of Suricata.
-Cc <path>

Path to configuration file.

--include <path>

Additional configuration files to include. Multiple additional configuration files can be provided and will be
included in the order specified on the command line. These additional configuration files are loaded as if they
existed at the end of the main configuration file.

Example including one additional file:

--include /etc/suricata/other.yaml

Example including more than one additional file:

--include /etc/suricata/other.yaml --include /etc/suricata/extra.yaml

Test configuration.

Increase the verbosity of the Suricata application logging by increasing the log level from the default. This option
can be passed multiple times to further increase the verbosity.

e -v: INFO

e -vv: PERF

* -vvv: CONFIG
e -vvvv: DEBUG

This option will not decrease the log level set in the configuration file if it is already more verbose than the level
requested with this option.

-r <path>

Run in pcap offline mode (replay mode) reading files from pcap file. If <path> specifies a directory, all files in
that directory will be processed in order of modified time maintaining flow state between files.

31

Suricata User Guide, Release 7.0.4

--pcap-file-continuous
Used with the -r option to indicate that the mode should stay alive until interrupted. This is useful with directories
to add new files and not reset flow state between files.

--pcap-file-recursive
Used with the -r option when the path provided is a directory. This option enables recursive traversal into sub-
directories to a maximum depth of 255. This option cannot be combined with --pcap-file-continuous. Symlinks
are ignored.

--pcap-file-delete
Used with the -r option to indicate that the mode should delete pcap files after they have been processed. This is
useful with pcap-file-continuous to continuously feed files to a directory and have them cleaned up when done.
If this option is not set, pcap files will not be deleted after processing.

-i <interface>
After the -i option you can enter the interface card you would like to use to sniff packets from. This option will
try to use the best capture method available. Can be used several times to sniff packets from several interfaces.

--pcap[=<device>]
Run in PCAP mode. If no device is provided the interfaces provided in the pcap section of the configuration file
will be used.

--af-packet[=<device>]
Enable capture of packet using AF_PACKET on Linux. If no device is supplied, the list of devices from the
af-packet section in the yaml is used.

--af-xdp[=<device>]
Enable capture of packet using AF_XDP on Linux. If no device is supplied, the list of devices from the af-xdp
section in the yaml is used.

-q <queue id>
Run inline of the NFQUEUE queue ID provided. May be provided multiple times.

-s <filename.rules>

With the -s option you can set a file with signatures, which will be loaded together with the rules set in the yaml.
It is possible to use globbing when specifying rules files. For example, -s '/path/to/rules/*.rules’

-S <filename.rules>

With the -S option you can set a file with signatures, which will be loaded exclusively, regardless of the rules set
in the yaml.

It is possible to use globbing when specifying rules files. For example, -S '/path/to/rules/*.rules'

-1 <directory>

With the -1 option you can set the default log directory. If you already have the default-log-dir set in yaml, it will
not be used by Suricata if you use the -1 option. It will use the log dir that is set with the -1 option. If you do not
set a directory with the -1 option, Suricata will use the directory that is set in yaml.

Normally if you run Suricata on your console, it keeps your console occupied. You can not use it for other
purposes, and when you close the window, Suricata stops running. If you run Suricata as daemon (using the -D
option), it runs at the background and you will be able to use the console for other tasks without disturbing the
engine running.

32 Chapter 7. Command Line Options

Suricata User Guide, Release 7.0.4

--runmode <runmode>

With the --runmode option you can set the runmode that you would like to use. This command line option can
override the yaml runmode option.

Runmodes are: workers, autofp and single.

For more information about runmodes see Runmodes in the user guide.
-F <bpf filter file>

Use BPF filter from file.
-k [all|none]

Force (all) the checksum check or disable (none) all checksum checks.

--user=<user>

Set the process user after initialization. Overrides the user provided in the run-as section of the configuration
file.

--group=<group>
Set the process group to group after initialization. Overrides the group provided in the run-as section of the
configuration file.

--pidfile <file>

Write the process ID to file. Overrides the pid-file option in the configuration file and forces the file to be written
when not running as a daemon.

--init-errors-fatal
Exit with a failure when errors are encountered loading signatures.

--strict-rule-keywords[=all | <keyword> | <keywords(csv)]
Applies to: classtype, reference and app-layer-event.

By default missing reference or classtype values are warnings and not errors. Additionally, loading outdated
app-layer-event events are also not treated as errors, but as warnings instead.

If this option is enabled these warnings are considered errors.

If no value, or the value 'all', is specified, the option applies to all of the keywords above. Alternatively, a comma
separated list can be supplied with the keyword names it should apply to.

--disable-detection
Disable the detection engine.

--disable-hashing
Disable support for hash algorithms such as md5, shal and sha256.

By default hashing is enabled. Disabling hashing will also disable some Suricata features such as the filestore,
ja3, and rule keywords that use hash algorithms.

--dump-config
Dump the configuration loaded from the configuration file to the terminal and exit.

--dump-features

Dump the features provided by Suricata modules and exit. Features list (a subset of) the configuration values and
are intended to assist with comparing provided features with those required by one or more rules.

--build-info

Display the build information the Suricata was built with.

33

Suricata User Guide, Release 7.0.4

--list-app-layer-protos

List all supported application layer protocols.
--list-keywords=[all|csv|<kword>]

List all supported rule keywords.
--list-runmodes

List all supported run modes.

--set <key>=<value>

Set a configuration value. Useful for overriding basic configuration parameters. For example, to change the
default log directory:

--set default-log-dir=/var/tmp

This option cannot be used to add new entries to a list in the configuration file, such as a new output. It can only
be used to modify a value in a list that already exists.

For example, to disable the eve-1log in the default configuration file:

--set outputs.l.eve-log.enabled=no

Also note that the index values may change as the suricata.yaml is updated.
See the output of --dump-config for existing values that could be modified with their index.
--engine-analysis
Print reports on analysis of different sections in the engine and exit. Please have a look at the conf parameter
engine-analysis on what reports can be printed
--unix-socket=<file>
Use file as the Suricata unix control socket. Overrides the filename provided in the unix-command section of the
configuration file.
--reject-dev=<device>
Use device to send out RST / ICMP error packets with the reject keyword.
--pcap-buffer-size=<size>
Set the size of the PCAP buffer (0 - 2147483647).
--netmap[=<device>]
Enable capture of packet using NETMAP on FreeBSD or Linux. If no device is supplied, the list of devices from
the netmap section in the yaml is used.
--pfring[=<device>]
Enable PF_RING packet capture. If no device provided, the devices in the Suricata configuration will be used.
--pfring-cluster-id <id>
Set the PF_RING cluster ID.
--pfring-cluster-type <type>
Set the PF_RING cluster type (cluster_round_robin, cluster_flow).

-d <divert-port>
Run inline using IPFW divert mode.

34 Chapter 7. Command Line Options

Suricata User Guide, Release 7.0.4

--dag <device>

Enable packet capture off a DAG card. If capturing off a specific stream the stream can be select using a device
name like "dag0:4". This option may be provided multiple times read off multiple devices and/or streams.

--napatech
Enable packet capture using the Napatech Streams API.

--erf-in=<file>
Run in offline mode reading the specific ERF file (Endace extensible record format).
--simulate-ips

Simulate IPS mode when running in a non-IPS mode.

7.1 Unit Tests

The builtin unittests are only available when Suricata has been configured and built with --enable-unittests.

Running unittests does not require a configuration file. Use -1 to supply an output directory.:

sudo suricata -u

-u
Run the unit tests and exit. Requires that Suricata be configured with --enable-unittests.
-U, --unittest-filter=REGEX

With the -U option you can select which of the unit tests you want to run. This option uses REGEX. Example of
use: suricata -u -U http

--list-unittests
Lists available unit tests.
--fatal-unittests
Enables fatal failure on a unit test error. Suricata will exit instead of continuing more tests.

--unittests-coverage
Display unit test coverage report.

7.1. Unit Tests 35

Suricata User Guide, Release 7.0.4

36 Chapter 7. Command Line Options

CHAPTER
EIGHT

SURICATA RULES

8.1 Rules Format

Signatures play a very important role in Suricata. In most occasions people are using existing rulesets.
The official way to install rulesets is described in Rule Management with Suricata-Update.

There are a number of free rulesets that can be used via suricata-update. To aid in learning about writing rules, the
Emerging Threats Open ruleset is free and a good reference that has a wide range of signature examples.

This Suricata Rules document explains all about signatures; how to read, adjust and create them.
A rule/signature consists of the following:

¢ The action, determining what happens when the rule matches.

* The header, defining the protocol, IP addresses, ports and direction of the rule.

* The rule options, defining the specifics of the rule.
An example of a rule is as follows:

alert http SHOME_NET any -> $EXTERNAL_NET any (msg:"HTTP GET Request Containing Rule in URI";
flow:established,to_server; http.method; content:"GET"; http.uri; content:"rule"; fast_pattern; classtype:bad-unknown;
sid:123; rev:1;)

In this example, red is the action, green is the header and blue are the options.

We will be using the above signature as an example throughout this section, highlighting the different parts of the
signature.

8.1.1 Action

alert http SHOME_NET any -> $EXTERNAL_NET any (msg:"HTTP GET Request Containing Rule in URI";
flow:established,to_server; http.method; content:"GET"; http.uri; content:"rule"; fast_pattern; classtype:bad-unknown;
sid:123; rev:1;)

Valid actions are:
* alert - generate an alert.
* pass - stop further inspection of the packet.
e drop - drop packet and generate alert.
* reject - send RST/ICMP unreach error to the sender of the matching packet.

* rejectsrc - same as just reject.

37

Suricata User Guide, Release 7.0.4

* rejectdst - send RST/ICMP error packet to receiver of the matching packet.

* rejectboth - send RST/ICMP error packets to both sides of the conversation.

Note: In IPS mode, using any of the reject actions also enables drop.

For more information see Action-order.

8.1.2 Protocol

alert http SHOME_NET any -> $EXTERNAL_NET any (msg:"HTTP GET Request Containing Rule in URI";
flow:established,to_server; http.method; content:"GET"; http.uri; content:"rule"; fast_pattern; classtype:bad-unknown;
sid:123; rev:1;)

This keyword in a signature tells Suricata which protocol it concerns. You can choose between four basic protocols:
* tcp (for tep-traffic)
e udp
* icmp
* ip (ip stands for 'all' or 'any")
There are a couple of additional TCP related protocol options:
* tcp-pkt (for matching content in individual tcp packets)
* tcp-stream (for matching content only in a reassembled tcp stream)
There are also a few so-called application layer protocols, or layer 7 protocols you can pick from. These are:
* http (either HTTP1 or HTTP2)
* httpl
* http2
* ftp
e tls (this includes ssl)
* smb
* dns
* dcerpc
e dhep
* ssh
* smtp
* imap
* modbus (disabled by default)
* dnp3 (disabled by default)
* enip (disabled by default)
* nfs

o ike

38 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.4

e krb5
* bittorrent-dht
* ntp
e dhep
e rfb
* rdp
e snmp
e tftp
* sip
The availability of these protocols depends on whether the protocol is enabled in the configuration file, suricata.yaml.

If you have a signature with the protocol declared as 'http', Suricata makes sure the signature will only match if the TCP
stream contains http traffic.

8.1.3 Source and destination

alert http SHOME_NET any -> $EXTERNAL_NET any (msg:"HTTP GET Request Containing Rule in URI";
flow:established,to_server; http.method; content:"GET"; http.uri; content:"rule"; fast_pattern; classtype:bad-unknown;
sid:123; rev:1;)

The first emphasized part is the traffic source, the second is the traffic destination (note the direction of the directional
arrow).

With the source and destination, you specify the source of the traffic and the destination of the traffic, respectively. You
can assign IP addresses, (both IPv4 and IPv6 are supported) and IP ranges. These can be combined with operators:

Operator | Description

. IP ranges (CIDR notation)
! exception/negation

[..,..] grouping

Normally, you would also make use of variables, such as $HOME_NET and $EXTERNAL_NET. The suricata.yaml config-
uration file specifies the IP addresses these concern. The respective $HOME_NET and $EXTERNAL_NET settings will be
used in place of the variables in your rules.

See Rule-vars for more information.

Rule usage examples:

Example Meaning

11.1.1.1 Every IP address but 1.1.1.1

11.1.1.1, 1.1.1.2] Every IP address but 1.1.1.1 and 1.1.1.2
$HOME_NET Your setting of HOME_NET in yaml
[SEXTERNAL_NET, !$HOME_NET] | EXTERNAL_NET and not HOME_NET
[10.0.0.0/24, 110.0.0.5] 10.0.0.0/24 except for 10.0.0.5

[..., [....]]

[o |

8.1. Rules Format 39

Suricata User Guide, Release 7.0.4

Warning: If you set your configuration to something like this:

HOME_NET: any
EXTERNAL_NET: !$HOME_NET

You cannot write a signature using $SEXTERNAL_NET because it evaluates to 'not any', which is an invalid value.

Note: Please note that the source and destination address can also be matched via the ip.src and ip.dst keywords
(See IP Addresses Match). These keywords are mostly used in conjunction with the dataset feature (Datasets).

8.1.4 Ports (source and destination)

alert http SHOME_NET any -> $EXTERNAL_NET any (msg:"HTTP GET Request Containing Rule in URI";
flow:established,to_server; http.method; content:"GET"; http.uri; content:"rule"; fast_pattern; classtype:bad-unknown;

sid:123; rev:1;)

The first emphasized part is the source port, the second is the destination port (note the direction of the directional

arrow).

Traffic comes in and goes out through ports. Different protocols have different port numbers. For example, the default
port for HTTP is 80 while 443 is typically the port for HTTPS. Note, however, that the port does not dictate which
protocol is used in the communication. Rather, it determines which application is receiving the data.

The ports mentioned above are typically the destination ports. Source ports, i.e. the application that sent the packet,
typically get assigned a random port by the operating system. When writing a rule for your own HTTP service, you
would typically write any -> 80, since that would mean any packet from any source port to your HTTP application

(running on port 80) is matched.

In setting ports you can make use of special operators as well. Operators such as:

Operator | Description

port ranges

!

exception/negation
[..,..] grouping
Rule usage examples:

Example Meaning
[80, 81, 82] | port 80, 81 and 82
[80: 82] Range from 80 till 82
[1024:] From 1024 till the highest port-number
180 Every port but 80
[80:100,!99] | Range from 80 till 100 but 99 excluded
[1:80,![2,4]] | Range from 1-80, except ports 2 and 4
[... [----1]

40

Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.4

8.1.5 Direction

alert http SHOME_NET any -> $EXTERNAL_NET any (msg:"HTTP GET Request Containing Rule in URI";
flow:established,to_server; http.method; content:"GET"; http.uri; content:"rule"; fast_pattern; classtype:bad-unknown;
sid:123; rev:1;)

The directional arrow indicates which way the signature will be evaluated. In most signatures an arrow to the right (->)
is used. This means that only packets with the same direction can match. However, it is also possible to have a rule
match both directions (<>):

source -> destination
source <> destination (both directions)

The following example illustrates direction. In this example there is a client with IP address 1.2.3.4 using port 1024.
A server with IP address 5.6.7.8, listening on port 80 (typically HTTP). The client sends a message to the server and
the server replies with its answer.

. —
client server
-
IP address: 1.2.3.4 IP address: 5.6.7.8
Port: 1024 Port: 80
—_— -

srclP 1234 src P 56,78

src port 1024 src port 80

dstIP 5678 dstIP 1234

dst port 80 dst port 1024

Now, let's say we have a rule with the following header:

alert tcp 1.2.3.4 1024 -> 5.6.7.8 80

Only the traffic from the client to the server will be matched by this rule, as the direction specifies that we do not want
to evaluate the response packet.

8.1. Rules Format 41

Suricata User Guide, Release 7.0.4

Warning: There is no 'reverse' style direction, i.e. there is no <-.

8.1.6 Rule options

The rest of the rule consists of options. These are enclosed by parenthesis and separated by semicolons. Some options
have settings (such as msg), which are specified by the keyword of the option, followed by a colon, followed by the
settings. Others have no settings; they are simply the keyword (such as nocase):

<keyword>: <settings>;
<keyword>;

Rule options have a specific ordering and changing their order would change the meaning of the rule.

Note: The characters ; and " have special meaning in the Suricata rule language and must be escaped when used in
a rule option value. For example:

msg: "Message with semicolon\;";

As a consequence, you must also escape the backslash, as it functions as an escape character.

The rest of this chapter in the documentation documents the use of the various keywords.
Some generic details about keywords follow.
Modifier Keywords

Some keywords function act as modifiers. There are two types of modifiers.

* The older style 'content modifiers' look back in the rule, e.g.:

alert http any any -> any any (content:"index.php"; http_uri; sid:1;)

In the above example the pattern 'index.php' is modified to inspect the HTTP uri buffer.

* The more recent type is called the 'sticky buffer'. It places the buffer name first and all keywords following it
apply to that buffer, for instance:

alert http any any -> any any (http_response_line; content:"403 Forbidden"; sid:1;)

In the above example the pattern '403 Forbidden' is inspected against the HTTP response line because it follows
the http_response_line keyword.

42 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.4

Normalized Buffers

A packet consists of raw data. HTTP and reassembly make a copy of those kinds of packets data. They erase anomalous
content, combine packets etcetera. What remains is a called the 'normalized buffer"

GET /somemap/f/fothermap/ HTTF/1.0

normalization

GET /somemap/othermap/ HTTP/.0

matching

content: “/somemap/othermap/";

Because the data is being normalized, it is not what it used to be; it is an interpretation. Normalized buffers are: all
HTTP-keywords, reassembled streams, TLS-, SSL-, SSH-, FTP- and dcerpc-buffers.

Note that there are some exceptions, e.g. the http_raw_uri keyword. See http.uri and http.uri.raw for more informa-
tion.

8.2 Meta Keywords

Meta keywords have no effect on Suricata's inspection of network traffic; they do have an effect on the way Suricata
reports events/alerts.

8.2.1 msg (message)

The keyword msg gives contextual information about the signature and the possible alert.

The format of msg is:

msg: "some description';

Examples:

msg:"ET MALWARE Win32/RecordBreaker CnC Checkin";
msg:"ET EXPLOIT SMB-DS DCERPC PnP bind attempt";

To continue the example from the previous chapter, the msg component of the signature is emphasized below:

8.2. Meta Keywords 43

Suricata User Guide, Release 7.0.4

alert http SHOME_NET any -> $EXTERNAL_NET any (msg:"HTTP GET Request Containing Rule in URI";
flow:established,to_server; http.method; content:"GET"; http.uri; content:"rule"; fast_pattern; classtype:bad-unknown;
sid:123; rev:1;)

Tip: It is a standard practice in rule writing to make the first part of the signature msg uppercase and to indicate the
class of the signature.

It is also standard practice that msg is the first keyword in the signature.

Note: The following characters must be escaped inside the msg: ; \ "

8.2.2 sid (signature ID)

The keyword sid gives every signature its own id. This id is stated with a number greater than zero. The format of sid
is:

sid:123;

Example of sid in a signature:

alert http $SHOME_NET any -> $SEXTERNAL_NET any (msg:"HTTP GET Request Containing Rule in URI";
flow:established,to_server; http.method; content:"GET"; http.uri; content:"rule"; fast_pattern; classtype:bad-unknown;
sid:123; rev:1;)

Tip: It is a standard practice in rule writing that the signature sid is provided as the last keyword (or second-to-last
if there is a rev) of the signature.

There are reserved ranges of sids, the reservations are recorded at https://sidallocation.org/ .

Note: This value must be unique for all rules within the same rule group (gid).

As Suricata-update currently considers the rule's sid only (cf. Bug#5447), it is advisable to opt for a completely unique
sid altogether.

8.2.3 rev (revision)

The sid keyword is commonly accompanied by the rev keyword. Rev represents the version of the signature. If a
signature is modified, the number of rev will be incremented by the signature writers. The format of rev is:

rev:123;

Example of rev in a signature:

alert http SHOME_NET any -> $EXTERNAL_NET any (msg:"HTTP GET Request Containing Rule in URI";
flow:established,to_server; http.method; content:"GET"; http.uri; content:"rule"; fast_pattern; classtype:bad-unknown;
sid:123; rev:1;)

44 Chapter 8. Suricata Rules

https://sidallocation.org/
https://redmine.openinfosecfoundation.org/issues/5447

Suricata User Guide, Release 7.0.4

Tip: Itis a standard practice in rule writing that the rev keyword is expressed after the sid keyword. The sid and rev
keywords are commonly put as the last two keywords in a signature.

8.2.4 gid (group ID)

The gid keyword can be used to give different groups of signatures another id value (like in sid). Suricata by default
uses gid 1. It is possible to modify the default value. In most cases, it will be unnecessary to change the default gid
value. Changing the gid value has no technical implications, the value is only noted in alert data.

Example of the gid value in an alert entry in the fast.log file. In the part [1:123], the first 1 is the gid (123 is the sid and
1 is the rev).

07/12/2022-21:59:26.713297 [**] [1:123:1] HTTP GET Request Containing Rule in URI [**] [Classification: Poten-
tially Bad Traffic] [Priority: 2] {TCP} 192.168.225.121:12407 -> 172.16.105.84:80

8.2.5 classtype

The classtype keyword gives information about the classification of rules and alerts. It consists of a short name, a long
name and a priority. It can tell for example whether a rule is just informational or is about a CVE. For each classtype,
the classification.config has a priority that will be used in the rule.

Example classtype definition:

config classification: web-application-attack,Web Application Attack,1
config classification: not-suspicious,Not Suspicious Traffic,3

Once we have defined the classification in the configuration file, we can use the classtypes in our rules. A rule with
classtype web-application-attack will be assigned a priority of 1 and the alert will contain "'Web Application Attack’ in
the Suricata logs:

classtype Alert Priority
web-application-attack | Web Application Attack | 1
not-suspicious Not Suspicious Traffic 3

Our continuing example also has a classtype: bad-unknown:

alert http SHOME_NET any -> $EXTERNAL_NET any (msg:"HTTP GET Request Containing Rule in URI";
flow:established,to_server; http.method; content:"GET"; http.uri; content:"rule"; fast_pattern; classtype:bad-unknown;
sid:123; rev:1;)

Tip: It is a standard practice in rule writing that the classtype keyword comes before the sid and rev keywords (as
shown in the example rule).

8.2. Meta Keywords 45

Suricata User Guide, Release 7.0.4

8.2.6 reference

The reference keyword is used to document where information about the signature and about the problem the signature
tries to address can be found. The reference keyword can appear multiple times in a signature. This keyword is meant
for signature-writers and analysts who investigate why a signature has matched. It has the following format:

reference:type,reference

A typical reference to www.info.com would be:

reference:url,www.info.com

There are several systems that can be used as a reference. A commonly known example is the CVE-database, which
assigns numbers to vulnerabilities, to prevent having to type the same URL over and over again. An example reference
of a CVE:

reference:cve,CVE-2014-1234

This would make a reference to http://cve.mitre.org/cgi-bin/cvename.cgi’name=CVE-2014-1234,

All the reference types are defined in the reference.config configuration file.

8.2.7 priority

The priority keyword comes with a mandatory numeric value which can range from 1 to 255. The values 1 through
4 are commonly used. The highest priority is 1. Signatures with a higher priority will be examined first. Normally
signatures have a priority determined through a classtype definition. The classtype definition can be overridden by
defining the priority keyword in the signature. The format of priority is:

priority:1;

8.2.8 metadata

The metadata keyword allows additional, non-functional, information to be added to the signature. While the format is
free-form, it is recommended to stick to [key, value] pairs as Suricata can include these in eve alerts. The format is:

metadata: key value;
metadata: key value, key value;

8.2.9 target

The target keyword allows the rules writer to specify which side of the alert is the target of the attack. If specified, the
alert event is enhanced to contain information about source and target.

The format is:

target: [src_ip|dest_ip]

If the value is src_ip then the source IP in the generated event (src_ip field in JSON) is the target of the attack. If target
is set to dest_ip then the target is the destination IP in the generated event.

46 Chapter 8. Suricata Rules

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1234

Suricata User Guide, Release 7.0.4

8.2.10 requires
The requires keyword allows a rule to require specific Suricata features to be enabled, or the Suricata version to match
an expression. Rules that do not meet the requirements will by ignored, and Suricata will not treat them as errors.

When parsing rules, the parser attempts to process the requires keywords before others. This allows it to occur after
keywords that may only be present in specific versions of Suricata, as specified by the requires statement. However,
the keywords preceding it must still adhere to the basic known formats of Suricata rules.

The format is:

requires: feature geoip, version >= 7.0.0

To require multiple features, the feature sub-keyword must be specified multiple times:

requires: feature geoip, feature lua

Alternatively, and expressions may be expressed like:

requires: version >= 7.0.4 < 8

and or expressions may expressed with | like:

requires: version >= 7.0.4 < 8 | >= 8.0.3

to express that a rules requires version 7.0.4 or greater, but less than 8, OR greater than or equal to 8.0.3. Which could
be useful if a keyword wasn't added until 7.0.4 and the 8.0.3 patch releases, as it would not exist in 8.0.1.

This can be extended to multiple release branches:

requires: version >= 7.0.10 < 8 | >= 8.0.5 < 9 | >= 9.0.3

If no minor or patch version component is provided, it will default to 0.
The version may only be specified once, if specified more than once the rule will log an error and not be loaded.

The requires keyword was introduced in Suricata 7.0.3 and 8.0.0.

8.3 IP Keywords

8.3.1 titl

The ttl keyword is used to check for a specific IP time-to-live value in the header of a packet. The format is:

ttl:<number>;

For example:

ttl:10;

At the end of the ttl keyword you can enter the value on which you want to match. The Time-to-live value determines
the maximal amount of time a packet can be in the Internet-system. If this field is set to O, then the packet has to be
destroyed. The time-to-live is based on hop count. Each hop/router the packet passes subtracts one from the packet
TTL counter. The purpose of this mechanism is to limit the existence of packets so that packets can not end up in
infinite routing loops.

8.3. IP Keywords 47

Suricata User Guide, Release 7.0.4

Example of the ttl keyword in a rule:

alert ip SEXTERNAL_NET any -> $SHOME_NET any (msg:"IP Packet With TTL 0"; ttl:0; classtype:misc-activity;

sid:1; rev:1;)

8.3.2 ipopts

With the ipopts keyword you can check if a specific IP option is set. Ipopts has to be used at the beginning of a rule.
You can only match on one option per rule. There are several options on which can be matched. These are:

IP Option | Description

T Record Route

eol End of List

nop No Op

ts Time Stamp

sec IP Security

esec IP Extended Security
Isrr Loose Source Routing
SSIT Strict Source Routing
satid Stream Identifier

any any IP options are set

Format of the ipopts keyword:

ipopts: <name>;

For example:

ipopts: ts;

Example of ipopts in a rule:

alert ip SEXTERNAL_NET any -> $HOME_NET any (msg:"IP Packet with timestamp option"; ipopts:ts;

classtype:misc-activity; sid:2; rev:1;)

8.3.3 sameip

Every packet has a source IP-address and a destination IP-address. It can be that the source IP is the same as the
destination IP. With the sameip keyword you can check if the IP address of the source is the same as the IP address of

the destination. The format of the sameip keyword is:

sameip;

Example of sameip in a rule:

alert ip any any -> any any (msg:"IP Packet with the same source and destination IP"; sameip; classtype:bad-unknown;

sid:3; rev:1;)

48

Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.4

8.3.4 ip_proto

With the ip_proto keyword you can match on the IP protocol in the packet-header. You can use the name or the number
of the protocol. You can match for example on the following protocols:

1 ICMP Internet Control Message

6 TCP Transmission Control Protocol
17 UDP User Datagram
47 GRE General Routing Encapsulation
50 ESP Encap Security Payload for IPv6
51 AH Authentication Header for Ipv6
58 IPv6-ICMP ICMP for Ipv6

For the complete list of protocols and their numbers see http://en.wikipedia.org/wiki/List_of_IP_protocol_numbers
Example of ip_proto in a rule:
alert ip any any -> any any (msg:"IP Packet with protocol 1"; ip_proto:1; classtype:bad-unknown; sid:5; rev:1;)

The named variant of that example would be:

ip_proto:ICMP;

8.3.5 ipv4.hdr

Sticky buffer to match on content contained within an IPv4 header.
Example rule:

alert ip any any -> any any (msg:"IPv4 header keyword example"; ipv4.hdr; content:"|06|"; offset:9; depth:1; sid:1;
rev:1;)

This example looks if byte 10 of IPv4 header has value 06, which indicates that the IPv4 protocol is TCP.

8.3.6 ipv6.hdr

Sticky buffer to match on content contained within an IPv6 header.
Example rule:

alert ip any any -> any any (msg:"IPv6 header keyword example"; ipv6.hdr; content:"|06|"; offset:6; depth:1; sid:1;
rev:1;)

This example looks if byte 7 of IP64 header has value 06, which indicates that the IPv6 protocol is TCP.

8.3.7 id

With the id keyword, you can match on a specific IP ID value. The ID identifies each packet sent by a host and
increments usually with one with each packet that is being send. The IP ID is used as a fragment identification number.
Each packet has an IP ID, and when the packet becomes fragmented, all fragments of this packet have the same ID. In
this way, the receiver of the packet knows which fragments belong to the same packet. (IP ID does not take care of the
order, in that case offset is used. It clarifies the order of the fragments.)

Format of id:

8.3. IP Keywords 49

http://en.wikipedia.org/wiki/List_of_IP_protocol_numbers

Suricata User Guide, Release 7.0.4

id:<number>;

Example of id in a rule:

alert tcp SEXTERNAL_NET any -> $SHOME_NET any (msg:"id keyword example"; id:1; content:"content|3a 20|";
fast_pattern; classtype:misc-activity; sid:12; rev:1;)

8.3.8 geoip

The geoip keyword enables matching on the source, destination or source and destination IPv4 addresses of network
traffic, and to see to which country it belongs. To be able to do this, Suricata uses the GeolP2 API of MaxMind.

The syntax of geoip:

geoip: src,RU;

geoip: both,CN,RU;
geoip: dst,CN,RU,IR;
geoip: both,US,CA,UK;
geoip: any,CN,IR;

Option | Description

both Both source and destination have to match with the given geoip(s)

any Either the source or the destination has to match with the given geoip(s).
dest The destination matches with the given geoip.

src The source matches with the given geoip.

geoip currently only supports IPv4. As it uses the GeolP2 API of MaxMind, libmaxminddb must be compiled in.
You must download and install the GeoIP2 or GeoLite2 database editions desired. Visit the MaxMind site at https:
//dev.maxmind.com/geoip/geolite2-free-geolocation-data for details.

You must also supply the location of the GeolP2 or GeoLite2 database file on the local system in the YAML-file
configuration (for example):

geoip-database: /usr/local/share/GeoIP/GeolLite2-Country.mmdb

8.3.9 fragbits (IP fragmentation)

With the fragbits keyword, you can check if the fragmentation and reserved bits are set in the IP header. The fragbits
keyword should be placed at the beginning of a rule. Fragbits is used to modify the fragmentation mechanism. During
routing of messages from one Internet module to the other, it can occur that a packet is bigger than the maximal packet
size a network can process. In that case, a packet can be send in fragments. This maximum of the packet size is called
Maximal Transmit Unit (MTU).

You can match on the following bits:

M - More Fragments
D - Do not Fragment
R - Reserved Bit

Matching on this bits can be more specified with the following modifiers:

50 Chapter 8. Suricata Rules

https://dev.maxmind.com/geoip/geolite2-free-geolocation-data
https://dev.maxmind.com/geoip/geolite2-free-geolocation-data

Suricata User Guide, Release 7.0.4

+ match on the specified bits, plus any others
match if any of the specified bits are set
! match if the specified bits are not set

Format:

fragbits: [*+!]<[MDR]>;

Example of fragbits in a rule:

alert tcp SEXTERNAL_NET any -> SHOME_NET any (msg: "fragbits keyword example non-fragmented packet with
fragment offset>0"; fragbits:M; fragoffset:>0; classtype:bad-unknown; sid:123; rev:1;)

8.3.10 fragoffset

With the fragoffset keyword you can match on specific decimal values of the IP fragment offset field. If you would
like to check the first fragments of a session, you have to combine fragoffset O with the More Fragment option. The
fragmentation offset field is convenient for reassembly. The id is used to determine which fragments belong to which
packet and the fragmentation offset field clarifies the order of the fragments.

You can use the following modifiers:

< match if the value is smaller than the specified value
> match if the value is greater than the specified value
! match if the specified value is not present

Format of fragoffset:

fragoffset:[!|<|>]<number>;

Example of fragoffset in a rule:

alert tcp SEXTERNAL_NET any -> $SHOME_NET any (msg:"fragoffset keyword example invalid non-fragmented
packet with fragment offset>0"; fragbits:M; fragoffset:>0; classtype:bad-unknown; sid:13; rev:1;)

8.3.11 tos

The tos keyword can match on specific decimal values of the IP header TOS field. The tos keyword can have a value
from 0 - 255. This field of the IP header has been updated by rfc2474 to include functionality for Differentiated services.
Note that the value of the field has been defined with the right-most 2 bits having the value 0. When specifying a value
for tos, ensure that the value follows this.

E.g, instead of specifying the decimal value 34 (hex 22), right shift twice and use decimal 136 (hex 88).
You can specify hexadecimal values with a leading x, e.g, x88.

Format of tos:

tos: [!]<number>;

Example of tos in a rule:

alert ip any any -> any any (msg:"tos keyword example tos value 8"; flow:established; tos:8; classtype:not-suspicious;
sid:123; rev:1;)

Example of tos with a negated value:

8.3. IP Keywords 51

https://tools.ietf.org/html/rfc2474
https://en.wikipedia.org/wiki/Differentiated_services

Suricata User Guide, Release 7.0.4

alert ip any any -> any any (msg:"tos keyword example with negated content"; flow:established,to_server; tos:!8;
classtype:bad-unknown; sid: 14; rev:1;)

8.4 TCP keywords

8.4.1 tcp.flags

The tcp.flags keyword checks for specific TCP flag bits.
The following flag bits may be checked:

Ll
D
Q@

Description

FIN - Finish

SYN - Synchronize sequence numbers
RST - Reset

PSH - Push

ACK - Acknowledgment

URG - Urgent

CWR - Congestion Window Reduced
ECE - ECN-Echo

No TCP Flags Set

olm| Al | x| | = v

The following modifiers can be set to change the match criteria:

Modifier | Description

+ match on the bits, plus any others
* match if any of the bits are set

! match if the bits are not set

To handle writing rules for session initiation packets such as ECN where a SYN packet is sent with CWR and ECE
flags set, an option mask may be used by appending a comma and masked values. For example, a rule that checks for
a SYN flag, regardless of the values of the reserved bits is tcp.flags:S,CE;

Format of tcp.flags:

tcp.flags:[modifier]<test flags>[,<ignore flags>];
tcp.flags: [!|*|+]<FSRPAUCEO®>[,<FSRPAUCE>];

Example:

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"Example tcp.flags sig"; \
:example-rule-emphasis: tcp.flags:FPU,CE; classtype:misc-activity; sid:1; rev:1;)

It is also possible to use the 7cp.flags content as a fast_pattern by using the prefilter keyword. For more information on
prefilter usage see Prefiltering Keywords

Example:

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"Example tcp.flags sig"; \
:example-rule-emphasis: tcp.flags:FPU,CE; prefilter; classtype:misc-activity; sid:1;.
~rev:l;)

52 Chapter 8. Suricata Rules

https://en.wikipedia.org/wiki/Transmission_Control_Protocol#TCP_segment_structure

Suricata User Guide, Release 7.0.4

8.4.2 seq

The seq keyword can be used in a signature to check for a specific TCP sequence number. A sequence number is
a number that is generated practically at random by both endpoints of a TCP-connection. The client and the server
both create a sequence number, which increases with one with every byte that they send. So this sequence number
is different for both sides. This sequence number has to be acknowledged by both sides of the connection. Through
sequence numbers, TCP handles acknowledgement, order and retransmission. Its number increases with every data-
byte the sender has send. The seq helps keeping track of to what place in a data-stream a byte belongs. If the SYN flag
is set at 1, than the sequence number of the first byte of the data is this number plus 1 (so, 2).

Example:

seq:0;

Example of seq in a signature:

alert tcp SEXTERNAL_NET any -> SHOME_NET any (msg:"GPL SCAN NULL"; flow:stateless; ack:0; flags:0;
seq:0; reference:arachnids,4; classtype:attempted-recon; sid:2100623; rev:7;)

Example of seq in a packet (Wireshark):

T4 EF aaalF §g¥xmEx @

Filter: | = |Expression.. | Clear |Apply |

Mo.- | Time Source Destination Frotocol | info
1 §.Ba0Ea8 fedn: :230: 16ff: feaa:b f1a2::1:ff83:d083 I0MPYE Meighbor solicitation
? B.307e64 FeBiB: :238: 1871 : Teaa:h TP82::1 IMPwE Router adverlisemen!
3 9.343792 289.85.227.139 152.168.8.32 TLSv1 sapplication Data

132.168.8.32 289.85.227.19 53567 = hi

¥ 13,287477 132, 168.8,32 263, 85,227 . 18 TGP [Tor segment of 2 o s g

6 13.287598 192.168.8.32 209.85.227.18 TLSv1 Application Data

T 13.332348 289,85 227.14 152.168.8,32 TCP hitps = 54745 [ACK] Seq=2415329985 Ack=417R766438 Win=372 Len=8 Ti¥=1
B 13.447521 289.85.227.18 152.165.9.32 TLSw1l #pplication Data, Application Data

G 13.447555 192.168.58.32 259.085.227.18 TCR 54745 > https [ACK] Seq=41T4T7E6436 Ack=2415238283 Win=203 Len=8 TS¥=3

* Frame 4 |66 bytes on wire, 66 bytes ceptured)
k Ethernet II, Src: Intel 97:17:d6 (88:19:42:97:17:46), Dst: JetwayIn as:be:ab (80:30:18:a3:be:a6)
* Internet Protocol, Sre: 192.168.8.32 ([192.168.8.32), Dst: 289.85.227.19 (209.85.327.19)
T Transmission Cantrol Protocol, Sre Port: 53567 (53567), Dst Port: hitps (443), Seq: 43662TTET, Ack: 1282214827, Len: @
Saurce port: 53567 (53567
Destination port: hitps (443)
|Strean index: @
ag b
Acknowledgensnt number: 1202214827
Heater Length: 32 bytes
¥ Flags: @x18 {ACK)
Windaw s17e: 1882
¥ Checksum: Axdal? [validation dizabled]
v Dptions: |12 bytes)
» |SEQ/ACK analysis|

0AAE B0 30 18 a@ be ab 08 19 d2 97 1f o6 0B B0 45 8@
BA1E B@ 34 ab 15 40 96 48 06 25 7d @ a6 08 20 d1 55
8928 ©3 13 d1 3f 6L bt 47 af 57 ab g4 18
BH3E B3 o2 4a 17 99 B8 61 B1 @5 G2 9O 38 %b 71 6b o9
BadE bé hd

8.4. TCP keywords 53

Suricata User Guide, Release 7.0.4

8.4.3 ack

The ack is the acknowledgement of the receipt of all previous (data)-bytes send by the other side of the TCP-connection.
In most occasions every packet of a TCP connection has an ACK flag after the first SYN and a ack-number which
increases with the receipt of every new data-byte. The ack keyword can be used in a signature to check for a specific
TCP acknowledgement number.

Format of ack:

ack:1;

Example of ack in a signature:

alert tcp SEXTERNAL_NET any -> SHOME_NET any (msg:"GPL SCAN NULL"; flow:stateless; ack:0; flags:0;
seq:0; reference:arachnids,4; classtype:attempted-recon; sid:2100623; rev:7;)

Example of ack in a packet (Wireshark):

* wland-w

File Edit Wiew Go

= 8y T4 EE a4l EEX @
Filter: | = |Expression.. | Clear | Apply
Mo. - Time Source Diestination Protocol | Info
1 §.Ba0pan fedl: :230: 16Ff: feaa: b £102::1:Ff83:d0B3 I0MPYE Melghbor solicitation
} B.347p64 TediB: :238: 1877 Tena:h T782::1 IMPwE Router asdverlisemsni
3 9.343792 289.85,227.19 152.1658.98.32 TLSv1 #pplication Data
192.1608.8.32 53367 = https [ACK B
5 13, 287477 192, 168.8,32 269.85.227. 18 TCF [TOP segment of @ reassembled PDU
6 13.287598 192.168.8.32 299.85.227.18 TLSv1 Application Data
7 13.337348 2189.85,227.18 152.168.8.32 TR https = 54745 [ACK] Seq=2415279965 Ack=417E066436 Win=372 Len=8 TH¥=1
B 13.447521 289.85.227.18 152.165.8.32 TLSw1 #Application Data, Application Data
G 13 447555 192 168.8.32 289 _R5_227.18 TCP 54745 = hitps [ACK] Seq=41TaTE6436 Ack=2415238283 Win=203 Len=8 TSW¥=3

* Frame 4 |66 bytes on wire, 66 bytes captured)

» Ethernet II, Src: Intel 97:17:d6 (B8:19:d2:97:17:d6), Dst: JetwayIn aa:be:af (8@:30:18:aa:be:ab)

» Internet Protecol, Src: 192.168.8.32 (192.168.8.32), Dst: 289.85.227.19 [2009.85.327.19)

* Transmissicn Control Protecol, Sre Port: 53567 (53567}, Dst Port: hitps (443), Seq: 436627787, Ack: 1282214827, Len: @

Source port: 53567 (535467
pestimation port: RTTps (443)
|Strean index: @

Sequence nunber: 4366277487

» Flags: @x18 {ACK)
Windaw s1ze: 1882
¥ Checksum: @xd4al? [valigation disabled]
¥ Dptions: |12 bytes)
¥ |SEQ/ACK analysis]

4

BAAE BO 30 18 aa be ab BB 19 d2 97 1f A6 BE BO 45 0@
BALE BO 34 aB 15 48 BE 48 B6 25 7d cB aB B8 28 dl 55
B928 o3 13 d1 3f 6L bb 1a 66 & fb 88 18
BE36 B3 ca 4a 17 60 BE Bl Bl @5 82 88 38 9b 1 6b =9
BA4E hE he

8.4.4 window

The window keyword is used to check for a specific TCP window size. The TCP window size is a mechanism that has
control of the data-flow. The window is set by the receiver (receiver advertised window size) and indicates the amount
of bytes that can be received. This amount of data has to be acknowledged by the receiver first, before the sender can
send the same amount of new data. This mechanism is used to prevent the receiver from being overflowed by data. The
value of the window size is limited and can be 2 to 65.535 bytes. To make more use of your bandwidth you can use a
bigger TCP-window.

The format of the window keyword:

54 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.4

window: [!]<number>;

Example of window in a rule:

alert tcp SEXTERNAL_NET any -> SHOME_NET any (msg:"GPL DELETED typot trojan traffic"; flow:stateless;
flags:S,12; window:55808; reference:mcafee,100406; classtype:trojan-activity; sid:2182; rev:8;)

8.4.5 tcp.mss

Match on the TCP MSS option value. Will not match if the option is not present.

The format of the keyword:

tCcp.mss:<min>-<max>;
tcp.mss: [<|>]<number>;
tcp.mss:<value>;

Example rule:

alert tcp SEXTERNAL_NET any -> SHOME_NET any (flow:stateless; flags:S,12; tcp.mss:<536; sid:1234; rev:5;)

8.4.6 tcp.hdr

Sticky buffer to match on the whole TCP header.
Example rule:

alert tcp SEXTERNAL_NET any -> $HOME_NET any (flags:S,12; tcp.hdr; content:"[02 04]"; offset:20;
byte_test:2,<,536,0,big,relative; sid:1234; rev:5;)

This example starts looking after the fixed portion of the header, so into the variable sized options. There it will look
for the MSS option (type 2, option len 4) and using a byte_test determine if the value of the option is lower than 536.
The tcp.mss option will be more efficient, so this keyword is meant to be used in cases where no specific keyword is
available.

8.5 UDP keywords

8.5.1 udp.hdr

Sticky buffer to match on the whole UDP header.
Example rule:
alert udp any any -> any any (udp.hdr; content:"|00 08|"; offset:4; depth:2; sid:1234; rev:5;)

This example matches on the length field of the UDP header. In this case the length of 8 means that there is no payload.
This can also be matched using dsize:0;.

8.5. UDP keywords 55

Suricata User Guide, Release 7.0.4

8.6 ICMP keywords

ICMP (Internet Control Message Protocol) is a part of IP. IP at itself is not reliable when it comes to delivering data
(datagram). ICMP gives feedback in case problems occur. It does not prevent problems from happening, but helps in
understanding what went wrong and where. If reliability is necessary, protocols that use IP have to take care of reliability
themselves. In different situations ICMP messages will be send. For instance when the destination is unreachable, if
there is not enough buffer-capacity to forward the data, or when a datagram is send fragmented when it should not be,
etcetera. More can be found in the list with message-types.

There are four important contents of a ICMP message on which can be matched with corresponding ICMP-keywords.
These are: the type, the code, the id and the sequence of a message.

8.6.1 itype

The itype keyword is for matching on a specific ICMP type (number). ICMP has several kinds of messages and uses
codes to clarify those messages. The different messages are distinct by different names, but more important by numeric
values. For more information see the table with message-types and codes.

The format of the itype keyword:

itype:min<>max;
itype: [<|>]<number>;

Example This example looks for an ICMP type greater than 10:

itype:>10;

Example of the itype keyword in a signature:

alert icmp $EXTERNAL_NET any -> $SHOME_NET any (msg:"GPL SCAN Broadscan Smurf Scanner"; dsize:4;
icmp_id:0; icmp_seq:0; itype:8; classtype:attempted-recon; sid:2100478; rev:4;)

The following lists all ICMP types known at the time of writing. A recent table can be found at the website of [ANA

56 Chapter 8. Suricata Rules

https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml

Suricata User Guide, Release 7.0.4

ICMP Type | Name

0 Echo Reply

3 Destination Unreachable

4 Source Quench

5 Redirect

6 Alternate Host Address

8 Echo

9 Router Advertisement

10 Router Solicitation

11 Time Exceeded

12 Parameter Problem

13 Timestamp

14 Timestamp Reply

15 Information Request

16 Information Reply

17 Address Mask Request

18 Address Mask Reply

30 Traceroute

31 Datagram Conversion Error
32 Mobile Host Redirect

33 IPv6 Where-Are-You

34 IPv6 I-Am-Here

35 Mobile Registration Request
36 Mobile Registration Reply
37 Domain Name Request

38 Domain Name Reply

39 SKIP

40 Photuris

41 Experimental mobility protocols such as Seamoby

8.6.2 icode

With the icode keyword you can match on a specific ICMP code. The code of a ICMP message clarifies the message.
Together with the ICMP-type it indicates with what kind of problem you are dealing with. A code has a different
purpose with every ICMP-type.

The format of the icode keyword:

icode:min<>max;
icode: [<|>]<number>;

Example: This example looks for an ICMP code greater than 5:

icode:>5;

Example of the icode keyword in a rule:

alert icmp SHOME_NET any -> $SEXTERNAL_NET any (msg:"GPL MISC Time-To-Live Exceeded in Transit";
icode:0; itype:11; classtype:misc-activity; sid:2100449; rev:7;)

The following lists the meaning of all ICMP types. When a code is not listed, only type O is defined and has the meaning
of the ICMP code, in the table above. A recent table can be found at the website of IANA

8.6. ICMP keywords 57

https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml

Suricata User Guide, Release 7.0.4

ICMP Code | ICMP Type | Description

3 0 Net Unreachable

Host Unreachable

Protocol Unreachable

Port Unreachable

Fragmentation Needed and Don't Fragment was Set
Source Route Failed

Destination Network Unknown

Destination Host Unknown

Source Host Isolated

9 Communication with Destination Network is Administratively Prohibited
10 Communication with Destination Host is Administratively Prohibited
11 Destination Network Unreachable for Type of Service
12 Destination Host Unreachable for Type of Service

13 Communication Administratively Prohibited

14 Host Precedence Violation

5 Precedence cutoff in effect

Redirect Datagram for the Network (or subnet)
Redirect Datagram for the Host

Redirect Datagram for the Type of Service and Network
Redirect Datagram for the Type of Service and Host
Normal router advertisement

Doesn't route common traffic

Time to Live exceeded in Transit

Fragment Reassembly Time Exceeded

Pointer indicates the error

Missing a Required Option

Bad Length

Bad SPI

Authentication Failed

Decompression Failed

Decryption Failed

Need Authentication

Need Authorization

ol | O\ | K| WD —

@)}

11

12

40

N A RN = O = O —=| O =W N —| O~

8.6.3 icmp_id

With the icmp_id keyword you can match on specific ICMP id-values. Every ICMP-packet gets an id when it is being
send. At the moment the receiver has received the packet, it will send a reply using the same id so the sender will
recognize it and connects it with the correct ICMP-request.

Format of the icmp_id keyword:

icmp_id:<number>;

Example: This example looks for an ICMP ID of 0:

icmp_id:0;

Example of the icmp_id keyword in a rule:

alert icmp $EXTERNAL_NET any -> $SHOME_NET any (msg:"GPL SCAN Broadscan Smurf Scanner"; dsize:4;
icmp_id:0; icmp_seq:0; itype:8; classtype:attempted-recon; sid:2100478; rev:4;)

58 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.4

8.6.4 icmp_seq

You can use the icmp_seq keyword to check for a ICMP sequence number. ICMP messages all have sequence numbers.
This can be useful (together with the id) for checking which reply message belongs to which request message.

Format of the icmp_seq keyword:

icmp_seq:<number>;

Example: This example looks for an ICMP Sequence of 0:

icmp_seq:0;

Example of icmp_seq in a rule:

alert icmp $EXTERNAL_NET any -> $SHOME_NET any (msg:"GPL SCAN Broadscan Smurf Scanner"; dsize:4;
icmp_id:0; icmp_seq:0; itype:8; classtype:attempted-recon; sid:2100478; rev:4;)

8.6.5 icmpv4.hdr

Sticky buffer to match on the whole ICMPv4 header.

8.6.6 icmpv6.hdr

Sticky buffer to match on the whole ICMPv6 header.

8.6.7 icmpv6.mtu

Match on the ICMPv6 MTU optional value. Will not match if the MTU is not present.

The format of the keyword:

icmpv6.mtu:<min>-<max>;
icmpv6.mtu: [<|>]<number>;
icmpv6.mtu:<value>;

Example rule:

alert ip SEXTERNAL_NET any -> $SHOME_NET any (icmpv6.mtu:<1280; sid:1234; rev:5;)

8.7 Payload Keywords

Payload keywords inspect the content of the payload of a packet or stream.

8.7. Payload Keywords 59

Suricata User Guide, Release 7.0.4

8.7.1 content

The content keyword is very important in signatures. Between the quotation marks you can write on what you would
like the signature to match. The most simple format of content is:

content: ;

It is possible to use several contents in a signature.

Contents match on bytes. There are 256 different values of a byte (0-255). You can match on all characters; from a till
z, upper case and lower case and also on all special signs. But not all of the bytes are printable characters. For these
bytes heximal notations are used. Many programming languages use 0x00 as a notation, where 0x means it concerns
a binary value, however the rule language uses |00 | as a notation. This kind of notation can also be used for printable
characters.

Example:

|61] is a

|61 61| is aa

|41] is A

|21] is !

|®D| is carriage return
|®A| is line feed

There are characters you can not use in the content because they are already important in the signature. For matching
on these characters you should use the heximal notation. These are:

" |22
; |3B|
: [3A]
| | 7C|

It is a convention to write the heximal notation in upper case characters.

To write for instance http:// in the content of a signature, you should write it like this: content: "http|3Al//";
If you use a heximal notation in a signature, make sure you always place it between pipes. Otherwise the notation will
be taken literally as part of the content.

A few examples:

content:"a|0D|bc";
content:" |61 OD 62 63|";
content:"a|0D|b|63|";

It is possible to let a signature check the whole payload for a match with the content or to let it check specific parts of
the payload. We come to that later. If you add nothing special to the signature, it will try to find a match in all the bytes
of the payload.

drop tcp SHOME_NET any -> $EXTERNAL_NET any (msg:"ET TROJAN Likely Bot Nick in IRC (USA +..)";
flow:established,to_server; flowbits:isset,is_proto_irc; content:"NICK "; pcre:"/NICK .*USA.*[0-9]{3,}/i"; refer-
ence:url,doc.emergingthreats.net/2008124; classtype:trojan-activity; sid:2008124; rev:2;)

By default the pattern-matching is case sensitive. The content has to be accurate, otherwise there will not be a match.

60 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.4

PAYLOAD

abCdefghlj

content:"abc";

-

content:"aBc¢": x

content:."abC";

Legend:

match

x no maich

match in the payload

i no match in the payload

It is possible to use the ! for exceptions in contents as well.

For example:

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"Outdated Firefox on
Windows"; content:"User-Agent|3A| Mozilla/5.0 |28|Windows|3B| ";
content:"Firefox/3."; distance:0; content:!"Firefox/3.6.13";
distance:-10; sid:9000000; rev:1;)

You see content: ! "Firefox/3.6.13";. This means an alert will be generated if the used version of Firefox is not
3.6.13.

Note: The following characters must be escaped inside the content: ; \ "

8.7. Payload Keywords 61

Suricata User Guide, Release 7.0.4

8.7.2 nocase

If you do not want to make a distinction between uppercase and lowercase characters, you can use nocase. The keyword
nocase is a content modifier.

The format of this keyword is:

nocase;

You have to place it after the content you want to modify, like:

content: "abc"; nocase;

Example nocase:

PAYLOAD

abCldefghl]

content:"abc”; nocase;
content:"aBc™; nocase;

content:"abC"; nocase;

It has no influence on other contents in the signature.

8.7.3 depth

The depth keyword is a absolute content modifier. It comes after the content. The depth content modifier comes with
a mandatory numeric value, like:

depth:12;

The number after depth designates how many bytes from the beginning of the payload will be checked.

Example:

62 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.4

PAYLOAD

depth

content:"def"; depth:3; x

content:"abc”; depth:3;

8.7.4 startswith

The startswith keyword is similar to depth. It takes no arguments and must follow a content keyword. It modifies
the content to match exactly at the start of a buffer.

Example:

content:"GET|20|"; startswith;

startswith is a short hand notation for:

content:"GET|[20|"; depth:4; offset:0;

startswith cannot be mixed with depth, offset, within or distance for the same pattern.

8.7.5 endswith

The endswith keyword is similar to isdataat:!1,relative;. It takes no arguments and must follow a content
keyword. It modifies the content to match exactly at the end of a buffer.

Example:

content:".php"; endswith;

endswith is a short hand notation for:

content:".php"; isdataat:!1,relative;

endswith cannot be mixed with offset, within or distance for the same pattern.

8.7. Payload Keywords 63

Suricata User Guide, Release 7.0.4

8.7.6 offset

The offset keyword designates from which byte in the payload will be checked to find a match. For instance offset:3;
checks the fourth byte and further.

PAYLOAD

i_abadefghlj

hmemmmm

offset

content:"abc”; offset:3; x

content:"def"; offset:3;

The keywords offset and depth can be combined and are often used together.

For example:

content:"def"; offset:3; depth:3;

If this was used in a signature, it would check the payload from the third byte till the sixth byte.

64 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.4

PAYLOAD

abc

depth
offset

content."def"; offset.3; depth:3;

8.7.7 distance

The keyword distance is a relative content modifier. This means it indicates a relation between this content keyword
and the content preceding it. Distance has its influence after the preceding match. The keyword distance comes with a
mandatory numeric value. The value you give distance, determines the byte in the payload from which will be checked
for a match relative to the previous match. Distance only determines where Suricata will start looking for a pattern.
So, distance:5; means the pattern can be anywhere after the previous match + 5 bytes. For limiting how far after the
last match Suricata needs to look, use 'within'.

The absolute value for distance must be less than or equal to IMB (1048576).

Examples of distance:
content;"abc™; content:"kim”; distance: 0,
1 2 3

The distance (3), tells how the second (2)
content relates to the first (1) content.

8.7. Payload Keywords 65

Suricata User Guide, Release 7.0.4

distance

content:"abe™: content:"kim™: distance: 0: x

M checked area using 'distance’

content:"abc”; content:"def"; distance:0; l/

content:"abe™: content:"bed”; distance:0; x

66

Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.4

distance
distance

content:."abc”; content:"def"; distance:0; f

content:"abe™ content:"def"; distance:4; v

Distance can also be a negative number. It can be used to check for matches with partly the same content (see example)
or for a content even completely before it. This is not very often used though. It is possible to attain the same results
with other keywords.

content:"abc™; content:"bed™; distance:-2; v

8.7. Payload Keywords 67

Suricata User Guide, Release 7.0.4

8.7.8 within

The keyword within is relative to the preceding match. The keyword within comes with a mandatory numeric value.
Using within makes sure there will only be a match if the content matches with the payload within the set amount of
bytes. Within can not be 0 (zero)

The absolute value for within must be less than or equal to 1IMB (1048576).

Example:
content:"abc”™; content:"kim™ within:3:

Y

1 9 3

The keyword within (3), tells how the second
(2) content relates to the first (1) content.

Example of matching with within:

PAYLOAD

abcddflghiij

]

content:"abc”; content:"def’; within:3;

content;"abc”; content:"fgh”; within:3; x

The second content has to fall/come 'within 3 ' from the first content.

As mentioned before, distance and within can be very well combined in a signature. If you want Suricata to check a
specific part of the payload for a match, use within.

68 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.4

within
distance

content:"abc”; content:"del"; distance:0; within:3; x

within
distance

cantent:"abc™; content"def”; distance:1; within:4; b/

8.7.9 rawbytes

The rawbytes keyword has no effect but is included to be compatible with signatures that use it, for example signatures
used with Snort.

8.7. Payload Keywords 69

Suricata User Guide, Release 7.0.4

8.7.10 isdataat

The purpose of the isdataat keyword is to look if there is still data at a specific part of the payload. The keyword starts
with a number (the position) and then optional followed by 'relative’ separated by a comma and the option rawbytes.
You use the word 'relative' to know if there is still data at a specific part of the payload relative to the last match.

So you can use both examples:

isdataat:512;

isdataat:50, relative;

The first example illustrates a signature which searches for byte 512 of the payload. The second example illustrates a
signature searching for byte 50 after the last match.

You can also use the negation (!) before isdataat.

PAYLOAD
abcldefghi]
isdataat
content:"abc™; isdataat:c, relative:
content:"abc”; isdataat8, relative; x

8.7.11 bsize

With the bsize keyword, you can match on the length of the buffer. This adds precision to the content match, previously
this could have been done with isdataat.

An optional operator can be specified; if no operator is present, the operator will default to '=". When a relational

operator is used, e.g., '<', '>' or '<>' (range), the bsize value will be compared using the relational operator. Ranges are
exclusive.

If one or more content keywords precedes bsize, each occurrence of content will be inspected and an error will
be raised if the content length and the bsize value prevent a match.

Format:

bsize:<number>;
bsize:=<number>;
bsize:<<number>;

(continues on next page)

70 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.4

(continued from previous page)

bsize:><number>;
bsize:<lo-number><><hi-number>;

Examples of bsize in a rule:
alert dns any any -> any any (msg:"bsize exact buffer size"; dns.query; content:"google.com"; bsize:10; sid:1; rev:1;)
alert dns any any -> any any (msg:"bsize less than value"; dns.query; content:"google.com"; bsize:<25; sid:2; rev:1;)

alert dns any any -> any any (msg:"bsize buffer less than or equal value"; dns.query; content:"google.com"; bsize:<=20;
sid:3; rev:1;)

alert dns any any -> any any (msg:"bsize buffer greater than value"; dns.query; content:"google.com"; bsize:>8; sid:4;
rev:1;)

alert dns any any -> any any (msg:"bsize buffer greater than or equal value"; dns.query; content:"google.com";
bsize:>=8; sid:5; rev:1;)

alert dns any any -> any any (msg:"bsize buffer range value"; dns.query; content:"google.com"; bsize:8<>20; sid:6;
rev:1;)

alert dns any any -> any any (msg:"test bsize rule"; dns.query; content:"short"; bsize:<10; sid:124; rev:1;)
alert dns any any -> any any (msg:"test bsize rule"; dns.query; content:"longer string"; bsize:>10; sid:125; rev:1;)
alert dns any any -> any any (msg:"test bsize rule"; dns.query; content:"middle"; bsize:6<>15; sid:126; rev:1;)

To emphasize how range works: in the example above, a match will occur if bsize is greater than 6 and less than 15.

8.7.12 dsize

With the dsize keyword, you can match on the size of the packet payload/data. You can use the keyword for example
to look for abnormal sizes of payloads which are equal to some n i.e. 'dsize:n' not equal 'dsize:!n' less than 'dsize:<n’'
or greater than 'dsize:>n' This may be convenient in detecting buffer overflows.

dsize cannot be used when using app/streamlayer protocol keywords (i.e. http.uri)

Format:

dsize:[<>!]number; || dsize:min<>max;

Examples of dsize values:

alert tcp any any -> any any (msg:"dsize exact size"; dsize:10; sid:1; rev:1;)

alert tcp any any -> any any (msg:"dsize less than value"; dsize:<10; sid:2; rev:1;)

alert tcp any any -> any any (msg:"dsize less than or equal value"; dsize:<=10; sid:3; rev:1;)
alert tcp any any -> any any (msg:"dsize greater than value"; dsize:>8; sid:4; rev:1;)

alert tcp any any -> any any (msg:"dsize greater than or equal value"; dsize:>=10; sid:5; rev:1;)
alert tcp any any -> any any (msg:"dsize range value"; dsize:8<>20; sid:6; rev:1;)

alert tcp any any -> any any (msg:"dsize not equal value"; dsize:!9; sid:7; rev:1;)

8.7. Payload Keywords 71

Suricata User Guide, Release 7.0.4

8.7.13 byte_test

The byte_test keyword extracts <num of bytes> and performs an operation selected with <operator> against the
value in <test value> at a particular <offset>. The <bitmask value> is applied to the extracted bytes (before
the operator is applied), and the final result will be right shifted one bit for each trailing ® in the <bitmask value>.

Format:

byte_test:<num of bytes> | <variable_name>, [!]<operator>, <test value>, <offset> [,
—relative] \
[,<endian>] [, string, <num type>][, dce][, bitmask <bitmask value>];

<num of bytes> The number of bytes selected from the packet to be con-
verted or the name of a byte_extract/byte_math variable.
<operator> * [!] Negation can prefix other operators
e <less than
* > greater than
* =equal
e <= less than or equal
* >= greater than or equal
* & bitwise AND
* " bitwise OR
<value> Value to test the converted value against [hex or decimal
accepted]
<offset> Number of bytes into the payload
[relative] Offset relative to last content match
[endian] Type of number being read: - big (Most significant byte
at lowest address) - little (Most significant byte at the
highest address)
[string] <num> * hex - Converted string represented in hex
¢ dec - Converted string represented in decimal
* oct - Converted string represented in octal
[dce] Allow the DCE module to determine the byte order
[bitmask] Applies the AND operator on the bytes converted
Example:

alert tcp any any -> any any \
(msg:"Byte_Test Example - Num = Value"; \
content:" |00 01 00 02|"; byte_test:2,=,0x01,0;)

alert tcp any any -> any any \
(msg:"Byte_Test Example - Num = Value relative to content"; \
content:" |00 01 00 02|"; byte_test:2,=,0x03,2,relative;)

alert tcp any any -> any any \
(msg:"Byte_Test Example - Num != Value"; content:" |00 01 00 02|"; \
byte_test:2,!=,0x06,0;)

alert tcp any any -> any any \

(continues on next page)

72 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.4

(continued from previous page)

(msg:"Byte_Test Example - Detect Large Values"; content:" |00 01 00 02]"; \
byte_test:2,>,1000,1,relative;)

alert tcp any any -> any any \
(msg:"Byte_Test Example - Lowest bit is set"; \
content:" |00 01 00 02|"; byte_test:2,&,0x01,12,relative;)

alert tcp any any -> any any (msg:"Byte_Test Example - Compare to String"; \
content:"foobar"; byte_test:4,=,1337,1,relative,string,dec;)

8.7.14 byte_math

The byte_math keyword adds the capability to perform mathematical operations on extracted values with an existing
variable or a specified value.

When relative is included, there must be a previous content or pcre match.
Note: if oper is / and the divisor is 0, there will never be a match on the byte_math keyword.

The result can be stored in a result variable and referenced by other rule options later in the rule.

Keyword | Modifier

content offset,depth,distance,within
byte_test offset,value

byte_jump | offset

isdataat offset

Format:

byte_math:bytes <num of bytes> | <variable-name> , offset <offset>, oper <operator>,.

—rvalue <rvalue>, \
result <result_var> [, relative] [, endian <endian>] [, string <number-type>] \
[, dce]l [, bitmask <value>];

8.7. Payload Keywords 73

Suricata User Guide, Release 7.0.4

<num of bytes>

The number of bytes selected from the packet or the
name of a byte_extract variable.

<offset>

Number of bytes into the payload

oper <operator>

Mathematical operation to perform: +, -, *, /, <<, >>

rvalue <rvalue>

Value to perform the math operation with

result <result-var>

Where to store the computed value

[relative]

Offset relative to last content match

[endian <type>]

* big (Most significant byte at lowest address)

* little (Most significant byte at the highest address)

¢ dce (Allow the DCE module to determine the byte
order)

[string <num_type>]

* hex Converted data is represented in hex
¢ dec Converted data is represented in decimal
* oct Converted data is represented as octal

[dce]

Allow the DCE module to determine the byte order

[bitmask] <value>

The AND operator will be applied to the extracted value
The result will be right shifted by the number of bits
equal to the number of trailing zeros in the mask

Example:

alert tcp any any -> any any \
(msg:"Testing bytemath_body"; \
content:" |00 ®4 93 F3|"; \

content:" |00 00 00 07|"; distance:4; within:4; \
byte_math:bytes 4, offset 0, oper +, rvalue \

248, result var, relative;)

alert udp any any -> any any \
1, 0, extracted_val, relative; \

(byte_extract:

byte_math: bytes 1, offset 1, oper +, rvalue extracted_val, result var; \

byte_test: 2, =, var,

msg:"Byte extract and byte math with byte test verification";)

8.7.15 byte_jump

The byte_jump keyword allows for the ability to select a <num of bytes>from an <offset>and moves the detection
pointer to that position. Content matches will then be based off the new position.

Format:

byte_jump:<num of bytes> | <variable-name>, <offset> [, relative][, multiplier <mult_

—~value>] \

[, <endian>][, string, <num_type>][, align][, from_beginning][, from_end] \
[, post_offset <value>][, dce][, bitmask <value>];

74

Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.4

<num of bytes>

The number of bytes selected from the packet to be con-
verted or the name of a byte_extract/byte_math variable.

<offset>

Number of bytes into the payload

[relative]

Offset relative to last content match

[multiplier] <value>

Multiple the converted byte by the <value>

[endian]

* big (Most significant byte at lowest address)
* little (Most significant byte at the highest address)

[string] <num_type>

* hex Converted data is represented in hex
* dec Converted data is represented in decimal
 oct Converted data is represented as octal

[align]

Rounds the number up to the next 32bit boundary

[from_beginning]

Jumps forward from the beginning of the packet, instead
of where the detection pointer is set

[from_end]

Jump will begin at the end of the payload, instead of
where the detection point is set

[post_offset] <value>

After the jump operation has been performed, it will
jump an additional number of bytes specified by <value>

[dce]

Allow the DCE module to determine the byte order

[bitmask] <value>

The AND operator will be applied by <value> and the

converted bytes, then jump operation is performed

Example:

alert tcp any any -> any any \
(msg:"Byte_Jump Example"; \
content:"Alice"; byte_jump:2,0; content:"Bob";)

alert tcp any any -> any any \
(msg:"Byte_Jump Multiple Jumps"; \
byte_jump:2,0; byte_jump:2,0,relative; content:"foobar"; distance:0; within:6;)

alert tcp any any -> any any \
(msg:"Byte_Jump From the End -8 Bytes"; \
byte_jump:0,0, from_end, post_offset -8; \
content:"|6c 33 33 74|"; distance:0 within:4;)

8.7.16 byte_extract

The byte_extract keyword extracts <num of bytes> at a particular <offset> and stores it in <var_name>. The
value in <var_name> can be used in any modifier that takes a number as an option and in the case of byte_test it
can be used as a value.

Format:

byte_extract:<num of bytes>, <offset>, <var_name>, [,relative] [,multiplier <mult-value>

=1\

[,<endian>] [, dce] [, string [, <num_type>] [, align <align-value];

8.7. Payload Keywords 75

Suricata User Guide, Release 7.0.4

<num of bytes>

The number of bytes selected from the packet to be ex-
tracted

<offset> Number of bytes into the payload
<var_name> The name of the variable in which to store the value
[relative] Offset relative to last content match

multiplier <value>

multiply the extracted bytes by <mult-value> before stor-
ing

[endian]

Type of number being read: - big (Most significant byte
at lowest address) - little (Most significant byte at the
highest address)

[string] <num>

* hex - Converted string represented in hex
¢ dec - Converted string represented in decimal
* oct - Converted string represented in octal

[dce]

Allow the DCE module to determine the byte order

align <align-value>

Round the extracted value up to the next <align-value>
byte boundary post-multiplication (if any) ; <align-
value> may be 2 or 4

Keyword | Modifier

content offset,depth,distance,within
byte_test offset,value

byte_math | rvalue

byte_jump | offset

isdataat offset

Example:

alert tcp any any -> any any \

(msg:"Byte_Extract Example Using distance"; \
content:"Alice"; byte_extract:2,0,size; content:"Bob"; distance:size; within:3;.

—sid:1;)
alert tcp any any -> any any \

(msg:"Byte_Extract Example Using within"; \
flow:established, to_server; content:" |00 FF|"; \
byte_extract:1,0,len,relative; content:"|5c 00|"; distance:2; within:len; sid:2;)

alert tcp any any -> any any \

(msg:"Byte_Extract Example Comparing Bytes"; \
flow:established, to_server; content:" |00 FF|"; \
byte_extract:2,0,cmp_ver,relative; content:"FooBar"; distance:0; byte_test:2,=,

—cmp_ver,0; sid:3;)

76

Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.4

8.7.17 rpc

The rpc keyword can be used to match in the SUNRPC CALL on the RPC procedure numbers and the RPC version.

You can modify the keyword by using a wild-card, defined with * With this wild-card you can match on all version
and/or procedure numbers.

RPC (Remote Procedure Call) is an application that allows a computer program to execute a procedure on another com-
puter (or address space). It is used for inter-process communication. See http://en.wikipedia.org/wiki/Inter-process_
communication

Format:

rpc:<application number>, [<version number>|*], [<procedure number>|*]>;

Example of the rpc keyword in a rule:

alert udp SEXTERNAL_NET any -> $SHOME_NET 111 (msg:"RPC portmap request yppasswdd"; rpc:100009,*,*;
reference:bugtraq,2763; classtype:rpc-portmap-decode; sid:1296; rev:4;)

8.7.18 replace

The replace content modifier can only be used in ips. It adjusts network traffic. It changes the content it follows (‘abc')
into another ('def’), see example:

content: “abc”; replace: “def"”;

.

PAYLOAD PAYLOAD
abc det

The replace modifier has to contain as many characters as the content it replaces. It can only be used with individual
packets. It will not work for Normalized Buffers like HTTP uri or a content match in the reassembled stream.

The checksums will be recalculated by Suricata and changed after the replace keyword is being used.

8.7.19 pcre (Perl Compatible Regular Expressions)
The keyword pcre matches specific on regular expressions. More information about regular expressions can be found
here http://en.wikipedia.org/wiki/Regular_expression.

The complexity of pcre comes with a high price though: it has a negative influence on performance. So, to mitigate
Suricata from having to check pcre often, pcre is mostly combined with 'content'. In that case, the content has to match
first, before pcre will be checked.

Format of pcre:

pcre:"/<regex>/opts";

Example of pcre. In this example there will be a match if the payload contains six numbers following:

8.7. Payload Keywords 77

http://en.wikipedia.org/wiki/Inter-process_communication
http://en.wikipedia.org/wiki/Inter-process_communication
http://en.wikipedia.org/wiki/Regular_expression

Suricata User Guide, Release 7.0.4

pcre:"/[0-9] /"

Example of pcre in a signature:

drop tcp $SHOME_NET any -> $EXTERNAL_NET any (msg:"ET TROJAN Likely Bot Nick in IRC (USA +..)";
flow:established,to_server; flowbits:isset,is_proto_irc; content:"NICK "; pcre:"/NICK .*USA.*[0-9]{3,}/i"; refer-
ence:url,doc.emergingthreats.net/2008124; classtype:trojan-activity; sid:2008124; rev:2;)

There are a few qualities of pcre which can be modified:
* By default pcre is case-sensitive.
e The . (dot) is a part of regex. It matches on every byte except for newline characters.
* By default the payload will be inspected as one line.

These qualities can be modified with the following characters:

i pcre is case insensitive
3 pcre does check newline characters
m can make one line (of the payload) count as two lines

These options are perl compatible modifiers. To use these modifiers, you should add them to pcre, behind regex. Like
this:

pcre: "/<regex>/i";

Pcre compatible modifiers

There are a few pcre compatible modifiers which can change the qualities of pcre as well. These are:
e A: A pattern has to match at the beginning of a buffer. (In pcre » is similar to A.)
* E: Ignores newline characters at the end of the buffer/payload.

* G: Inverts the greediness.

"

Note: The following characters must be escaped inside the content: ; \

Suricata's modifiers

Suricata has its own specific pcre modifiers. These are:
* R: Match relative to the last pattern match. It is similar to distance:0;

* U: Makes pcre match on the normalized uri. It matches on the uri_buffer just like uricontent and content combined
with http_uri.U can be combined with /R. Note that R is relative to the previous match so both matches have to
be in the HTTP-uri buffer. Read more about HTTP URI Normalization.

78 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.4

content:"/index.”; http_uri; content:"htm”; http_uri; distance:0;

content:"index.”: hitp_uri: pere:"/htmI?$UR":

NN

content"index.”; http_uri; pere™indext. htmI?/$U";

content:*findex.”; hitp_uri; content:"ntm"; http_uri: distance:0; b/

contentindex.”; http_uri; pcre”/htmi?E&UR"

N

content;"index."; http_uri; pore:”Mindex\. himl 7L V'

content™findex.”; hitp_uri; content:"htm”; http_uri; distance:0; I/

contentindex."; hitp_uri; pere:"/htmI?$UR";

- 4

content:"index."; http_uri; pere™index html 25U x

8.7. Payload Keywords 79

Suricata User Guide, Release 7.0.4

PAYLOAD

lindex.abc.htm

content:™findex.”; hitp_uri; content:"htm”; http_uri; distance:0; x

content."index.”; http_uri; pore"htmI?EUR"

content:"index.”; http_uri; pcre:"Mindex\ himl?/&U"; K

I: Makes pcre match on the HTTP-raw-uri. It matches on the same buffer as http_raw_uri. I can be combined
with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-raw-uri buffer.
Read more about HTTP URI Normalization.

P: Makes pcre match on the HTTP- request-body. So, it matches on the same buffer as http_client_body. P can be
combined with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-request
body.

Q: Makes pcre match on the HTTP- response-body. So, it matches on the same buffer as http_server_body. Q
can be combined with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-
response body.

H: Makes pcre match on the HTTP-header. H can be combined with /R. Note that R is relative to the previous
match so both matches have to be in the HTTP-header body.

D: Makes pcre match on the unnormalized header. So, it matches on the same buffer as http_raw_header. D can
be combined with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-raw-
header.

M: Makes pcre match on the request-method. So, it matches on the same buffer as http_method. M can be
combined with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-method
buffer.

C: Makes pcre match on the HTTP-cookie. So, it matches on the same buffer as http_cookie. C can be combined
with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-cookie buffer.

S: Makes pcre match on the HTTP-stat-code. So, it matches on the same buffer as http_stat_code. S can be
combined with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-stat-
code buffer.

Y: Makes pcre match on the HTTP-stat-msg. So, it matches on the same buffer as http_stat_msg. Y can be
combined with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-stat-msg
buffer.

B: You can encounter B in signatures but this is just for compatibility. So, Suricata does not use B but supports
it so it does not cause errors.

0: Overrides the configures pcre match limit.

V: Makes pcre match on the HTTP-User-Agent. So, it matches on the same buffer as http_user_agent. V can be
combined with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-User-
Agent buffer.

80

Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.4

e W: Makes pcre match on the HTTP-Host. So, it matches on the same buffer as http_host. W can be combined
with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-Host buffer.

8.8 Changes from PCRE1 to PCRE2

The upgrade from PCRE1 to PCRE2 changes the behavior for some PCRE expressions.

* \I is a valid pcre in PCREI, with a useless escape, so equivalent to I, but it is no longer the case in PCRE2.
There are other characters than I exhibiting this pattern

e [\d-a] is a valid pcre in PCRE1, with either a digit, a dash or the character a, but the dash must now be escaped
with PCRE2 as [\d\-a] to get the same behavior

e pcre2_substring_copy_bynumber now returns an error PCRE2_ERROR_UNSET instead of
pcre_copy_substring returning no error and giving an empty string. If the behavior of some use case
is no longer the expected one, please let us know.

8.9 Transformations

Transformation keywords turn the data at a sticky buffer into something else. Some transformations support options
for greater control over the transformation process

Example:

alert http any any -> any any (file_data; strip_whitespace; \
content: "window.navigate("; sid:1;)

This example will match on traffic even if there are one or more spaces between the navigate and (.

The transforms can be chained. They are processed in the order in which they appear in a rule. Each transform's output
acts as input for the next one.

Example:

alert http any any -> any any (http_request_line; compress_whitespace; to_sha256; \
content:"|54A9 7A8A BO9C 1B81 3725 2214 51D3 F997 FO15 9DD7 049E ES5AD CED3 945A FC79.
74011"; sid:1;)

Note: not all sticky buffers support transformations yet

8.9.1 dotprefix

Takes the buffer, and prepends a . character to help facilitate concise domain checks. For example, an input string
of hello.google.com would be modified and become .hello.google.com. Additionally, adding the dot allows
google.com to match against content:".google.com"

Example:

alert dns any any -> any any (dns.query; dotprefix; \
content:".microsoft.com"; sid:1;)

8.8. Changes from PCRE1 to PCRE2 81

Suricata User Guide, Release 7.0.4

This example will match on windows.update.microsoft.com and maps.microsoft.com.au but not windows.

update. fakemicrosoft.com.

This rule can be used to match on the domain only; example:

alert dns any any -> any any (dns.query; dotprefix; \
content:".microsoft.com"; endswith; sid:1;)

This example will match on windows.update.microsoft.com but not windows.update.microsoft.com.au.

Finally, this rule can be used to match on the TLD only; example:

alert dns any any -> any any (dns.query; dotprefix; \
content:".co.uk"; endswith; sid:1;)

This example will match on maps.google.co.uk but not maps.google.co.nl.

8.9.2 strip_whitespace

Strips all whitespace as considered by the isspace() call in C.

Example:

alert http any any -> any any (file_data; strip_whitespace; \
content: "window.navigate("; sid:1;)

8.9.3 compress_whitespace

Compresses all consecutive whitespace into a single space.

8.9.4 to lowercase

Converts the buffer to lowercase and passes the value on.
This example alerts if http.uri contains this text has been converted to lowercase

Example:

alert http any any -> any any (http.uri; to_lowercase; \
content:'"this text has been converted to lowercase"; sid:1;)

8.9.5 to_md5

Takes the buffer, calculates the MD5 hash and passes the raw hash value on.

Example:

alert http any any -> any any Chttp_request_line; to_md5; \
content:" |54 A9 7A 8A BO 9C 1B 81 37 25 22 14 51 D3 F9 97|"; sid:1;)

82 Chapter 8

. Suricata Rules

Suricata User Guide, Release 7.0.4

8.9.6 to_uppercase

Converts the buffer to uppercase and passes the value on.
This example alerts if http.uri contains THIS TEXT HAS BEEN CONVERTED TO LOWERCASE

Example:

alert http any any -> any any Chttp.uri; to_uppercase; \
content:"THIS TEXT HAS BEEN CONVERTED TO UPPERCASE"; sid:1;)

8.9.7 to_shai

Takes the buffer, calculates the SHA-1 hash and passes the raw hash value on.

Example:

alert http any any -> any any (http_request_line; to_shal; \
content:"|54A9 7A8A BO9C 1B81 3725 2214 51D3 F997 FO15 9DD7|"; sid:1;)

8.9.8 to_sha256

Takes the buffer, calculates the SHA-256 hash and passes the raw hash value on.

Example:

alert http any any -> any any Chttp_request_line; to_sha256; \
content:"|54A9 7A8A BO9C 1B81 3725 2214 51D3 F997 FO15 9DD7 049E ESAD CED3 945A FC79.
~7401|"; sid:1;)

8.9.9 pcrexform

Takes the buffer, applies the required regular expression, and outputs the first captured expression.

Note: this transform requires a mandatory option string containing a regular expression.

This example alerts if http.request_line contains /dropper.php Example:

alert http any any -> any any (msg:"HTTP with pcrexform"; http.request_line; \
pcrexform: " [a-zA-Z]+\s+(.*)\s+HTTP"; content:"/dropper.php"; sid:1;)

8.9.10 url_decode

Decodes url-encoded data, ie replacing '+' with space and 'J%oHH' with its value. This does not decode unicode '%ouZZZZ'
encoding

8.9. Transformations 83

Suricata User Guide, Release 7.0.4

8.9.11 xor

Takes the buffer, applies xor decoding.

Note: this transform requires a mandatory option which is the hexadecimal encoded xor key.

This example alerts if http.uri contains password= xored with 4-bytes key 0d®ac8ff Example:

alert http any any -> any any (msg:"HTTP with xor"; http.uri; \
xor:"0d0ac8ff"; content:'"password="; sid:1;)

8.9.12 header_lowercase
This transform is meant for HTTP/1 HTTP/2 header names normalization. It lowercases the header names, while
keeping untouched the header values.

The implementation uses a state machine : - it lowercases until it finds : * - it does not change until it finds a new line
and switch back to first state

This example alerts for both HTTP/1 and HTTP/2 with a authorization header Example:

alert http any any -> any any (msg:"HTTP authorization"; http.header_names; \
header_lowercase; content:"authorization:"; sid:1;)

8.9.13 strip_pseudo_headers

This transform is meant for HTTP/1 HTTP/2 header names normalization. It strips HTTP2 pseudo-headers (names
and values).

The implementation just strips every line beginning by :.

This example alerts for both HTTP/1 and HTTP/2 with only a user agent Example:

alert http any any -> any any (msg:"HTTP ua only"; http.header_names; \
bsize:16; content:"|0d Oa|User-Agent|0d ®a 0d Oa|"; nocase; sid:1;)

8.10 Prefiltering Keywords

8.10.1 fast_pattern

Suricata Fast Pattern Determination Explained

If the 'fast_pattern' keyword is explicitly set in a rule, Suricata will use that as the fast pattern match. The 'fast_pattern’
keyword can only be set once per rule. If 'fast_pattern' is not set, Suricata automatically determines the content to use
as the fast pattern match.

The following explains the logic Suricata uses to automatically determine the fast pattern match to use.

Be aware that if there are positive (i.e. non-negated) content matches, then negated content matches are ignored for fast
pattern determination. Otherwise, negated content matches are considered.

The fast_pattern selection criteria are as follows:

84 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.4

1. Suricata first identifies all content matches that have the highest "priority" that are used in the signature. The
priority is based off of the buffer being matched on and generally application layer buffers have a higher priority
(lower number is higher priority). The buffer http_method is an exception and has lower priority than the general
content buffer.

2. Within the content matches identified in step 1 (the highest priority content matches), the longest (in terms of
character/byte length) content match is used as the fast pattern match.

3. If multiple content matches have the same highest priority and qualify for the longest length, the one with the
highest character/byte diversity score ("Pattern Strength") is used as the fast pattern match. See Appendix A for
details on the algorithm used to determine Pattern Strength.

4. If multiple content matches have the same highest priority, qualify for the longest length, and the same highest
Pattern Strength, the buffer ("list_id") that was registered last is used as the fast pattern match.

5. If multiple content matches have the same highest priority, qualify for the longest length, the same highest Pattern
Strength, and have the same list_id (i.e. are looking in the same buffer), then the one that comes first (from left-
to-right) in the rule is used as the fast pattern match.

It is worth noting that for content matches that have the same priority, length, and Pattern Strength, 'http_stat_msg',
'http_stat_code', and 'http_method' take precedence over regular 'content' matches.

Appendices
Appendix A - Pattern Strength Algorithm

From detect-engine-mpm.c. Basically the Pattern Strength "score" starts at zero and looks at each character/byte in the
passed in byte array from left to right. If the character/byte has not been seen before in the array, it adds 3 to the score
if it is an alpha character; else it adds 4 to the score if it is a printable character, 0x00, 0x01, or OxFF; else it adds 6 to
the score. If the character/byte has been seen before it adds 1 to the score. The final score is returned.

/%% \brief Predict a strength value for patterns

Patterns with high character diversity score higher.
Alpha chars score not so high

Other printable + a few common codes a little higher
Everything else highest.

Longer patterns score better than short patters.

\param pat pattern
\param patlen length of the pattern

* \retval s pattern score
*/
uint32_t PatternStrength(uint8_t *pat, uintl6_t patlen) {
uint8_t a[256];
memset (&, 0 ,sizeof(a));
uint32_t s = 0;
uintl6e_t u = 0;
for (u = 0; u < patlen; u++) {
if (a[pat[u]] == 0) {
if (isalpha(pat[ul))
s += 3;
else if (isprint(pat[u]) || pat[u] == 0x00 || pat[u] == 0x01 || pat[u] ==_

(continues on next page)

8.10. Prefiltering Keywords 85

Suricata User Guide, Release 7.0.4

(continued from previous page)

—0xFF)
S += 4;
else
S += 6;
a[patful]l = 1;
} else {
S++;
}
}
return s;
}

Only one content of a signature will be used in the Multi Pattern Matcher (MPM). If there are multiple contents, then
Suricata uses the 'strongest' content. This means a combination of length, how varied a content is, and what buffer it
is looking in. Generally, the longer and more varied the better. For full details on how Suricata determines the fast
pattern match, see Suricata Fast Pattern Determination Explained.

Sometimes a signature writer concludes he wants Suricata to use another content than it does by default.

For instance:

User-agent: Mozilla/5.0 Badness;

content: "User-Agent|3A|[";
content: "Badness"; distance:0;

In this example you see the first content is longer and more varied than the second one, so you know Suricata will use
this content for the MPM. Because 'User-Agent:' will be a match very often, and 'Badness' appears less often in network
traffic, you can make Suricata use the second content by using 'fast_pattern'.

content: "User-Agent|3A|[";
content: "Badness"; distance:0; fast_pattern;

The keyword fast_pattern modifies the content previous to it.

content:"User-Agent|34)";
content:"Badness”; distance:0; fast_pattern,

F-..____...-'"'

Fast-pattern can also be combined with all previous mentioned keywords, and all mentioned HTTP-modifiers.

86 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.4

fast_pattern:only

Sometimes a signature contains only one content. In that case it is not necessary Suricata will check it any further
after a match has been found in MPM. If there is only one content, the whole signature matches. Suricata notices
this automatically. In some signatures this is still indicated with 'fast_pattern:only;'. Although Suricata does not need
fast_pattern:only, it does support it.

fast_pattern:'chop’

If you do not want the MPM to use the whole content, you can use fast_pattern 'chop'.

For example:

content: "aaaaaaaaabc"; fast_pattern:8,4;

This way, MPM uses only the last four characters.

8.10.2 prefilter

The prefilter engines for other non-MPM keywords can be enabled in specific rules by using the 'prefilter' keyword.

In the following rule the TTL test will be used in prefiltering instead of the single byte pattern:

alert ip any any -> any any (ttl:123; prefilter; content:"a"; sid:1;)

For more information on how to configure the prefilter engines, see Prefilter Engines

8.11 Flow Keywords

8.11.1 flowbits

Flowbits consists of two parts. The first part describes the action it is going to perform, the second part is the name of
the flowbit.

There are multiple packets that belong to one flow. Suricata keeps those flows in memory. For more information see
Flow Settings. Flowbits can make sure an alert will be generated when for example two different packets match. An
alert will only be generated when both packets match. So, when the second packet matches, Suricata has to know if
the first packet was a match too. Flowbits marks the flow if a packet matches so Suricata 'knows' it should generate an
alert when the second packet matches as well.

Flowbits have different actions. These are:

flowbits: set, name
Will set the condition/'name’, if present, in the flow.

flowbits: isset, name
Can be used in the rule to make sure it generates an alert when the rule matches and the condition is set in the
flow.

flowbits: toggle, name
Reverses the present setting. So for example if a condition is set, it will be unset and vice-versa.

flowbits: unset, name
Can be used to unset the condition in the flow.

8.11. Flow Keywords 87

Suricata User Guide, Release 7.0.4

flowbits: isnotset, name
Can be used in the rule to make sure it generates an alert when it matches and the condition is not set in the flow.

flowbits: noalert
No alert will be generated by this rule.

Example:

userlogin: set

Facket 1 Packet ?

alert hitp 3HOME | NET any -= BEXTERNAL_NET any
(msg: "Logged In Yser Saying Blah"; content:"userlogin®;
flowhbits:set, userlogin; flowhits:noalert;)

alert http FHOME_NET any -> FEXTERMNAL_NET any
(msg: "Logged In User Saying Blah"flowbil 5:isset,
userlogin; content;"blah”; ;)

When you take a look at the first rule you will notice it would generate an alert if it would match, if it were not for the
'flowbits: noalert' at the end of that rule. The purpose of this rule is to check for a match on 'userlogin' and mark that
in the flow. So, there is no need for generating an alert. The second rule has no effect without the first rule. If the first
rule matches, the flowbits sets that specific condition to be present in the flow. Now with the second rule there can be
checked whether or not the previous packet fulfills the first condition. If at that point the second rule matches, an alert
will be generated.

It is possible to use flowbits several times in a rule and combine the different functions.
It is also possible to perform an OR operation with flowbits with | op.

Example::
alert http any any -> any any (msg: "User] or User2 logged in"; content:"login"; flowbits:isset,user1|user2; sid:1;)

This can be used with either isset or isnotset action.

88 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.4

8.11.2 flow

The flow keyword can be used to match on direction of the flow, so to/from client or to/from server. It can also match
if the flow is established or not. The flow keyword can also be used to say the signature has to match on stream only
(only_stream) or on packet only (no_stream).

So with the flow keyword you can match on:

to_client
Match on packets from server to client.

to_server
Match on packets from client to server.

from_client
Match on packets from client to server (same as to_server).

from_server
Match on packets from server to client (same as to_client).

established
Match on established connections.

not_established
Match on packets that are not part of an established connection.

stateless
Match on packets that are and are not part of an established connection.

only_stream
Match on packets that have been reassembled by the stream engine.

no_stream
Match on packets that have not been reassembled by the stream engine. Will not match packets that have been
reassembled.

only_frag
Match packets that have been reassembled from fragments.

no_frag
Match packets that have not been reassembled from fragments.

Multiple flow options can be combined, for example:

flow:to_client, established
flow:to_server, established, only_stream
flow:to_server, not_established, no_frag

The determination of established depends on the protocol:

» For TCP a connection will be established after a three way handshake.

8.11. Flow Keywords 89

Suricata User Guide, Release 7.0.4

Packet x Packet x+1

alert htp $HOME_NET any -> SEXTERMNAL_MET any
imsg: "Logged In User Saying Blah"; content:"blah®;
flow:established:)

* For other protocols (for example UDP), the connection will be considered established after seeing traffic from
both sides of the connection.

Packel x Packet x+1

alert hitp FHOME_NET any -= SEXTERMAL_NET any
(msg: “Logged In User Saying Blah"; content:"blah";
flow:established;)

90 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.4

8.11.3 flowint

Flowint allows storage and mathematical operations using variables. It operates much like flowbits but with the addition
of mathematical capabilities and the fact that an integer can be stored and manipulated, not just a flag set. We can use
this for a number of very useful things, such as counting occurrences, adding or subtracting occurrences, or doing
thresholding within a stream in relation to multiple factors. This will be expanded to a global context very soon, so
users can perform these operations between streams.

The syntax is as follows:

flowint: name, modifier[, valuel;

Define a var (not required), or check that one is set or not set.

flowint: name, < +,-,=,>,<,>=,<=,==, != >, value;
flowint: name, (isset|isnotset);

Compare or alter a var. Add, subtract, compare greater than or less than, greater than or equal to, and less than or equal
to are available. The item to compare with can be an integer or another variable.

For example, if you want to count how many times a username is seen in a particular stream and alert if it is over 5.

alert tcp any any -> any any (msg:"Counting Usernames'; content:"jonkman"; \
flowint: usernamecount, +, 1; noalert;)

This will count each occurrence and increment the var usernamecount and not generate an alert for each.

Now say we want to generate an alert if there are more than five hits in the stream.

alert tcp any any -> any any (msg:"More than Five Usernames!'"; content:"jonkman"; \
flowint: usernamecount, +, 1; flowint:usernamecount, >, 5;)

So we'll get an alert ONLY if usernamecount is over five.

So now let's say we want to get an alert as above but NOT if there have been more occurrences of that username logging
out. Assuming this particular protocol indicates a log out with "jonkman logout", let's try:

alert tcp any any -> any any (msg:"Username Logged out"; content:"logout jonkman'"; \
flowint: usernamecount, -, 1; flowint:usernamecount, >, 5;)

So now we'll get an alert ONLY if there are more than five active logins for this particular username.

This is a rather simplistic example, but I believe it shows the power of what such a simple function can do for rule
writing. I see a lot of applications in things like login tracking, IRC state machines, malware tracking, and brute force
login detection.

Let's say we're tracking a protocol that normally allows five login fails per connection, but we have vulnerability where
an attacker can continue to login after that five attempts and we need to know about it.

alert tcp any any -> any any (msg:"Start a login count"; content:"login failed"; \
flowint:loginfail, notset; flowint:loginfail, =, 1; noalert;)

So we detect the initial fail if the variable is not yet set and set it to 1 if so. Our first hit.

alert tcp any any -> any any (msg:"Counting Logins"; content:"login failed"; \
flowint:loginfail, isset; flowint:loginfail, +, 1; noalert;)

8.11. Flow Keywords 91

Suricata User Guide, Release 7.0.4

We are now incrementing the counter if it's set.

alert tcp any any -> any any (msg:"More than Five login fails in a Stream"; \
content:"login failed"; flowint:loginfail, isset; flowint:loginfail, >, 5;)

Now we'll generate an alert if we cross five login fails in the same stream.

But let's also say we also need alert if there are two successful logins and a failed login after that.

alert tcp any any -> any any (msg:"Counting Good Logins'"; \
content:"login successful"; flowint:loginsuccess, +, 1; noalert;)

Here we're counting good logins, so now we'll count good logins relevant to fails:

alert tcp any any -> any any (msg:"Login fail after two successes"; \
content:"login failed"; flowint:loginsuccess, isset; \
flowint:loginsuccess, =, 2;)

Here are some other general examples:

alert tcp any any -> any any (msg:"Setting a flowint counter"; content:"GET"; \
flowint:myvar, notset; flowint:maxvar,notset; \
flowint:myvar,=,1; flowint: maxvar,=,6;)

alert tcp any any -> any any (msg:"Adding to flowint counter"; \
content: "Unauthorized"; flowint:myvar,isset; flowint: myvar,+,2;)

alert tcp any any -> any any (msg:"when flowint counter is 3 create new counter"; \
content: "Unauthorized"; flowint:myvar, isset; flowint:myvar,==,3; \
flowint:cntpackets,notset; flowint:cntpackets, =, 0;)

alert tcp any any -> any any (msg:"count the rest without generating alerts"; \
flowint:cntpackets,isset; flowint:cntpackets, +, 1; noalert;)

alert tcp any any -> any any (msg:"fire this when it reach 6";
flowint: cntpackets, isset;
flowint: maxvar,isset; flowint: cntpackets, ==, maxvar;)

~

8.11.4 stream_size

The stream size option matches on traffic according to the registered amount of bytes by the sequence numbers. There
are several modifiers to this keyword:

> greater than

< less than

= equal

1= not equal

>= greater than or equal
<= less than or equal
Format

92 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.4

stream_size:<server|client |both|either>, <modifier>, <number>;

Example of the stream-size keyword in a rule:

alert tcp any any -> any any (stream_size:both, >, 5000; sid:1;)

8.11.5 flow.age

Flow age in seconds (integer)

Syntax:

flow.age: [op]<number>

The time can be matched exactly, or compared using the _op_ setting:

flow.age:3 # exactly 3
flow.age:<3 # smaller than 3 seconds
flow.age:>=2 # greater or equal than 2 seconds

Signature example:

alert tcp any any -> any any (msg:"Flow longer than one hour"; flow.age:>3600; flowbits:.
—,isnotset, onehourflow; flowbits: onehourflow, name; sid:1; rev:1;)

In this example, we combine flow.age and flowbits to get an alert on the first packet after the flow's age is older than one
hour.

8.12 Bypass Keyword

Suricata has a bypass keyword that can be used in signatures to exclude traffic from further evaluation.
The bypass keyword is useful in cases where there is a large flow expected (e.g. Netflix, Spotify, YouTube).

The bypass keyword is considered a post-match keyword.

8.12.1 bypass

Bypass a flow on matching http traffic.

Example:

alert http any any -> any any (content:"suricata.io"; \
http_host; bypass; sid:10001; rev:1;)

8.12. Bypass Keyword 93

Suricata User Guide, Release 7.0.4

8.13 HTTP Keywords

Using the HTTP specific sticky bufters provides a way to efficiently inspect specific fields of the HTTP protocol. After
specifying a sticky buffer in a rule it should be followed by one or more Payload Keywords.

Many of the sticky buffers have legacy variants in the older "content modifier" notation. See Modifier Keywords for
more information. As a refresher:

'sticky buffers' are placed first and all keywords following it apply to that buffer, for instance:

alert http any any -> any any (http.response_line; content:"403 Forbidden"; sid:1;)

'content modifiers' look back in the rule, e.g.:

Sticky buffers apply to all "payload" keywords following it. E.g. content, isdataat, byte_test, pcre.

alert http any any -> any any (content:"index.php"; http_uri; sid:1;)

The following request keywords are available:

*) sticky buffer

The following response keywords are available:

Content modifiers only apply to the preceding content keyword.

Keyword Legacy Content Modifier | Direction
http.uri http_uri Request
http.uri.raw http_raw_uri Request
http.method http_method Request
http.request_line http_request_line (*) Request
http.request_body | http_client_body Request
http.header http_header Both
http.header.raw http_raw_header Both
http.cookie http_cookie Both
http.user_agent http_user_agent Request
http.host http_host Request
http.host.raw http_raw_host Request
http.accept http_accept (*) Request
http.accept_lang http_accept_lang (*) Request
http.accept_enc http_accept_enc (¥) Request
http.referer http_referer (*) Request
http.connection http_connection (*) Both
file.data file_data (*) Both
http.content_type http_content_type (*) Both
http.content_len http_content_len (*) Both
http.start http_start (*) Both
http.protocol http_protocol (*) Both
http.header_names | http_header_names (*) Both

94

Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.4

Keyword Legacy Content Modifier | Direction
http.stat_msg http_stat_msg Response
http.stat_code http_stat_code Response
http.response_line http_response_line (*) Response
http.header http_header Both
http.header.raw http_raw_header Both
http.cookie http_cookie Both
http.response_body | http_server_body Response
http.server N/A Response
http.location N/A Response
file.data file_data (*) Both
http.content_type http_content_type (*) Both
http.content_len http_content_len (*) Both
http.start http_start (*) Both
http.protocol http_protocol (*) Both
http.header_names | http_header_names (*) Both

*) sticky buffer

8.13.1 HTTP Primer

It is important to understand the structure of HTTP requests and responses. A simple example of a HTTP request and

response follows:

HTTP request

GET /index.html HTTP/1.0\r\n

GET is the request method. Examples of methods are: GET, POST, PUT, HEAD, etc. The URI path is /index.html
and the HTTP version is HTTP/1.0. Several HTTP versions have been used over the years; of the versions 0.9, 1.0 and
1.1, 1.0 and 1.1 are the most commonly used today.

Example request with keywords:

HTTP

Keyword

GET /index.html HTTP/1.1\r\n

http.request_line

Host: www.oisf.net\r\n

http.header

Cookie: <cookie data>

http.cookie

Example request with finer grained keywords:

HTTP

Keyword

GET /index.html HTTP/1.1\r\n

http.method hztp.uri http.protocol

Host: www.oisf.net\r\n http.host
User-Agent: Mozilla/5.0\r\n http.user_agent
Cookie: <cookie data> http.cookie

HTTP response

HTTP/1.0 200 OK\r\n
<html>

(continues on next page)

8.13. HTTP Keywords

95

Suricata User Guide, Release 7.0.4

(continued from previous page)

<title> some page </title>
</HTML>

In this example, HTTP/1.0 is the HTTP version, 200 the response status code and OK the response status message.

Although cookies are sent in an HTTP header, you can not match on them with the http.header keyword. Cookies
are matched with their own keyword, namely http.cookie.

Each part of the table belongs to a so-called buffer. The HTTP method belongs to the method buffer, HTTP headers
to the header buffer etc. A buffer is a specific portion of the request or response that Suricata extracts in memory for
inspection.

All previous described keywords can be used in combination with a buffer in a signature. The keywords distance and
within are relative modifiers, so they may only be used within the same buffer. You can not relate content matches
against different buffers with relative modifiers.

8.13.2 http.method

With the http.method sticky buffer, it is possible to match specifically and only on the HTTP method buffer. The
keyword can be used in combination with all previously mentioned content modifiers such as: depth, distance,
offset, nocase and within.

Examples of methods are: GET, POST, PUT, HEAD, DELETE, TRACE, OPTIONS, CONNECT and PATCH.
Example of a method in a HTTP request:

GET/HTTR/L1

Host www.google.com

Connection: keep-alive

Accept:

application/xml application/xhtml+xml text/html;g=0.9,text/
plaing=0.8.image/pneg,**;g=0.5

Example of the purpose of method:

96 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.4

content"GET™: v

content."GET"; http_method V’

v" match
x no maich

match in the payload

; no match in the payload

8.13. HTTP Keywords 97

Suricata User Guide, Release 7.0.4

PAYLOAD

POST NEws. htm! HTTP/L.0\A\n

content"GET";

content:"GET", http_method x

content:"POST"; http_method

8.13.3 http.uri and http.uri.raw

With the http.uri and the http.uri.raw sticky buffers, it is possible to match specifically and only on the request
URI buffer. The keyword can be used in combination with all previously mentioned content modifiers like depth,
distance, offset, nocase and within.

The uri has two appearances in Suricata: the uri.raw and the normalized uri. The space for example can be indicated
with the heximal notation %?20. To convert this notation in a space, means normalizing it. It is possible though to match
specific on the characters %20 in a uri. This means matching on the uri.raw. The uri.raw and the normalized uri are
separate buffers. So, the uri.raw inspects the uri.raw buffer and can not inspect the normalized buffer.

Note: uri.raw never has any spaces in it. With this request line GET /uid=0(root) gid=0(root) HTTP/1.1,
the http.uri.raw will match /uid=0(root) and http.protocol will match gid=0(root) HTTP/1.1 Reference:
https://redmine.openinfosecfoundation.org/issues/2881

Example of the URI in a HTTP request:

GET lindex.html HTTP/1.0\r\n

Example of the purpose of http.uri:

98 Chapter 8. Suricata Rules

https://redmine.openinfosecfoundation.org/issues/2881

Suricata User Guide, Release 7.0.4

PAYLOAD

r

content: “findex. html";, hitp_uri;
content: "GET™; http_uri; x

content: “findex™, hittp_uri; content: “html";
http_uri; withim: 5;

content: “findex™; hitp_uri; depth:&;

8.13.4 uricontent

The uricontent keyword has the exact same effect as the http.uri sticky buffer. uricontent is a deprecated
(although still supported) way to match specifically and only on the request URI buffer.

Example of uricontent:

alert tcp SHOME_NET any -> $SEXTERNAL_NET $HTTP_PORTS (msg:"ET TROJAN Possible Vundo
Trojan Variant reporting to Controller"; flow:established,to_server; content:"POST "; depth:5; uricon-
tent:"/frame.html?"; urilen: > 80; classtype:trojan-activity; reference:url,doc.emergingthreats.net/2009173;
reference:url,www.emergingthreats.net/cgi-bin/cvsweb.cgi/sigs/ VIRUS/TROJAN_Vundo; sid:2009173; rev:2;)

The difference between http.uri and uricontent is the syntax:

uricontent: “abc”;

~_ 7T

content: "abc”; http_uri

When authoring new rules, it is recommended that the http.uri content sticky buffer be used rather than the depre-
cated uricontent keyword.

8.13. HTTP Keywords 99

Suricata User Guide, Release 7.0.4

8.13.5 urilen

The urilen keyword is used to match on the length of the request URL. It is possible to use the < and > operators,
which indicate respectively smaller than and larger than.

The format of urilen is:

urilen:3;

Other possibilities are:

urilen:1;

urilen:>1;

urilen:<10;

urilen:10<>20; (bigger than 10, smaller than 20)

Example:

PAYLOAD

fpicturesHTTP/1.0

urilen:10:

urilen:<10: x
urilen:5<>20;
urilen:20: x

urilen:=4;

Example of urilen in a signature:

alert tcp SHOME_NET any -> $SEXTERNAL_NET $HTTP_PORTS (msg:"ET TROJAN Possible Vundo
Trojan Variant reporting to Controller"; flow:established,to_server; content:"POST "; depth:5; uricon-
tent:"/frame.html?"; urilen: > 80; classtype:trojan-activity; reference:url,doc.emergingthreats.net/2009173;

reference:url,www.emergingthreats.net/cgi-bin/cvsweb.cgi/sigs/ VIRUS/TROJAN_Vundo; sid:2009173; rev:2;)

You can also append norm or raw to define what sort of buffer you want to use (normalized or raw buffer).

100 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.4

8.13.6 http.protocol

The http.protocol inspects the protocol field from the HTTP request or response line. If the request line is 'GET /
HTTP/1.0rn', then this buffer will contain 'HTTP/1.0'.

Example:

alert http any any -> any any (flow:to_server; http.protocol; content:"HTTP/1.0"; sid:1;)

http.protocol replaces the previous keyword name: “http_protocol. You may continue to use the previous name,
but it's recommended that rules be converted to use the new name.

Example:

alert http any any -> any any (flow:to_server; http.protocol; content:"HTTP/1.0"; sid:1;)

8.13.7 http.request_line

The http.request_line forces the whole HTTP request line to be inspected.

Example:

alert http any any -> any any (http.request_line; content:"GET / HTTP/1.0"; sid:1;)

8.13.8 http.header and http.header.raw

With the http.header sticky buffer, it is possible to match specifically and only on the HTTP header buffer. This
contains all of the extracted headers in a single buffer, except for those indicated in the documentation that are not
able to match by this buffer and have their own sticky buffer (e.g. http.cookie). The sticky buffer can be used in
combination with all previously mentioned content modifiers, like depth, distance, offset, nocase and within.

Note: the header buffer is normalized. Any trailing whitespace and tab characters are removed. See: https:
/Nists.openinfosecfoundation.org/pipermail/oisf-users/2011-October/000935.html. If there are multiple

values for the same header name, they are concatenated with a comma and space (", ") between each of
them. See RFC 2616 4.2 Message Headers. To avoid that, use the http.header.raw keyword.

Example of a header in a HTTP request:

GET IHTTP/1.1

Host: www.google.com

Connection: keep-alive

Accept:

applicationfxml,application/xhtml+xml, text/html;q=0.9,
text/plain;g=0.8,imagelpng,**;q=0.5

Example of the purpose of http.header:

8.13. HTTP Keywords 101

https://lists.openinfosecfoundation.org/pipermail/oisf-users/2011-October/000935.html
https://lists.openinfosecfoundation.org/pipermail/oisf-users/2011-October/000935.html

Suricata User Guide, Release 7.0.4

PAYLOAD

-
.

GETH# HTTP/1.1
Host: [www.google.com|

Connection: keep-alive

content:"www.google.com”; hitp_header ;

content:"GET"; hitp_header; x

PAYLOAD

[GET) HTTPIL1

Host www.google.com

Connection:|keep-alive

content:"GET™;

content."KEEP-ALIVE"; nocase; http_header

8.13.9 http.cookie

With the http. cookie sticky buffer it is possible to match specifically on the HTTP cookie contents. Keywords like
depth, distance, offset, nocase and within can be used with http.cookie.

Note that cookies are passed in HTTP headers but Suricata extracts the cookie data to http.cookie and will not match
cookie content put in the http.header sticky buffer.

Example of a cookie in a HTTP request:

Examples:

GET / HTTP/1.1
User-Agent: Mozilla/5.0
Host: www.example.com
Cookie: PHPSESSIONID=1234
Connection: close

Example http.cookie keyword in a signature:

alert http $HOME_NET any -> $EXTERNAL _NET any (msg:"HTTP Request with Cookie";
flow:established,to_server; http.method; content:"GET"; http.uri; content:"/"; fast_pattern; http.cookie; con-
tent:"PHPSESSIONID="; startswith; classtype:bad-unknown; sid:123; rev:1;)

102 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.4

8.13.10 http.user_agent

The http.user_agent sticky buffer is part of the HTTP request header. It makes it possible to match specifically on
the value of the User-Agent header. It is normalized in the sense that it does not include the _"User-Agent: "_ header
name and separator, nor does it contain the trailing carriage return and line feed (CRLF). The keyword can be used in
combination with all previously mentioned content modifiers like depth, distance, offset, nocase and within.
Note that the pcre keyword can also inspect this buffer when using the /V modifier.

Normalization: leading spaces are not part of this buffer. So "User-Agent: rn" will result in an empty http.
user_agent buffer.

Example of the User-Agent header in a HTTP request:

GETIHTTP/L.1

HosL www.google.com

Connection: keep-alive

User-Agent: Mozilla/5.0 (¥11; U; Linux i686; en-US)
AppleWebKit/534.16

{KHTML, like Gecko) Ubuntw/10.10
Chromium/10.0,618.0 Chromel10.0.618.0
Safari/534.16

Example of the purpose of http.user_agent:

PAYLOAD

GET/ HTTR/1.1

Host: wwwigoogle.comi

Connection: keep-alive

User-Agent:[Mozilla/5.0] (%11; U; Linux i686; en-US)
AppleWWebkit/534,16 (KHTML, like Gecko) Ubuntu/10.10
Chromiumi10.0.618.0 Chrome/10.0.618.0 Salari/534 16

content:"Mozilla’5.0"; hitp_user_agent;

content:"google.com”; hitp_user_agent; x

Notes

e The http.user_agent buffer will NOT include the header name, colon, or leading whitespace. i.e. it will not
include "User-Agent: ".

e The http.user_agent buffer does not include a CRLF (0xOD 0x0A) at the end. If you want to match the end
of the buffer, use a relative isdataat or a PCRE (although PCRE will be worse on performance).

« If a request contains multiple "User-Agent" headers, the values will be concatenated in the http.user_agent

non

buffer, in the order seen from top to bottom, with a comma and space (", ") between each of them.

Example request:

GET /test.html HTTP/1.1
User-Agent: SuriTester/0.8
User-Agent: GGGG

8.13. HTTP Keywords 103

Suricata User Guide, Release 7.0.4

http.user_agent buffer contents:

SuriTester/0.8, GGGG

 Corresponding PCRE modifier: V

» Using the http.user_agent buffer is more efficient when it comes to performance than using the http.header
buffer (~10% better).

* https://blog.inliniac.net/2012/07/09/suricata-http_user_agent-vs-http_header/

8.13.11 http.accept

Sticky buffer to match on the HTTP Accept header. Only contains the header value. The \r\n after the header are not
part of the buffer.

Example:

alert http any any -> any any (http.accept; content:"image/gif"; sid:1;)

8.13.12 http.accept_enc

Sticky buffer to match on the HTTP Accept-Encoding header. Only contains the header value. The \r\n after the header
are not part of the buffer.

Example:

alert http any any -> any any (http.accept_enc; content:'gzip"; sid:1;)

8.13.13 http.accept_lang

Sticky buffer to match on the HTTP Accept-Language header. Only contains the header value. The \r\n after the header
are not part of the buffer.

Example:

alert http any any -> any any (http.accept_lang; content:"en-us"; sid:1;)

8.13.14 http.connection

Sticky buffer to match on the HTTP Connection header. Only contains the header value. The \r\n after the header are
not part of the buffer.

Example:

alert http any any -> any any (http.connection; content: 'keep-alive"; sid:1;)

104 Chapter 8. Suricata Rules

https://blog.inliniac.net/2012/07/09/suricata-http_user_agent-vs-http_header/

Suricata User Guide, Release 7.0.4

8.13.15 http.content_type

Sticky buffer to match on the HTTP Content-Type headers. Only contains the header value. The \r\n after the header
are not part of the buffer.

Use flow:to_server or flow:to_client to force inspection of request or response.

Examples:

alert http any any -> any any (flow:to_server; \
http.content_type; content:"x-www-form-urlencoded"; sid:1;)

alert http any any -> any any (flow:to_client; \
http.content_type; content:'"text/javascript"; sid:2;)

8.13.16 http.content_len

Sticky buffer to match on the HTTP Content-Length headers. Only contains the header value. The \r\n after the header
are not part of the buffer.

Use flow:to_server or flow:to_client to force inspection of request or response.

Examples:

alert http any any -> any any (flow:to_server; \
http.content_len; content:"666"; sid:1;)

alert http any any -> any any (flow:to_client; \
http.content_len; content:"555"; sid:2;)

To do a numeric inspection of the content length, byte_test can be used.

Example, match if C-L is equal to or bigger than 8079:

alert http any any -> any any (flow:to_client; \
http.content_len; byte_test:0,>=,8079,0,string,dec; sid:3;)

8.13.17 http.referer

Sticky buffer to match on the HTTP Referer header. Only contains the header value. The \r\n after the header are not
part of the buffer.

Example:

alert http any any -> any any (http.referer; content:".php"; sid:1;)

8.13. HTTP Keywords 105

Suricata User Guide, Release 7.0.4

8.13.18 http.start

Inspect the start of a HTTP request or response. This will contain the request/response line plus the request/response
headers. Use flow:to_server or flow:to_client to force inspection of request or response.

Example:

alert http any any -> any any Chttp.start; content:"HTTP/1.1|0d Oa|User-Agent"; sid:1;)

The buffer contains the normalized headers and is terminated by an extra \r\n to indicate the end of the headers.

8.13.19 http.header_names

Inspect a buffer only containing the names of the HTTP headers. Useful for making sure a header is not present or
testing for a certain order of headers.

Buffer starts with a \r\n and ends with an extra \r\n.

Example buffer:

\\r\\nHost\\r\\n\\r\\n

Example rule:

alert http any any -> any any (http.header_names; content:"|0d Oa|Host|0d Oal|"; sid:1;)

Example to make sure only Host is present:

alert http any any -> any any (http.header_names; \
content:"|0d Oa|Host|0d Oa 0d Oal|"; sid:1;)

Example to make sure User-Agent is directly after Host:

alert http any any -> any any (http.header_names; \
content:"|0d Oa|Host|0d 0a|User-Agent|0d Oa|"; sid:1;)

Example to make sure User-Agent is after Host, but not necessarily directly after:

alert http any any -> any any (http.header_names; \
content:"|0d Oa|Host|0d Qal|"; content:"|0a 0d|User-Agent|0d Qal|"; \
distance:-2; sid:1;)

8.13.20 http.request_body

With the http.request_body sticky buffer, it is possible to match specifically and only on the HTTP request body.
The keyword can be used in combination with all previously mentioned content modifiers like distance, offset,
nocase, within, etc.

Example of http.request_body in a HTTP request:

106 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.4

Host: nowhereasdfasdf.com
Connection: Keep-Alive
Cache-Control: no-cache

type=playerStarti&position=tidal

Example of the purpose of http.client_body:

PAYLOAD

POST fHTTPR/1.0

content”playerStarnt& position”; http_client_body;
content:"'no-cache”; hitp_client_body; x

content"playerStart”; depth: 16; hitp_client_body;

content"playerStart”; hitp_client_body;
content"&position”; distance:0; within:9

Note: how much of the request/client body is inspected is controlled in the libhtp configuration section via the
request-body-limit setting.

http.request_body replaces the previous keyword name: "http_client_body. You may continue +to use the
previous name, but it's recommended that rules be converted to use +the new name.

8.13.21 http.stat_code
With the http. stat_code sticky buffer, it is possible to match specifically and only on the HTTP status code buffer.

The keyword can be used in combination with all previously mentioned content modifiers like distance, offset,
nocase, within, etc.

Example of http.stat_code in a HTTP response:

HTTP/1.1 302 Found

Example of the purpose of http.stat_code:

8.13. HTTP Keywords 107

Suricata User Guide, Release 7.0.4

content:"302"; http_stat_code;

content:"found”; http_stat_code;

N> N

content:"302"; http_stat_code; depth:5;

8.13.22 http.stat_msg

With the http. stat_msg sticky buffer, it is possible to match specifically and only on the HTTP status message buffer.
The keyword can be used in combination with all previously mentioned content modifiers like depth, distance,
offset, nocase and within.

Example of http.stat_msg in a HTTP response:

HTTP/.1 302 Found

Example of the purpose of http.stat_msg:

content."Found”; http_stat_msqg;

content:"1.1"; http_stat_msg;

NN

content:"found”; http_stat_msg; nocase;

108 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.4

8.13.23 http.response_line

The http.response_line forces the whole HTTP response line to be inspected.

Example:

alert http any any -> any any (http.response_line; content:"HTTP/1.0 200 OK"; sid:1;)

8.13.24 http.response_body

With the http.response_body sticky buffer, it is possible to match specifically and only on the HTTP response body.
The keyword can be used in combination with all previously mentioned content modifiers like distance, offset,
nocase, within, etc.

Note: how much of the response/server body is inspected is controlled in your libhitp configuration section via the
response-body-limit setting.

Notes

» Using http.response_body is similar to having content matches that come after file.data except that it
doesn't permanently (unless reset) set the detection pointer to the beginning of the server response body. i.e. it
is not a sticky buffer.

* http.response_body will match on gzip decoded data just like file.data does.

* Since http.response_body matches on a server response, it can't be used with the to_server or
from_client flow directives.

¢ Corresponding PCRE modifier: Q
 further notes at the file.data section below.

http.response_body replaces the previous keyword name: "http_server_body. You may continue +to use the
previous name, but it's recommended that rules be converted to use +the new name.

8.13.25 http.server

Sticky buffer to match on the HTTP Server headers. Only contains the header value. The \r\n after the header are not
part of the buffer.

Example:

alert http any any -> any any (flow:to_client; \
http.server; content:"Microsoft-IIS/6.0"; sid:1;)

8.13. HTTP Keywords 109

Suricata User Guide, Release 7.0.4

8.13.26 http.location

Sticky buffer to match on the HTTP Location headers. Only contains the header value. The \r\n after the header are
not part of the buffer.

Example:

alert http any any -> any any (flow:to_client; \
http.location; content:"http://www.google.com"; sid:1;)

8.13.27 http.host and http.host.raw

With the http.host sticky buffer, it is possible to match specifically and only the normalized hostname. The http.
host.raw inspects the raw hostname.

The keyword can be used in combination with most of the content modifiers like distance, offset, within, etc.

The nocase keyword is not allowed anymore. Keep in mind that you need to specify a lowercase pattern.

8.13.28 http.request_header

Match on the name and value of a HTTP request header (HTTP1 or HTTP2).

For HTTP2, name and value get concatenated by ": ", colon and space. To detect if a http2 header name contains ":',
the keyword http2.header_name can be used.

Examples:

http.request_header; content:"agent: nghttp2";
http.request_header; content:"custom-header: I love::colons";

http.request_header is a 'sticky buffer'.

http.request_header can be used as fast_pattern.

8.13.29 http.response_header

Match on the name and value of a HTTP response header (HTTP1 or HTTP2).

For HTTP2, name and value get concatenated by ": ", colon and space. To detect if a http2 header name contains ":',
the keyword http2.header_name can be used.

Examples:

http.response_header; content:"server: nghttp2";
http.response_header; content:'"custom-header: I love::colons";

http.response_header is a 'sticky buffer'.

http.response_header can be used as fast_pattern.

110 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.4

Notes
* http.host does not contain the port associated with the host (i.e. abc.com:1234). To match on the host and
port or negate a host and port use http.host.raw.

e The http.host and http.host.raw buffers are populated from either the URI (if the full URI is present in the
request like in a proxy request) or the HTTP Host header. If both are present, the URI is used.

e The http.host and http.host.raw buffers will NOT include the header name, colon, or leading whitespace
if populated from the Host header. i.e. they will not include "Host: ".

e The http.host and http.host.raw buffers do not include a CRLF (0xOD 0x0A) at the end. If you want to
match the end of the buffer, use a relative 'isdataat' or a PCRE (although PCRE will be worse on performance).

e The http.host buffer is normalized to be all lower case.
* The content match that http.host applies to must be all lower case or have the nocase flag set.
* http.host.raw matches the unnormalized buffer so matching will be case-sensitive (unless nocase is set).

* If a request contains multiple "Host" headers, the values will be concatenated in the http.host and http.

"non

host.raw buffers, in the order seen from top to bottom, with a comma and space (", ") between each of them.

Example request:

GET /test.html HTTP/1.1
Host: ABC.com

Accept: */*

Host: efg.net

http.host buffer contents:

abc.com, efg.net

http.host.raw buffer contents:

ABC.com, efg.net

 Corresponding PCRE modifier (http_host): W
* Corresponding PCRE modifier (http_raw_host): Z

8.13.30 file.data

With file.data, the HTTP response body is inspected, just like with http.response_body. The file.data key-
word is a sticky buffer. file.data also works for HTTP request body and can be used in other protocols than HTTP1.

Example:

alert http any any -> any any (file.data; content:"abc"; content:'xyz";)

file_data; content: “abc”; pcre: /abc/;

The file.data keyword affects all following content matches, until the pkt_data keyword is encountered or it reaches
the end of the rule. This makes it a useful shortcut for applying many content matches to the HTTP response body,
eliminating the need to modify each content match individually.

8.13. HTTP Keywords 111

Suricata User Guide, Release 7.0.4

As the body of a HTTP response can be very large, it is inspected in smaller chunks.

How much of the response/server body is inspected is controlled in your libhtp configuration section via the
response-body-limit setting.

If the HTTP body is a flash file compressed with 'deflate’ or '1zma’, it can be decompressed and file.data can match
on the decompress data. Flash decompression must be enabled under 1ibhtp configuration:

Decompress SWF files.

2 types: 'deflate', 'lzma', 'both' will decompress deflate and lzma
compress-depth:

Specifies the maximum amount of data to decompress,

set 0 for unlimited.

decompress-depth:

Specifies the maximum amount of decompressed data to obtain,
set 0 for unlimited.

swf-decompression:

enabled: yes

type: both

compress-depth: 0

decompress-depth: 0

HOH R W R R R R

Notes

« file.data is the preferred notation, however, file_data is still recognized by the engine and works as well.
e If a HTTP body is using gzip or deflate, file.data will match on the decompressed data.

* Negated matching is affected by the chunked inspection. E.g. 'content:!"<html";' could not match on the first
chunk, but would then possibly match on the 2nd. To avoid this, use a depth setting. The depth setting takes
the body size into account. Assuming that the response-body-minimal-inspect-size is bigger than 1k,
‘content:!"<html"; depth:1024;' can only match if the pattern '<html' is absent from the first inspected chunk.

e Refer to File Keywords for additional information.

Multiple Buffer Matching

file.data supports multiple buffer matching, see Multiple Buffer Matching.

8.14 File Keywords

Suricata comes with several rule keywords to match on various file properties. They depend on properly configured
File Extraction.

112 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.4

8.14.1 file.data

The file.data sticky buffer matches on contents of files that are seen in flows that Suricata evaluates. The various
payload keywords can be used (e.g. startswith, nocase and bsize) with file.data.

Example:

alert smtp any any -> any any (msg:'"smtp app layer file.data example"; \
file.data; content:"example file content"; sid:1; rev:1)

alert http any any -> any any (msg:"http app layer file.data example"; \
file.data; content:"example file content"; sid:2; rev:1)

alert http2 any any -> any any (msg:"http2 app layer file.data example"; \
file.data; content:"example file content"; sid:3; rev:1;)

alert nfs any any -> any any (msg:'"nfs app layer file.data example"; \
file.data; content:" "; sid:5; rev:1)

alert ftp-data any any -> any any (msg:"ftp app layer file.data example"; \
file.data; content:"example file content"; sid:6; rev:1;)

alert tcp any any -> any any (msg:"tcp file.data example"; \
file.data; content:"example file content"; sid:4; rev:1)

Note file_data is the legacy notation but can still be used.

8.14.2 file.name

file.name is a sticky buffer that is used to look at filenames that are seen in flows that Suricata evaluates. The various
payload keywords can be used (e.g. startswith, nocase and bsize) with file.name.

Example:

file.name; content:"examplefilename";

file.name supports multiple buffer matching, see Multiple Buffer Matching.

Note filename can still be used. A notable difference between file.name and filename is that filename assumes
nocase by default. In the example below the two signatures are considered the same.

Example:

filename: "examplefilename";

file.name; content:"examplefilename"; nocase;

8.14. File Keywords 113

Suricata User Guide, Release 7.0.4

8.14.3 fileext

fileext is used to look at individual file extensions that are seen in flows that Suricata evaluates.

Example:

fileext:"pdf";

Note: fileext does not allow partial matches. For example, if a PDF file (.pdf) is seen by a Suricata signature with
fileext:"pd"; the signature will not produce an alert.

Note: fileext assumes nocase by default. This means that a file with the extension .PDF will be seen the same as if
the file had an extension of .pdf.

Note: fileext and file.name can both be used to match on file extensions. In the example below the two signatures
are considered the same.

Example:

fileext:"pdf";

file.name; content:".pdf"; nocase; endswith;

Note: While " fileeext™™ and file.name can both be used to match on file extensions, file.name allows for partial
matching on file extensions. The following would match on a file with the extension of .pd as well as .pdf.

Example:

file.name; content:".pd";

8.14.4 file.magic

Matches on the information libmagic returns about a file.

Example:

file.magic; content:"executable for MS Windows";

Note filemagic can still be used. The only difference between file.magic and file.magic is that filemagic
assumes nocase by default. In the example below the two signatures are considered the same.

Example:

filemagic:"executable for MS Windows";

file.magic; content:"executable for MS Windows"; nocase;

Note: Suricata currently uses its underlying operating systems version/implementation of libmagic. Different versions
and implementations of libmagic do not return the same information. Additionally there are varying Suricata per-
formance impacts based on the version and implementation of libmagic. Additional information about Suricata and
libmagic can be found here: https://redmine.openinfosecfoundation.org/issues/437

file.magic supports multiple buffer matching, see Multiple Buffer Matching.

114 Chapter 8. Suricata Rules

https://redmine.openinfosecfoundation.org/issues/437

Suricata User Guide, Release 7.0.4

8.14.5 filestore

Stores files to disk if the signature matched.

Syntax:

filestore:<direction>,<scope>;

direction can be:
* request/to_server: store a file in the request / to_server direction
* response/to_client: store a file in the response / to_client direction
* both: store both directions
scope can be:
« file: only store the matching file (for filename,fileext,filemagic matches)
* tx: store all files from the matching HTTP transaction
* ssn/flow: store all files from the TCP session/flow.

If direction and scope are omitted, the direction will be the same as the rule and the scope will be per file.

8.14.6 filemd5

Match file MD5 against list of MD5 checksums.

Syntax:

filemd5:[!]filename;

The filename is expanded to include the rule dir. In the default case it will become /etc/suricata/rules/filename. Use
the exclamation mark to get a negated match. This allows for white listing.

Examples:

filemd5:md5-blacklist;
filemd5: !md5-whitelist;

File format

The file format is simple. It's a text file with a single md5 per line, at the start of the line, in hex notation. If there is
extra info on the line it is ignored.

Output from md5sum is fine:

2£8d0355f0032c3e6311c6408d7c2dc2 util-path.c
b9cf5cf347a70e02fde975fc4e117760 wutil-pidfile.c
02aaa6c3f4dbae65f5889eeb8£2bbb8d util-pool.c
dd5fclee7£2f96b5£12d1a854007a818 util-print.c

Just MD5's are good as well:

2£8d0355f0032c3e6311c6408d7c2dc2
b9cf5cf347a70e02fde975fc4e117760
02aaa6c3f4dbae65f5889eeb8£2bbb8d
dd5fclee7£2f96b5£12d1a854007a818

8.14. File Keywords 115

Suricata User Guide, Release 7.0.4

Memory requirements
Each MDS5 uses 16 bytes of memory. 20 Million MDS5's use about 310 MiB of memory.
See also: https://blog.inliniac.net/2012/06/09/suricata-md5-blacklisting/

8.14.7 filesha1

Match file SHA1 against list of SHA1 checksums.

Syntax:

fileshal:[!]filename;

The filename is expanded to include the rule dir. In the default case it will become /etc/suricata/rules/filename. Use
the exclamation mark to get a negated match. This allows for white listing.

Examples:

fileshal:shal-blacklist;
fileshal:!shal-whitelist;

File format
Same as md5 file format.

8.14.8 filesha256

Match file SHA256 against list of SHA256 checksums.

Syntax:

filesha256:[!]filename;

The filename is expanded to include the rule dir. In the default case it will become /etc/suricata/rules/filename. Use
the exclamation mark to get a negated match. This allows for white listing.

Examples:

filesha256:sha256-blacklist;
filesha256: !sha256-whitelist;

File format

Same as md>5 file format.

8.14.9 filesize

Match on the size of the file as it is being transferred.

Syntax:

filesize:<value>;

Possible units are KB, MB and GB, without any unit the default is bytes.

Examples:

116 Chapter 8. Suricata Rules

https://blog.inliniac.net/2012/06/09/suricata-md5-blacklisting/

Suricata User Guide, Release 7.0.4

filesize:100; # exactly 100 bytes

filesize:100<>200; # greater than 100 and smaller than 200
filesize:>100MB; # greater than 100 megabytes
filesize:<100MB; # smaller than 100 megabytes

Note: For files that are not completely tracked because of packet loss or stream.reassembly.depth being reached on the
"greater than" is checked. This is because Suricata can know a file is bigger than a value (it has seen some of it already),
but it can't know if the final size would have been within a range, an exact value or smaller than a value.

8.15 DNS Keywords

There are some more content modifiers (If you are unfamiliar with content modifiers, please visit the page Payload
Keywords These ones make sure the signature checks a specific part of the network-traffic.

8.15.1 dns.opcode

This keyword matches on the opcode found in the DNS header flags.

Syntax

dns.opcode: [!]<number>

Examples

Match on DNS requests and responses with opcode 4:

dns.opcode:4;

Match on DNS requests where the opcode is NOT 0:

dns.opcode: !0;

8.15.2 dns.query

With dns.query the DNS request queries are inspected. The dns.query keyword works a bit different from the normal
content modifiers. When used in a rule all contents following it are affected by it. Example:

alert dns any any -> any any (msg:"Test dns.query option"; dns.query; content:"google"; nocase; sid:1;)

dns_query; content: "abc";pcre: /abc/;

The dns.query keyword affects all following contents, until pkt_data is used or it reaches the end of the rule.

Note: dns.query is equivalent to the older dns_query.

8.15. DNS Keywords 117

Suricata User Guide, Release 7.0.4

Normalized Buffer

Buffer contains literal domain name

* <length> values (as seen in a raw DNS request) are literal '.' characters

* no leading <length> value

* No terminating NULL (0x00) byte (use a negated relative isdataat to match the end)
Example DNS request for "mail.google.com" (for readability, hex values are encoded between pipes):

DNS query on the wire (snippet):

|04 |mail|06|google|03|com|00|

dns. query buffer:

mail.google.com

Multiple Buffer Matching

dns.query supports multiple buffer matching, see Multiple Buffer Matching.

8.16 SSL/TLS Keywords

Suricata comes with several rule keywords to match on various properties of TLS/SSL handshake. Matches are string
inclusion matches.

8.16.1 tls.cert_subject

Match TLS/SSL certificate Subject field.

Examples:

tls.cert_subject; content:"CN=*.googleusercontent.com"; isdataat:!1l,relative;
tls.cert_subject; content:'"google.com"; nocase; pcre:"/google\.com$/";

tls.cert_subject is a 'sticky buffer".
tls.cert_subject can be used as fast_pattern.

tls.cert_subject supports multiple buffer matching, see Multiple Buffer Matching.

tis.subject

Legacy keyword to match TLS/SSL certificate Subject field.

example:

tls.subject:"CN=*.googleusercontent.com"

Case sensitive, can't use 'nocase', or other modifiers.

Note: tls.cert_subject replaces the following legacy keywords: tls_cert_subject and tls.subject. It's
recommended that rules be converted to use the new one.

118 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.4

8.16.2 tls.cert_issuer

Match TLS/SSL certificate Issuer field.

Examples:

tls.cert_issuer; content:"WoSign"; nocase; isdataat:!l,relative;
tls.cert_issuer; content:"StartCom"; nocase; pcre:"/StartCom$/";

tls.cert_issuer is a 'sticky buffer'.
tls.cert_issuer can be used as fast_pattern.
tls.issuerdn

Legacy keyword to match TLS/SSL certificate IssuerDN field

example:

tls.issuerdn:!"CN=Google-Internet-Authority"

Case sensitive, can't use 'nocase', or other modifiers.

Note: tls.cert_issuer replaces the following legacy keywords: tls_cert_issuer and tls.issuerdn. It's rec-
ommended that rules be converted to use the new one.

8.16.3 tls.cert_serial

Match on the serial number in a certificate.

Example:

alert tls any any -> any any (msg:"match cert serial"; \
tls.cert_serial; content:"5C:19:B7:B1:32:3B:1C:A1"; sid:200012;)

tls.cert_serial is a 'sticky buffer'.
tls.cert_serial can be used as fast_pattern.

tls.cert_serial replaces the previous keyword name: tls_cert_serial. You may continue to use the previous
name, but it's recommended that rules be converted to use the new name.

8.16.4 tls.cert_fingerprint

Match on the SHA-1 fingerprint of the certificate.

Example:

alert tls any any -> any any (msg:'"match cert fingerprint"; \
tls.cert_fingerprint; \
content:"4a:a3:66:76:82:cb:6b:23:bb:c3:58:47:23:a4:63:a7:78:a4:a1:18"; \
sid:200023;)

tls.cert_fingerprint is a 'sticky buffer'.

tls.cert_fingerprint can be used as fast_pattern.

8.16. SSL/TLS Keywords 119

Suricata User Guide, Release 7.0.4

tls.cert_fingerprint replaces the previous keyword name: tls_cert_fingerprint may continue to use the
previous name, but it's recommended that rules be converted to use the new name.

8.16.5 tls.sni

Match TLS/SSL Server Name Indication field.

Examples:

tls.sni; content:"oisf.net"; nocase; isdataat:!1,relative;
tls.sni; content:"oisf.net"; nocase; pcre:"/oisf.net$/";

tls.sni is a 'sticky buffer'.
tls.sni can be used as fast_pattern.

tls. sni replaces the previous keyword name: tls_sni. You may continue to use the previous name, but it's recom-
mended that rules be converted to use the new name.

8.16.6 tls _cert notbefore

Match on the NotBefore field in a certificate.

Example:

alert tls any any -> any any (msg:'"match cert NotBefore"; \
tls_cert_notbefore:1998-05-01<>2008-05-01; sid:200005;)

8.16.7 tls_cert_notafter

Match on the NotAfter field in a certificate.

Example:

alert tls any any -> any any (msg:'"match cert NotAfter"; \
tls_cert_notafter:>2015; sid:200006;)

8.16.8 tls_cert_expired

Match returns true if certificate is expired. It evaluates the validity date from the certificate.

Usage:

tls_cert_expired;

120 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.4

8.16.9 tIs_cert_valid

Match returns true if certificate is not expired. It only evaluates the validity date. It does not do cert chain validation.
It is the opposite of tls_cert_expired.

Usage:

tls_cert_valid;

8.16.10 tls.certs

Do a "raw" match on each of the certificates in the TLS certificate chain.

Example:

alert tls any any -> any any (msg:'"match bytes in TLS cert"; tls.certs; \
content:" |06 09 2a 86|"; sid:200070;)

tls.certs is a 'sticky buffer'.
tls.certs can be used as fast_pattern.

tls.certs supports multiple buffer matching, see Multiple Buffer Matching.

8.16.11 tls.version

Match on negotiated TLS/SSL version.
Supported values: "1.0", "1.1", "1.2", "1.3"
It is also possible to match versions using a hex string.

Examples:

tls.version:1.2;
tls.version:0x7f12;

The first example matches TLSv1.2, whilst the last example matches TLSv1.3 draft 16.

8.16.12 ssl_version

Match version of SSL/TLS record.
Supported values "sslv2", "sslv3", "tls1.0", "tls1.1", "tls1.2", "tls1.3"

Example:

alert tls any any -> any any (msg:"match TLSv1.2"; \
ssl_version:tlsl.2; sid:200030;)

It is also possible to match on several versions at the same time.

Example:

alert tls any any -> any any (msg:"match SSLv2 and SSLv3"; \
ssl_version:sslv2,sslv3; sid:200031;)

8.16. SSL/TLS Keywords 121

Suricata User Guide, Release 7.0.4

8.16.13 tis.fingerprint

match TLS/SSL certificate SHA1 fingerprint

example:

tls.fingerprint:!"£3:40:21:48:70:2c:31:bc:b5:aa:22:ad:63:d6:bc:2e:b3:46:e2:5a"

Case sensitive, can't use 'nocase’'.

The tls.fingerprint buffer is lower case so you must use lower case letters for this to match.

8.16.14 tls.store

store TLS/SSL certificate on disk. The location can be specified in the output.tls-store.certs-log-dir parameter of the
yaml configuration file, cf TLS parameters and certificates logging (tls.log)..

8.16.15 ssl_state
The ssl_state keyword matches the state of the SSL connection. The possible states are client_hello,

server_hello, client_keyx, server_keyx and unknown. You can specify several states with | (OR) to check
for any of the specified states.

8.16.16 tls.random

Matches on the 32 bytes of the TLS random field.

Example:

alert tls any any -> any any (msg:"TLS random test"; \
tls.random; content:"|9b ce 7a 5e 57 5d 77 02 07 c2 9d be 24 01 cc f0 5d cd el d2 a5.
—86 9c 4a 3e ee 38 db 55 1la d9 bc|"; sid: 200074;)

tls.random is a sticky buffer.

8.16.17 tls.random_time

Matches on the first 4 bytes of the TLS random field.

Example:

alert tls any any -> any any (msg:"TLS random_time test"; \
tls.random_time; content:"|9b ce 7a 5e|"; sid: 200075;)

tls.random_time is a sticky buffer.

122 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.4

8.16.18 tls.random_bytes

Matches on the last 28 bytes of the TLS random field.

Example:

alert tls any any -> any any (msg:"TLS random_bytes test"; \
tls.random_bytes; content:" |57 5d 77 02 07 c2 9d be 24 01 cc £0 5d cd el d2 a5 86 9c.
—4a 3e ee 38 db 55 la d9 bc|"; sid: 200076;)

tls.random_bytes is a sticky buffer.

8.16.19 tls.cert _chain_len

Matches on the TLS certificate chain length.
tls.cert_chain_len supports <, >, <>, / and using an exact value.

Example:

alert tls any any -> any any (msg:"cert chain exact value"; \
tls.cert_chain_len:1; classtype:misc-activity; sid:1; rev:1;)

alert tls any any -> any any (msg:"cert chain less than value"; \
tls.cert_chain_len:<2; classtype:misc-activity; sid:2; rev:1;)

alert tls any any -> any any (msg:'"cert chain greater than value"; \
tls.cert_chain_len:>0; classtype:misc-activity; sid:2; rev:1;)

alert tls any any -> any any (msg:"cert chain greater than less than value";\
tls.cert_chain_len:0<>2; classtype:misc-activity; sid:3; rev:1;)

alert tls any any -> any any (msg:'"cert chain not value"; \
tls.cert_chain_len:!2; classtype:misc-activity; sid:4; rev:1;)

8.17 SSH Keywords

Suricata has several rule keywords to match on different elements of SSH connections.

8.17.1 ssh.proto

Match on the version of the SSH protocol used. ssh.proto is a sticky buffer, and can be used as a fast pattern.
ssh.proto replaces the previous buffer name: ssh_proto. You may continue to use the previous name, but it's
recommended that existing rules be converted to use the new name.

Format:

ssh.proto;

Example:
alert ssh any any -> any any (msg:"match SSH protocol version"; ssh.proto; content:"2.0"; sid:1000010;)

The example above matches on SSH connections with SSH version 2.0.

8.17. SSH Keywords 123

Suricata User Guide, Release 7.0.4

8.17.2 ssh.software

Match on the software string from the SSH banner. ssh.software is a sticky buffer, and can be used as fast pattern.

ssh.software replaces the previous keyword names: ssh_software & ssh.softwareversion. You may continue
to use the previous name, but it's recommended that rules be converted to use the new name.

Format:

ssh.software;

Example:
alert ssh any any -> any any (msg:"match SSH software string"; ssh.software; content:"openssh"; nocase; sid:1000020;)

The example above matches on SSH connections where the software string contains "openssh".

8.17.3 ssh.protoversion

Matches on the version of the SSH protocol used. A value of 2_compat includes SSH version 1.99.

Format:

ssh.protoversion: [0-9](\.[0-9])7|2_compat;

Example:

alert ssh any any -> any any (msg:"SSH v2 compatible"; ssh.protoversion:2_compat; sid:1;)
The example above matches on SSH connections with SSH version 2 or 1.99.

alert ssh any any -> any any (msg:"SSH v1.10"; ssh.protoversion:1.10; sid:1;)

The example above matches on SSH connections with SSH version 1.10 only.

8.17.4 ssh.softwareversion

This keyword has been deprecated. Please use ssh.software instead. Matches on the software string from the SSH
banner.

Example:

alert ssh any any -> any any (msg:"match SSH software string"; ssh.softwareversion:"OpenSSH"; sid:10000040;)

Suricata comes with a Hassh integration (https://github.com/salesforce/hassh). Hassh is used to fingerprint ssh clients
and servers.

Hassh must be enabled in the Suricata config file (set 'app-layer.protocols.ssh.hassh' to 'yes').

124 Chapter 8. Suricata Rules

https://github.com/salesforce/hassh

Suricata User Guide, Release 7.0.4

8.17.5 ssh.hassh

Match on hassh (md5 of of hassh algorithms of client).

Example:

alert ssh any any -> any any (msg:"match hassh"; \
ssh.hassh; content:"ec7378cla92f5a8dde7e8b7alddf33d1";\
sid:1000010;)

ssh.hassh is a 'sticky buffer".

ssh.hassh can be used as fast_pattern.

8.17.6 ssh.hassh.string

Match on Hassh string (hassh algorithms of client).

Example:

alert ssh any any -> any any (msg:"match hassh-string"; \
ssh.hassh.string; content:"none,zlib@openssh.com,zlib"; \
sid:1000030;)

ssh.hassh.string is a 'sticky buffer'.
ssh.hassh.string can be used as fast_pattern.

8.17.7 ssh.hassh.server

Match on hassh (md5 of hassh algorithms of server).

Example:

alert ssh any any -> any any (msg:'"match SSH hash-server"; \
ssh.hassh.server; content:"b12d2871a1189eff20364c£5333619ee"; \
sid:1000020;)

ssh.hassh.server is a 'sticky buffer'.

ssh.hassh.server can be used as fast_pattern.

8.17.8 ssh.hassh.server.string

Match on hassh string (hassh algorithms of server).
Example::

alert ssh any any -> any any (msg:''match SSH hash-server-string'';
ssh.hassh.server.string; content:"umac-64-etm @ openssh.com,umac-128-etm @openssh.com";
sid:1000040;)

ssh.hassh.server.string is a 'sticky buffer'.

ssh.hassh.server.string can be used as fast_pattern.

8.17. SSH Keywords 125

mailto:umac-64-etm@openssh.com
mailto:128-etm@openssh.com

Suricata User Guide, Release 7.0.4

8.18 JA3 Keywords

Suricata comes with a JA3 integration (https://github.com/salesforce/ja3). JA3 is used to fingerprint TLS clients.

JA3 must be enabled in the Suricata config file (set 'app-layer.protocols.tls.ja3-fingerprints' to 'yes').

8.18.1 ja3.hash

Match on JA3 hash (md5).

Example:

alert tls any any -> any any (msg:"match JA3 hash"; \
ja3.hash; content:"e7eca2baf4458d095b7f45da28c16c34"; \
sid:100001;)

ja3.hash is a 'sticky buffer'.
ja3.hash can be used as fast_pattern.

ja3.hash replaces the previous keyword name: ja3_hash. You may continue to use the previous name, but it's
recommended that rules be converted to use the new name.

8.18.2 ja3.string

Match on JA3 string.

Example:

alert tls any any -> any any (msg:"match JA3 string"; \
ja3.string; content:"19-20-21-22"; \
sid:100002;)

ja3.string is a 'sticky buffer'.
ja3.string can be used as fast_pattern.

ja3.string replaces the previous keyword name: ja3_string. You may continue to use the previous name, but it's
recommended that rules be converted to use the new name.

8.18.3 ja3s.hash

Match on JA3S hash (md5).

Example:

alert tls any any -> any any (msg:"match JA3S hash"; \
ja3s.hash; content:"b26c652e0a402a24b5ca2a660e84£9d5"; \
sid:100003;)

ja3s.hash is a 'sticky buffer".

ja3s.hash can be used as fast_pattern.

126 Chapter 8. Suricata Rules

https://github.com/salesforce/ja3

Suricata User Guide, Release 7.0.4

8.18.4 ja3s.string

Match on JA3S string.

Example:

alert tls any any -> any any (msg:"match on JA3S string"”; \
ja3s.string; content:"771,23-35"; sid:100004;)

ja3s.string is a 'sticky buffer'.

ja3s.string can be used as fast_pattern.

8.19 Modbus Keyword

The modbus keyword can be used for matching on various properties of Modbus requests.
There are three ways of using this keyword:
* matching on functions properties with the setting "function";
» matching on directly on data access with the setting "access";
* matching on unit identifier with the setting "unit" only or with the previous setting "function" or "access".
With the setting function, you can match on:
* an action based on a function code field and a sub-function code when applicable;
* one of three categories of Modbus functions;
* public functions that are publicly defined (setting "public")
¢ user-defined functions (setting "user")
* reserved functions that are dedicated to proprietary extensions of Modbus (keyword "reserved")
* one of the two sub-groups of public functions:
— assigned functions whose definition is already given in the Modbus specification (keyword "assigned");
— unassigned functions, which are reserved for future use (keyword "unassigned").

Syntax:

modbus: function <value>
modbus: function <value>, subfunction <value>
modbus: function [!] <assigned | unassigned | public | user | reserved | all>

Sign '!' is negation

Examples:

modbus: function 21 # Write File record function

modbus: function 4, subfunction 4 # Force Listen Only Mode (Diagnostics) function
modbus: function assigned # defined by Modbus Application Protocol..
—.Specification V1.1b3

modbus: function public # validated by the Modbus.org community

modbus: function user # internal use and not supported by the specification
modbus: function reserved # used by some companies for legacy products and not.

(continues on next page)

8.19. Modbus Keyword 127

Suricata User Guide, Release 7.0.4

(continued from previous page)

—available for public use
modbus: function !reserved # every function but reserved function

With the access setting, you can match on:
* atype of data access (read or write);
* one of primary tables access (Discretes Input, Coils, Input Registers and Holding Registers);
* arange of addresses access;
* a written value.

Syntax:

modbus: access <read | write>

modbus: access read <discretes | coils | input | holding>

modbus: access read <discretes | coils | input | holding>, address <value>
modbus: access write < coils | holding>

modbus: access write < coils | holding>, address <value>

modbus: access write < coils | holding>, address <value>, value <value>

With _<value>_ setting matches on the address or value as it is being accessed or written as follows:

address 100 # exactly address 100

address 100<>200 # greater than address 100 and smaller than address 200

address >100 # greater than address 100

address <100 # smaller than address 100

Examples:

modbus: access read # Read access

modbus: access write # Write access

modbus: access read input # Read access to Discretes Input.,
—table

modbus: access write coils # Write access to Coils table
modbus: access read discretes, address <100 # Read access at address smaller.,

—than 100 of Discretes Input table
modbus: access write holding, address 500, value >200 # Wirite value greater than 200 at.
—address 500 of Holding Registers table

With the setting unit, you can match on:

* a MODBUS slave address of a remote device connected on the sub-network behind a bridge or a gateway. The
destination IP address identifies the bridge itself and the bridge uses the MODBUS unit identifier to forward the
request to the right slave device.

Syntax:

modbus: unit <value>

modbus: unit <value>, function <value>

modbus: unit <value>, function <value>, subfunction <value>

modbus: unit <value>, function [!] <assigned | unassigned | public | user | reserved |.
—all>

modbus: unit <value>, access <read | write>

modbus: unit <value>, access read <discretes | coils | input | holding>

(continues on next page)

128 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.4

(continued from previous page)

modbus: unit <value>, access read <discretes | coils | input | holding>, address <value>
modbus: unit <value>, access write < coils | holding>

modbus: unit <value>, access write < coils | holding>, address <value>

modbus: unit <value>, access write < coils | holding>, address <value>, value <value>

With _<value>_ setting matches on the address or value as it is being accessed or written as follows:

unit 10 # exactly unit identifier 10

unit 10<>20 # greater than unit identifier 10 and smaller than unit identifier 20

unit >10 # greater than unit identifier 10

unit <10 # smaller than unit identifier 10

Examples:

modbus: unit 10 # Unit identifier.
10

modbus: unit 10, function 21 # Unit identifier,
10 and write File record function

modbus: unit 10, function 4, subfunction 4 # Unit identifier.
.10 and force Listen Only Mode (Diagnostics) function

modbus: unit 10, function assigned # Unit identifier.,
10 and assigned function

modbus: unit 10, function !reserved # Unit identifier.
10 and every function but reserved function

modbus: unit 10, access read # Unit identifier.
10 and Read access

modbus: unit 10, access write coils # Unit identifier.,
10 and Write access to Coils table

modbus: unit >10, access read discretes, address <100 # Greater than.,
—unit identifier 10 and Read access at address smaller than 100 of Discretes Input table
modbus: unit 10<>20, access write holding, address 500, value >200 # Greater than.

—unit identifier 10 and smaller than unit identifier 20 and Write value greater than.
200 at address 500 of Holding Registers table

(cf. http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf)

Note: Address of read and write are starting at 1. So if your system is using a start at 0, you need to add 1 the address
values.

Note: According to MODBUS Messaging on TCP/IP Implementation Guide V1.0b, it is recommended to keep the
TCP connection opened with a remote device and not to open and close it for each MODBUS/TCP transaction. In that
case, it is important to set the depth of the stream reassembling as unlimited (stream.reassembly.depth: 0)

Note: According to MODBUS Messaging on TCP/IP Implementation Guide V1.0b, the MODBUS slave device ad-
dresses on serial line are assigned from 1 to 247 (decimal). Address O is used as broadcast address.

(cf. http://www.modbus.org/docs/Modbus_Messaging Implementation_Guide_V1_0b.pdf)

Paper and presentation (in french) on Modbus support are available : http://www.ssi.gouv.fr/agence/publication/
detection-dintrusion-dans-les-systemes-industriels-suricata-et-le-cas-modbus/

8.19. Modbus Keyword 129

http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf
http://www.modbus.org/docs/Modbus_Messaging_Implementation_Guide_V1_0b.pdf
http://www.ssi.gouv.fr/agence/publication/detection-dintrusion-dans-les-systemes-industriels-suricata-et-le-cas-modbus/
http://www.ssi.gouv.fr/agence/publication/detection-dintrusion-dans-les-systemes-industriels-suricata-et-le-cas-modbus/

Suricata User Guide, Release 7.0.4

8.20 DCERPC Keywords

Following keywords can be used for matching on fields in headers and payloads of DCERPC packets over UDP, TCP
and SMB.

8.20.1 dcerpc.iface

Match on the value of the interface UUID in a DCERPC header. If any_frag option is given, the match shall be done
on all fragments. If it's not, the match shall only happen on the first fragment.

The format of the keyword:

dcerpc.iface:<uuid>;

dcerpc.iface:<uuid>, [>,<,!,=]<iface_version>;
dcerpc.iface:<uuid>,any_frag;

dcerpc.iface:<uuid>, [>,<,!,=]<iface_version>,any_frag;
Examples:

dcerpc.iface:367abb81-9844-35f1-ad32-98f038001003;
dcerpc.iface:367abb81-9844-35f1-ad32-98f038001003,!10;
dcerpc.iface:367abb81-9844-35f1-ad32-98f038001003,any_frag;
dcerpc.iface:367abb81-9844-35f1-ad32-98f038001003,>1,any_frag;

ET Open rule example:

alert tcp any any -> $HOME_NET any (msg:"ET NETBIOS DCERPC WMI Remote Process Execution";
flow:to_server,established; dce_iface:00000143-0000-0000-c000-000000000046; classtype:bad-unknown;
sid:2027167; rev:1; metadata:affected_product Windows_XP_Vista_7_8_10_Server_32_64_Bit, attack_target
Client_Endpoint, created_at 2019_04_09, deployment Internal, former_category NETBIOS, signature_severity
Informational, updated_at 2019_04_09;)

8.20.2 dcerpc.opnum

Match on one or many operation numbers and/or operation number range within the interface in a DCERPC header.

The format of the keyword:

dcerpc.opnum:<ul6>;

dcerpc.opnum: [>,<,!,=]1<ul6>;
dcerpc.opnum:<ul6>,<ul6>,<ul6>....;
dcerpc.opnum:<ul6>-<ul6>;

Examples:

dcerpc.opnum:15;
dcerpc.opnum:>10;
dcerpc.opnum:12,24,62,61;
dcerpc.opnum:12,18-24,5;
dcerpc.opnum:12-14,12,121,62-78;

130 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.4

8.20.3 dcerpc.stub_data

Match on the stub data in a given DCERPC packet. It is a 'sticky buffer'.

Example:

dcerpc.stub_data; content:"123456";

8.20.4 Additional information

More information on the protocol can be found here:

* DCERPC: https://pubs.opengroup.org/onlinepubs/9629399/chap1.htm

8.21 DHCP keywords

8.21.1 dhcp.leasetime

DHCEP lease time (integer).

Syntax:

dhcp.leasetime: [op] <number>

The time can be matched exactly, or compared using the _op_ setting:

dhcp.leasetime:3 # exactly 3
dhcp.leasetime:<3 # smaller than 3
dhcp.leasetime:>=2 # greater or equal than 2

Signature example:

alert dhcp any any -> any any (msg:"small DHCP lease time (<3)"; dhcp.leasetime:<3;.
—sid:1; rev:1;)

8.21.2 dhcp.rebinding_time

DHCP rebinding time (integer).

Syntax:

dhcp.rebinding_time: [op]<number>

The time can be matched exactly, or compared using the _op_ setting:

dhcp.rebinding_time:3 # exactly 3
dhcp.rebinding_time:<3 # smaller than 3
dhcp.rebinding_time:>=2 # greater or equal than 2

Signature example:

8.21. DHCP keywords 131

https://pubs.opengroup.org/onlinepubs/9629399/chap1.htm

Suricata User Guide, Release 7.0.4

alert dhcp any any -> any any (msg:"small DHCP rebinding time (<3)"; dhcp.rebinding_time:
—<3; sid:1; rev:1;)

8.21.3 dhcp.renewal_time

DHCP renewal time (integer).

Syntax:

dhcp.renewal_time: [op]<number>

The time can be matched exactly, or compared using the _op_ setting:

dhcp.renewal_time:3 # exactly 3
dhcp.renewal_time:<3 # smaller than 3
dhcp.renewal_time:>=2 # greater or equal than 2

Signature example:

alert dhcp any any -> any any (msg:"small DHCP renewal time (<3)"; dhcp.renewal_time:<3;.
—sid:1; rev:1;)

8.22 DNP3 Keywords

The DNP3 keywords can be used to match on fields in decoded DNP3 messages. The keywords are based on Snort's
DNP3 keywords and aim to be 100% compatible.

8.22.1 dnp3_func

This keyword will match on the application function code found in DNP3 request and responses. It can be specified as
the integer value or the symbolic name of the function code.

Syntax

dnp3_func:<value>;

Where value is one of:
* An integer value between 0 and 255 inclusive.
 Function code name:
— confirm
— read
— write

select

operate

direct_operate

132 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.4

— direct_operate_nr
— immed_freeze

— immed_freeze nr
— freeze_clear

— freeze_clear_nr

— freeze_at_time

— freeze_at_time_nr
— cold_restart

— warm_restart

— initialize data

— initialize_appl

— start_appl

— stop_appl

— save_config

— enable_unsolicited
— disable_unsolicited
— assign_class

— delay_measure

— record_current_time
— open_file

— close_file

— delete_file

— get_file_info

— authenticate_file

— abort_file

— activate_config

— authenticate_req

— authenticate_err

— response

— unsolicited_response

— authenticate_resp

8.22. DNP3 Keywords 133

Suricata User Guide, Release 7.0.4

8.22.2 dnp3_ind

This keyword matches on the DNP3 internal indicator flags in the response application header.

Syntax

dnp3_ind:<flag>{,<flag>...}

Where flag is the name of the internal indicator:
e all_stations
e class_1_events
e class 2 events
e class_3_events
¢ need_time
¢ local_control
¢ device_trouble
e device_restart
* no_func_code_support
* object_unknown
* parameter_error
¢ event_buffer_overflow
* already_executing
* config_corrupt
e reserved_2

e reserved_1

This keyword will match of any of the flags listed are set. To match on multiple flags (AND type match), use dnp3_ind

for each flag that must be set.

Examples

dnp3_ind:all_stations;

dnp3_ind:class_1_events,class_2_events;

134

Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.4

8.22.3 dnp3_obj

This keyword matches on the DNP3 application data objects.

Syntax

dnp3_obj:<group>,<variation>

Where <group> and <variation> are integer values between 0 and 255 inclusive.

8.22.4 dnp3_data

This keyword will cause the following content options to match on the re-assembled application buffer. The reassembled
application buffer is a DNP3 fragment with CRCs removed (which occur every 16 bytes), and will be the complete
fragment, possibly reassembled from multiple DNP3 link layer frames.

Syntax

dnp3_data;

Example

dnp3_data; content:"|c3 06]|";

8.23 ENIP/CIP Keywords

The enip_command and cip_service keywords can be used for matching on various properties of ENIP requests.
There are three ways of using this keyword:

* matching on ENIP command with the setting "enip_command";

» matching on CIP Service with the setting "cip_service".

* matching both the ENIP command and the CIP Service with "enip_command" and "cip_service" together
For the ENIP command, we are matching against the command field found in the ENIP encapsulation.

For the CIP Service, we use a maximum of 3 comma separated values representing the Service, Class and Attribute.
These values are described in the CIP specification. CIP Classes are associated with their Service, and CIP Attributes
are associated with their Service. If you only need to match up until the Service, then only provide the Service value.
If you want to match to the CIP Attribute, then you must provide all 3 values.

Syntax:

enip_command:<value>
cip_service:<value(s)>
enip_command:<value>, cip_service:<value(s)>

Examples:

8.23. ENIP/CIP Keywords 135

Suricata User Guide, Release 7.0.4

enip_command: 99

cip_service:75
cip_service:16,246,6
enip_command:111, cip_service:5

(cf. http://read.pudn.com/downloads166/ebook/763211/EIP-CIP-V1-1.0.pdf)

Information on the protocol can be found here: http:/literature.rockwellautomation.com/idc/groups/literature/
documents/wp/enet-wp001_-en-p.pdf

8.24 FTP/FTP-DATA Keywords

8.24.1 ftpdata_command

Filter ftp-data channel based on command used on the FTP command channel. Currently supported commands are
RETR (get on a file) and STOR (put on a file).

Syntax:

ftpdata_command: (retr|stor)

Examples:

ftpdata_command:retr
ftpdata_command: stor

Signature example:

alert ftp-data any any -> any any (msg:"FTP store password"; filestore; filename:
—"password"; ftpdata_command:stor; sid:3; rev:1;)

8.24.2 ftpbounce

Detect FTP bounce attacks.

Syntax:

ftpbounce

8.25 Kerberos Keywords

8.25.1 krb5_msg_type
This keyword allows to match the Kerberos messages by its type (integer). It is possible to specify the following values
defined in RFC4120:

* 10 (AS-REQ)

* 11 (AS-REP)

* 12 (TGS-REQ)

136 Chapter 8. Suricata Rules

http://read.pudn.com/downloads166/ebook/763211/EIP-CIP-V1-1.0.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/wp/enet-wp001_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/wp/enet-wp001_-en-p.pdf

Suricata User Guide, Release 7.0.4

« 13 (TGS-REP)

* 30 (ERROR)

Syntax:

krb5_msg_type: <number>

Signature examples:

alert krb5 any any ->

~rev:l;)
alert krb5
—rev:1;)
alert krb5
< rev:l;)
alert krb5
< rev:l;)
alert krb5
—rev:1;)

any

any

any

any

any ->
any ->
any ->
any ->

any

any

any

any

any

any

any

any

any

any

(msg:
(msg:
(msg:

(msg:

(msg

"Kerberos

"Kerberos

"Kerberos

"Kerberos

:"Kerberos

5 AS-REQ message"; krb5_msg_type:10; sid:3;.
5 AS-REP message'; krb5_msg_type:11; sid:4;.
5 TGS-REQ message'; krb5_msg_type:12; sid:5;
5 TGS-REP message"; krb5_msg_type:13; sid:6;

5 ERROR message"; krb5_msg_type:30; sid:7;.

Note: AP-REQ and AP-REP are not currently supported since those messages are embedded in other application

protocols.

8.25.2 krb5 cname

Kerberos client name, provided in the ticket (for AS-REQ and TGS-REQ messages).

If the client name from the Kerberos message is composed of several parts, the name is compared to each part and the
match will succeed if any is identical.

Comparison is case-sensitive.

Syntax:

krb5_cname; content:'"name";

Signature example:

alert krb5 any any -> any any (msg:"Kerberos 5 des server name"; krb5_cname; content:"des

<"y sid:4; rev:1;)

krb5_cname is a 'sticky buffer'.

krb5_cname can be used as fast_pattern.

krb5. cname supports multiple buffer matching, see Multiple Buffer Matching.

8.25. Kerberos Keywords

137

Suricata User Guide, Release 7.0.4

8.25.3 krb5_sname

Kerberos server name, provided in the ticket (for AS-REQ and TGS-REQ messages) or in the error message.

If the server name from the Kerberos message is composed of several parts, the name is compared to each part and the
match will succeed if any is identical.

Comparison is case-sensitive.

Syntax:

krb5_sname; content:'name";

Signature example:

alert krb5 any any -> any any (msg:"Kerberos 5 krbtgt server name"; krb5_sname; content:
<"krbtgt"; sid:5; rev:1;)

krb5_sname is a 'sticky buffer'.
krb5_sname can be used as fast_pattern.

krb5. sname supports multiple buffer matching, see Multiple Buffer Matching.

8.25.4 krb5 err_code

Kerberos error code (integer). This field is matched in Kerberos error messages only.
For a list of error codes, refer to RFC4120 section 7.5.9.

Syntax:

krb5_err_code:<number>

Signature example:

alert krb5 any any -> any any (msg:"Kerberos 5 error C_PRINCIPAL_UNKNOWN"; krb5_err_
—code:6; sid:6; rev:1;)

8.25.5 krb5.weak_encryption (event)

Event raised if the encryption parameters selected by the server are weak or deprecated. For example, using a key size
smaller than 128, or using deprecated ciphers like DES.

Syntax:

app-layer-event:krb5.weak_encryption

Signature example:

alert krb5 any any -> any any (msg:"SURICATA Kerberos 5 weak encryption parameters";.
—flow:to_client; app-layer-event:krb5.weak_encryption; classtype:protocol-command-
—.decode; sid:2226001; rev:1;)

138 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.4

8.25.6 krb5.malformed_data (event)

Event raised in case of a protocol decoding error.

Syntax:

app-layer-event:krb5.mal formed_data

Signature example:

alert krb5 any any -> any any (msg:"SURICATA Kerberos 5 malformed request data"; flow:to_
—.server; app-layer-event:krb5.malformed_data; classtype:protocol-command-decode;..
—s81d:2226000; rev:1;)

8.25.7 krbb.ticket_encryption

Kerberos ticket encryption (enumeration).
For a list of encryption types, refer to RFC3961 section 8.

Syntax:

krb5.ticket_encryption: (!)"weak" or (space or comma)-separated list of integer or.
—string values for an encryption type

Signature example:

alert krb5 any any -> any any (krb5.ticket_encryption: weak; sid:1;)
alert krb5 any any -> any any (krb5.ticket_encryption: 23; sid:2;)
alert krb5 any any -> any any (krb5.ticket_encryption: rc4-hmac,rc4-hmac-exp; sid:3;)

8.26 SMB Keywords

SMB keywords used in both SMB1 and SMB2 protocols.

8.26.1 smb.named_pipe

Match on SMB named pipe in tree connect.

Examples:

smb.named_pipe; content:"IPC"; endswith;
smb.named_pipe; content:"strange"; nocase; pcre:"/really$/";

smb.named_pipe is a 'sticky buffer'.

smb.named_pipe can be used as fast_pattern.

8.26. SMB Keywords 139

Suricata User Guide, Release 7.0.4

8.26.2 smb.share

Match on SMB share name in tree connect.

Examples:

smb.share; content:'"shared"; endswith;
smb.share; content:"strange"; nocase; pcre:'"/really$/";

smb. share is a 'sticky buffer'.
smb . share can be used as fast_pattern.

8.26.3 smb.ntimssp_user

Match on SMB ntlmssp user in session setup.

Examples:

smb.ntlmssp_user; content:"doe"; endswith;
smb.ntlmssp_user; content:"doe"; nocase; pcre:"/j(ohn|ane).*doe$/";

smb.ntlmssp_user is a 'sticky buffer'.
smb.ntlmssp_user can be used as fast_pattern.

8.26.4 smb.ntimssp_domain

Match on SMB ntlmssp domain in session setup.

Examples:

smb.ntlmssp_domain; content:"home"; endswith;
smb.ntlmssp_domain; content:"home"; nocase; pcre:"/home(sweet)*$/";

smb.ntlmssp_domain is a 'sticky buffer'.

smb.ntlmssp_domain can be used as fast_pattern.

8.27 SNMP keywords

8.27.1 snmp.version

SNMP protocol version (integer). Expected values are 1, 2 (for version 2c) or 3.

Syntax:

snmp . version: [op] <number>

The version can be matched exactly, or compared using the _op_ setting:

snmp .version: 3 # exactly 3
snmp .version:<3 # smaller than 3
snmp.version:>=2 # greater or equal than 2

140 Chapter 8

. Suricata Rules

Suricata User Guide, Release 7.0.4

Signature example:

alert snmp any any -> any any (msg:"old SNMP version (<3)"; snmp.version:<3; sid:1;.
~rev:1;)

8.27.2 snmp.community
SNMP community strings are like passwords for SNMP messages in version 1 and 2c. In version 3, the community
string is likely to be encrypted. This keyword will not match if the value is not accessible.

The default value for the read-only community string is often "public", and "private" for the read-write community
string.

Comparison is case-sensitive.

Syntax:

snmp . community; content:''private";

Signature example:

alert snmp any any -> any any (msg:"SNMP community private"; snmp.community; content:
<"private"; sid:2; rev:1;)

snmp . community is a 'sticky buffer'.

snmp . community can be used as fast_pattern.

8.27.3 snmp.usm

SNMP User-based Security Model (USM) is used in version 3. It corresponds to the user name.
Comparison is case-sensitive.

Syntax:

snmp.usm; content:"admin'";

Signature example:

alert snmp any any -> any any (msg:"SNMP usm admin"; snmp.usm; content:"admin"; sid:2;.
~rev:l;)

snmp . usm is a 'sticky buffer'.

snmp . usm can be used as fast_pattern.

8.27. SNMP keywords 141

Suricata User Guide, Release 7.0.4

8.27.4 snmp.pdu_type

SNMP PDU type (integer).
Common values are:

* 0: GetRequest

* 1: GetNextRequest

: Response
e 3: SetRequest

: TrapV1 (obsolete, was the old Trap-PDU in SNMPv1)
: GetBulkRequest

: InformRequest

: TrapV2

.
(e BN | AN W &~ W [\

* 8: Report
This keyword will not match if the value is not accessible within (for ex, an encrypted SNMP v3 message).

Syntax:

snmp . pdu_type: <number>

Signature example:

alert snmp any any -> any any (msg:"SNMP response"; snmp.pdu_type:2; sid:3; rev:1l;)

8.28 Base64 keywords

Suricata supports decoding base64 encoded data from buffers and matching on the decoded data.

This is achieved by using two keywords, base64_decode and base64_data. Both keywords must be used in order to
generate an alert.

8.28.1 base64 decode

Decodes base64 data from a buffer and makes it available for the base64_data function.

Syntax:

base64_decode:bytes <value>, offset <value>, relative;

The bytes option specifies how many bytes Suricata should decode and make available for base64_data. The decoding
will stop at the end of the buffer.

The offset option specifies how many bytes Suricata should skip before decoding. Bytes are skipped relative to the
start of the payload buffer if the relative is not set.

The relative option makes the decoding start relative to the previous content match. Default behavior is to start at
the beginning of the buffer. This option makes offset skip bytes relative to the previous match.

Note: Regarding relative and base64_decode:

142 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.4

The content match that you want to decode relative to must be the first match in the stream.

Note: base64_decode follows RFC 4648 by default i.e. encounter with any character that is not found in the base64
alphabet leads to rejection of that character and the rest of the string.

See Redmine Bug 5223: https://redmine.openinfosecfoundation.org/issues/5223 and RFC 4648: https://www.
rfc-editor.org/rfc/rfc4648#section-3.3

8.28.2 base64 data

base64_data is a sticky buffer.

Enables content matching on the data previously decoded by base64_decode.

8.28.3 Example

Here is an example of a rule matching on the base64 encoded string "test" that is found inside the http_uri buffer.

It starts decoding relative to the known string "somestring" with the known offset of 1. This must be the first occurrence
of "somestring" in the buffer.

Example:

Buffer content:
http_uri = "GET /en/somestring&dGVzdAo=¬_base64"

Rule:

alert http any any -> any any (msg:"Example"; http.uri; content:"somestring"; \
base64_decode:bytes 8, offset 1, relative; \
base64_data; content:"test"; sid:10001; rev:1;)

Buffer content:
http_uri = "GET /en/somestring&dGVzdAo=¬_base64"

Rule:

alert http any any -> any any (msg:"Example"; content:"somestring"; http_uri; \
base64_decode:bytes 8, offset 1, relative; \
base64_data; content:"test"; sid:10001; rev:1;)

8.29 SIP Keywords

The SIP keywords are implemented as sticky buffers and can be used to match on fields in SIP messages.

8.29. SIP Keywords 143

https://redmine.openinfosecfoundation.org/issues/5223
https://www.rfc-editor.org/rfc/rfc4648#section-3.3
https://www.rfc-editor.org/rfc/rfc4648#section-3.3

Suricata User Guide, Release 7.0.4

Keyword Direction
sip.method Request
sip.uri Request
sip.request_line Request
sip.stat_code Response
sip.stat_msg Response
sip.response_line | Response
sip.protocol Both

8.29.1 sip.method

This keyword matches on the method found in a SIP request.

Syntax

sip.method; content:<method>;

Examples of methods are:
« INVITE
* BYE
* REGISTER
* CANCEL
*« ACK
OPTIONS

Examples

sip.method; content:"INVITE";

8.29.2 sip.uri

This keyword matches on the uri found in a SIP request.

Syntax

sip.uri; content:<uri>;

Where <uri> is an uri that follows the SIP URI scheme.

144

Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.4

Examples

sip.uri; content:"sip:sip.url.org";

8.29.3 sip.request_line

This keyword forces the whole SIP request line to be inspected.

Syntax

sip.request_line; content:<request_line>;

Where <request_line> is a partial or full line.

Examples

sip.request_line; content:"REGISTER sip:sip.url.org SIP/2.0"

8.29.4 sip.stat_code

This keyword matches on the status code found in a SIP response.

Syntax

sip.stat_code; content:<stat_code>

Where <status_code> belongs to one of the following groups of codes:
e 1xx - Provisional Responses
¢ 2xx - Successful Responses
* 3xx - Redirection Responses
* 4xx - Client Failure Responses
* 5xx - Server Failure Responses

* 6xx - Global Failure Responses

Examples

sip.stat_code; content:"100";

8.29. SIP Keywords 145

Suricata User Guide, Release 7.0.4

8.29.5 sip.stat_ msg

This keyword matches on the status message found in a SIP response.

Syntax

sip.stat_msg; content:<stat_msg>

Where <stat_msg> is a reason phrase associated to a status code.

Examples

sip.stat_msg; content:"Trying";

8.